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The roles and activation of endocardial

Notch signaling in heart regeneration
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Abstract

As a highly conserved signaling pathway in metazoans, the Notch pathway plays important roles in embryonic
development and tissue regeneration. Recently, cardiac injury and regeneration have become an increasingly
popular topic for biomedical research, and Notch signaling has been shown to exert crucial functions during heart
regeneration as well. In this review, we briefly summarize the molecular functions of the endocardial Notch
pathway in several cardiac injury and stress models. Although there is an increase in appreciating the importance of
endocardial Notch signaling in heart regeneration, the mechanism of its activation is not fully understood. This
review highlights recent findings on the activation of the endocardial Notch pathway by hemodynamic blood flow
change in larval zebrafish ventricle after partial ablation, a process involving primary cilia, mechanosensitive ion
channel Trpv4 and mechanosensitive transcription factor Klf2.
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Background
The Notch signaling pathway is highly conserved in meta-
zoans and plays a pivotal role in many developmental pro-
cesses. Since John Dexter and Thomas Hunt Morgan
observed a notched wing phenotype in the fruit fly (Drosoph-
ila melanogaster) (Dexter 1914; Morgan 1917), it has taken
over a century for researchers to explore the function of
Notch signaling as it relates to different cell types interacting
with neighboring cells (Kovall et al. 2017). In the past few de-
cades, Notch signaling has been found not only to have an ef-
fect on development but also to participate in regeneration
procedures of multiple tissues and organs, such as the heart,
hair cell, and liver. In this review, we will focus on the roles of
endocardial Notch signaling in heart regeneration and the fac-
tors that activate the Notch pathway during this process.
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Overview of the Notch signaling pathway
Notch receptors and ligands
Notch receptors are single-pass transmembrane proteins
with one modification domain and four cleavage sites (Sie-
bel and Lendahl 2017; Kopan and Ilagan 2009), and these
proteins can be posttranslationally modified to greatly regu-
late ligand affinity and pathway activation. There are four
Notch receptors (Notch1–4) in mammals, while only one is
found in Drosophila melanogaster. The very first cleavage,
which occurs at site 1 (S1) by Furin-like convertase, starts
at the Golgi compartment before the receptor locates onto
the cell membrane, rendering it divided into the Notch
extracellular domain (NECD) as well as the Notch trans-
membrane and intracellular domain (NTM-ICD), which is
held together in a noncovalent manner (Luxan et al. 2016).
When the Notch receptor is located at the plasma mem-
brane, NECD is mainly comprised of epidermal growth fac-
tor (EGF)-like repeats and a negative regulatory region
(NRR) (Fig. 1) (Kopan and Ilagan 2009). The 29–36 tandem
EGF-like repeats are the primary domain that interacts with
ligands, while the affinity of binding can be affected by
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Fig. 1 Schematic diagram of the Notch signaling pathway showing the ligand, receptor and translocation of the NICD domain. ADAM, a
disintegrin and metalloproteinase; ANK, ankyrin repeats; Co-R, corepressor; CSL, CBF1/Su(H)/Lag-1; DSL, Delta/Serrate/Lag-2 motif; MAML,
mastermind-like; NICD, Notch intracellular domain; NLS, nuclear localization sequence; NRR, negative regulatory region; PEST, proline/glutamic
acid/serine/threonine-rich sequence; RAM, RBPJκ-associated module; TMD, transmembrane domain
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calcium ions or glycosylation of the domain (Rand et al.
1997; Takeuchi and Haltiwanger 2014; Luca et al. 2017;
Kakuda and Haltiwanger 2017). NRR is composed of three
Lin12-Notch repeat modules and a heterodimerization do-
main (HD), and it is critical for preventing receptor activa-
tion without ligand binding (Gordon et al. 2007).
Also as single-pass transmembrane proteins, Notch li-

gands have more variations than receptors (D'Souza
et al. 2008). The canonical Notch ligands can be divided
into 3 types based on their motifs: the N-terminal Delta/
Serrate/Lag-2 (DSL) motif, the Delta and OSM-11-like
protein (DOS) domain, or the EGF-like repeats (Kopan
and Ilagan 2009). The Jagged and Delta families are the
most well-known Notch ligands. They both contain DSL
motifs, and Jagged has a cysteine-rich domain, while
Delta does not (Fig. 1) (D'Souza et al. 2008). In addition,
an increasing number of noncanonical Notch ligands
have been discovered that lack DSL motifs. Although
their functions are not clearly understood, they might
have effects on the pleiotropic nature of the Notch path-
way (D’Souza et al. 2010).

Activation of the Notch signaling pathway
When ligands on the surface of adjacent cells bind to
the Notch receptor, NRR can expose cleavage site 2 (S2)
to ADAM family proteins, which is followed by the
cleavage of the transmembrane domain (TMD) at site 3
(S3) and site 4 (S4) by γ-secretase; These events set the
Notch intracellular domain (NICD) free to activate the
Notch pathway (Gordon et al. 2015). NICD contains an
RBPJκ-associated module (RAM), seven ankyrin repeats
(ANK), a nuclear localization sequence (NLS) and a
proline/glutamic acid/serine/threonine-rich sequence
(PEST), so it can enter the nucleus with its NLS after
cleavage (Fig. 1) (Hori et al. 2013). RAM then interacts
with the DNA binding protein CSL (CBF1/Su(H)/Lag-1).
Recruited by ANK, coactivator mastermind-like (MAML)
replaces corepressor (Co-R) to form a NICD/CSL/
MAML complex that subsequently activates the tran-
scription of downstream genes (such as those in the
HES and HEY families) (Luxan et al. 2016). The
ubiquitination of the PEST sequence regulates NICD
stability, which can be degraded by the proteasome
(Oberg et al. 2001).

Function of Notch signaling in development
As a key pathway in development, Notch signaling plays
pivotal roles in gene regulation and cell fate determin-
ation. Together with the Wnt pathway, Notch signaling
controls oscillatory gene expression during somitogen-
esis (Hubaud and Pourquié 2014). Progenitor cells regu-
lated by Notch signaling can adopt distinct cell fates.
During limb development, Pax3+ progenitor cells with-
out Notch activation differentiate into muscle or
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vascular cells, while Notch-activated Pax3+ cells tend to
become endothelial and smooth muscle cells (Mayeuf-
Louchart et al. 2014). In vasculature development, the
Notch-Hey2 pathway controls arterial versus venous cell
fate decisions (Zhong et al. 2001). Notch signaling is also
vital for endothelial tip and stalk cell specification during
sprouting angiogenesis (Gridley 2007).
Notch signaling is of great importance to many aspects

of heart development, and mutations of its components
can lead to different types of congenital heart diseases
(MacGrogan et al. 2010; MacGrogan et al. 2018). First,
Notch signaling inhibits cardiomyocyte differentiation in
the heart field in Drosophila melanogaster and Xenopus
laevis (Rones et al. 2000; Han and Bodmer 2003). Next,
Notch-activated Hey1 and Hey2 can inhibit Bmp2 and
downstream Tbx2 expression in the heart chambers,
thus limiting their expression specifically in the atrioven-
tricular canal (AVC), which is required for normal AVC
development (Kokubo et al. 2007; Rutenberg et al. 2006).
Another function of Notch signaling is to promote
epithelial-to-mesenchymal transition (EMT) in the for-
mation of the endocardial cushion, which later becomes
valves in the outflow tract (OFT) and AVC; the transi-
tion is promoted by activating the Snail family and by
subsequently repressing vascular endothelial cadherin
(VE-cadherin) (Luxan et al. 2016; Timmerman et al.
2004). In AVC, endocardial Notch activation can pro-
mote EMT by regulating myocardial Bmp2 expression
and endocardial Wnt4 expression (Wang et al. 2013). In
addition, endocardial Notch signaling affects sinus ven-
ous valve (SVV) and sinoatrial node (SAN) development
through the Wnt and NRG1 pathways (Wang et al.
2020). Moreover, Notch signaling mediates the process
of cardiac neural crest (CNC) invasion and interaction
with the OFT endocardium for arterial valve formation
and aortic arch artery (AAA) remodeling (High et al.
2009). Additionally, activated Notch signaling in the
endocardium regulates ventricular trabeculation by pro-
moting cardiomyocyte proliferation and differentiation
through the BMP and EPHB2-NRG1 pathways in mice
(Grego-Bessa et al. 2007), whereas Notch signaling acti-
vation in the myocardium can also regulate trabeculae
initiation via lateral inhibition and the Nrg-Erbb pathway
in zebrafish (Han et al. 2016).

Function of Notch signaling in regeneration
In addition to the essential functions in development,
Notch signaling is also greatly involved in the regener-
ation process for different organs after injury. Since Raya
et al. revealed upregulation of Notch receptor and ligand
expression during zebrafish fin regeneration in 2003
(Raya et al. 2003), many studies have shown that Notch
signaling plays critical roles in the fin repair process
(Wehner and Weidinger 2015), which includes
regulation of venous arterialization (Kametani et al.
2015), maintenance of cellular proliferation (Grotek
et al. 2013) and prevention of cell differentiation (Munch
et al. 2013). Additionally, Notch receptors and ligands
are upregulated after hepatectomy in rats (Kohler et al.
2004). Notch signaling can regulate ductal cell accumu-
lation (Fabris et al. 2007) and biliary differentiation (Spee
et al. 2010), promote the expansion and differentiation
of liver progenitor cells (Huang et al. 2014), and
antagonize Wnt signaling (Huang et al. 2014; Boulter
et al. 2012) during liver regeneration. However, different
Notch receptors exert different effects on different types
of liver cells (Ortica et al. 2014; Yang et al. 2019), sug-
gesting the complex function of the Notch signaling
pathway in the treatment of liver diseases (Morell and
Strazzabosco 2014; Wang et al. 2017) and the need for
further study of specific molecular mechanisms (Morell
et al. 2013; Valizadeh et al. 2019).
Interestingly, the Notch signaling pathway has a cru-

cial negative regulatory effect on axon regeneration (Rao
and Pearse 2016) by autonomously preventing the for-
mation of growth cones in damaged areas (El Bejjani
and Hammarlund 2012). Inhibiting Notch signaling can
dampen the inflammatory response (Chen et al. 2015)
and promote axon repair after spinal cord injury
(Sobrido-Camean et al. 2020). Notch signaling also nega-
tively regulates the process of inner ear regeneration
(Daudet and Zak 2020; Waqas et al. 2016) by regulating
the proliferation of supporting cells to limit the number
of hair cells (Kniss et al. 2016), whereas Notch inhibition
stimulates inner ear stem cells to differentiate into new
hair cells (Zak et al. 2015; Mizutari et al. 2013).

Endocardial Notch signaling in heart regeneration
Recently, cardiac injury and regeneration have been a
topic of increasing interest for biomedical research, and
Notch signaling has been found to serve crucial func-
tions during this process as well. Upregulated expression
of the Notch receptor and ligand was identified in am-
putated adult zebrafish hearts in 2003, identifying zebra-
fish as an excellent model for heart regeneration and
suggesting a role for the Notch pathway in the activation
of the regenerative response (Raya et al. 2003). Ten years
later, a ventricular-specific genetic ablation model was
first used to explore the mechanism of heart regener-
ation in zebrafish larvae, and Notch signaling has been
shown to be activated in endocardial cells, especially
around the AVC region. Once the Notch signal is
blocked by a small molecule inhibitor, cardiomyocyte
transdifferentiation and proliferation are impaired, lead-
ing to the failure of heart regeneration (Zhang et al.
2013). A follow-up study revealed that endocardial
Notch activation results in the non-cell autonomous ini-
tiation of myocardial Erbb2 and BMP signaling, which is
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responsible for cardiomyocyte reprogramming and pro-
liferation (Fig. 2a) (Galvez-Santisteban et al. 2019). How-
ever, the exact mechanism of this crosstalk between
layers is not fully understood.
Several studies have recognized the importance of

endocardial Notch signaling during cardiac regeneration,
and additional works have focused on the molecular
mechanism of the Notch pathway in the endocardium.
Münch et al. revealed a highly dynamic endocardium
Fig. 2 Diagrams showing the functions of endocardial Notch signaling in v
ventricle cryoinjury, (c) ventricle amputation, (d) pressure overload. EC, end
transaortic constriction
expansion pattern in the injured area of the regenerating
zebrafish heart after cryoinjury. Notch signaling is sig-
nificantly activated in endocardial cells, which restricts
the expression of inflammatory factors and macrophage
recruitment and coordinates with Serpine1 to control
endocardium maturation and cardiomyocyte prolifera-
tion (Fig. 2b) (Munch et al. 2017). Zhao et al. discovered
that the number of proliferating cardiomyocytes was
dramatically decreased and that fibrosis formation was
arious heart injury and stress models. (a) ventricle ablation, (b)
ocardium; MC, myocardium; NICD, Notch intracellular domain; TAC,
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deteriorated in injured hearts after ventricle amputation
when Notch signaling was blocked in transgenic fish
line, Tg (hsp70: dn-Maml) (Zhao et al. 2014). In the
follow-up study, the authors revealed, via transcriptomic
analysis, that inhibition of endocardial Notch signaling
could cause reduced expression of Wnt antagonists wif1
and notum1b; thus, Wnt activity was increased and
could inhibit cardiomyocyte proliferation and heart re-
generation. This regenerative defect could be partially
rescued after treatment with the Wnt inhibitor IWR
(Fig. 2c) (Zhao et al. 2019).
In addition to zebrafish heart regeneration models,

more research has shown that Notch signaling is func-
tionally conserved in mammalian cardiac injury and re-
pair processes, but the molecular mechanism regulating
heart regeneration may be more complicated. Notch sig-
naling is widely activated in cardiomyocytes and mesen-
chymal cardiac precursors in murine hypertrophic
models of cardiac hypertrophy and failure. Notch1
knockout causes exacerbated cardiac fibrosis and hyper-
trophy, implying that Notch signaling will be of particu-
lar value for ameliorating adaptive hypertrophy after
heart injury (Croquelois et al. 2008). Knocking out RBP-
J to partially inhibit Notch signaling is revealed to be re-
sponsible for aggravating myocardial cell apoptosis and
impairing heart remodeling ability after myocardial in-
farction (MI) in murine hearts, indicating that Notch
signaling has a protective effect on cardiomyocyte apop-
tosis after cardiac injury (He et al. 2018). Forced activa-
tion of Notch signaling mediated by AAV increases
cardiomyocyte proliferation in neonatal murine hearts
after injury but cannot stimulate cardiomyocyte cell
cycle reentry in injured adult hearts. The irresponsive-
ness to Notch activation and loss of proliferative capacity
of adult murine cardiomyocytes may be due to the in-
hibitory epigenetic modification of Notch-responsive
promoters (Felician et al. 2014).
Subsequently, Nemir et al. revealed that overexpres-

sion of the Notch ligand Jagged1 in adult murine hearts
under pressure overload not only significantly reduced
fibroblast proliferation but also stimulated the expan-
sion of Sca-1+ cells, especially Nkx2.5+ cardiac precur-
sor cells; these findings suggest that Notch signaling
could control the balance between fibrotic and regen-
erative repair in the adult heart. Interestingly, Notch1
knockout in cardiomyocytes does not affect Jagged1-
induced antihypertrophic and antifibrotic responses
(Nemir et al. 2012). The cell types responsible for the
beneficial functions of Notch overexpression remain
to be identified, and the endocardium stands out as a
good candidate (Fig. 2d). Whether Notch activation
occurs in endocardial cells and how this activation af-
fects fibroblasts and cardiac precursor cells warrant
further investigation.
In summary, a large amount of data indicates that the
activation of Notch signaling exerts significant functions
in heart regeneration and that it may play a complicated
role in interacting with different signaling molecules. It
is of great interest not only to determine the down-
stream effectors of Notch signaling but also to identify
the molecular mechanism responsible for Notch activa-
tion in regenerating hearts.
Endocardial Notch signaling activated by hemodynamic
alterations
Although Notch pathway activation during heart regen-
eration has been known about for over a decade, the
regulatory factors activating Notch signaling have not
been fully elucidated. Recently, hemodynamics has
emerged as a potential factor in this process due to its
important roles during cardiac development and to its
links to Notch signaling (Duchemin et al. 2019). Boselli
et al. showed that endocardial cells converge at the
valve-forming region under mechanical forces during
the initiation of valve formation (Boselli et al. 2017).
Fontana et al. revealed that shear stress induces Notch
and Klf2 in parallel to inhibit angiogenesis receptor fms
related receptor tyrosine kinase 4 (Flt4), which is im-
portant for normal valve formation (Fontana et al. 2020).
In addition, it has been reported that blood flow is re-
quired for Notch signaling during ventricle trabeculation
(Samsa et al. 2015). Thus, we speculate that
hemodynamics may also regulate Notch signaling during
heart regeneration.
First, compared with only anterograde flow being ob-

served in control hearts, we and collaborators observed
anterograde and retrograde intracardiac blood flow in
ablated larval zebrafish hearts, which was further con-
firmed by particle image velocimetry (PIV). By analyzing
anterograde and retrograde flow velocity and calculating
the fundamental index, we revealed that there was in-
creased oscillatory blood flow in ablated hearts (Galvez-
Santisteban et al. 2019). Tricaine and 2,3-butanedione
monoxime (BDM), which are a muscle relaxant and an
inhibitor of myofibrillar ATPase, respectively, were used
to reduce intracardiac blood flow in ventricle-ablated
zebrafish hearts. The results revealed that Notch activa-
tion was significantly impaired, which led to inhibition
of early cardiac transcription factor expression, reduced
cardiomyocyte proliferation and defective heart regener-
ation (Galvez-Santisteban et al. 2019); these findings
suggest that hemodynamic alteration is indispensable in
Notch activation. Thus, we explored the potential mole-
cules or subcellular structures bridging hemodynamic al-
terations and Notch signal activation and focused on the
following factors: mechanosensitive transcription factor
Klf2, primary cilia, and mechanosensitive ion channels.
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Mechanosensitive transcription factor Krüppel-like factor 2
Krüppel-like factor 2 (KLF2) has been the focus of many
studies because of its ability to respond to hemodynamic
alterations, which often occur through the Notch path-
way (Lee et al. 2006; Doddaballapur et al. 2015). Two
homologues, klf2a and klf2b, exist in zebrafish, and the
expression of both genes increases in ablated hearts,
though they exhibit different expression patterns (Li
et al. 2020). Initially, they are both expressed in the AVC
of ablated hearts. Later, klf2a expression extends into
the atrium and ventricle, while klf2b expression is lim-
ited to the AVC and OFT. There are also differences in
the response to blood flow reduction by drug treatment
in ablated hearts. The activation of klf2a is reduced
sharply, while klf2b expression is increased in the AVC,
suggesting distinct functions of klf2 homologues in ven-
tricle regeneration.
To further explore the relationship between Klf2 and

Notch signaling, single mutants of klf2a or klf2b as well
as double mutants were generated. Interestingly, klf2b
expression increases in klf2a mutants and vice versa,
demonstrating a possible compensation effect. Although
no obvious morphological defects were observed, we no-
ticed a sharp decline in regenerative capacity in single
mutants after ventricle ablation and an even lower reco-
very rate was observed in double mutants. Subsequently,
we confirmed that Notch activation was significantly
decreased in ablated klf2 mutants, and there was reduced
expression of cardiac transcription factors and impaired
cardiomyocyte proliferation. Our results suggest that
hemodynamic alterations may activate the Notch pathway
through klf2, and both klf2a and klf2b are essential for
Notch activation and heart regeneration. However, we
cannot rule out the possibility that other mechanosensitive
factors may also be involved in this process.

Hemodynamic sensors: primary cilia and ion channels
The next question to explore is what factors sense
hemodynamic alterations and trigger klf2 upregulation
after cardiac injury. Primary cilia are great candidates
because they play important roles in responding to
mechanical stimulation, sensing blood flow and transdu-
cing mechanical signals (Spasic and Jacobs 2017). Pri-
mary cilia are reported to exist in the endocardium at 1
day post fertilization (dpf) in zebrafish (Samsa et al.
2015), and we further showed that they remain in the
hearts at later stages, in which they are not only located
in the endocardium but also in the myocardium and epi-
cardium (Li et al. 2020). Additionally, the number and
length of primary cilia change dynamically in response
to blood flow alterations during embryonic development
and heart regeneration. Knocking down tnnt2a, a sarco-
meric gene, results in remarkable inhibition of contract-
ile function, obstruction of blood flow and reduction of
primary cilia number. Reducing blood flow via tricaine
treatment can abolish the increase in primary cilia num-
ber in ablated hearts. Primary cilia formation is impaired
in the hearts of several ift mutants and morphants, since
intraflagellar transport (IFT) proteins can regulate cilia
assembly. Additionally, klf2a and klf2b expression is
downregulated in ift88 morphant ablated hearts; Notch
signaling activation is also downregulated, and cardio-
myocyte proliferation is decreased, suggesting the essen-
tial role of primary cilia in bridging hemodynamic
alterations and cardiac regeneration (Li et al. 2020).
Certain ion channels on the plasma membrane can

also sense mechanical shear stress and can subsequently
activate signaling (Kim et al. 2017). The transient recep-
tor potential (TRP) family is a group of calcium-
permeable membrane ion channel proteins, of which
TRPV4 plays a critical role in mechanical transduction.
In the cardiovascular system, TRPV4 can participate in
heart valve development (Heckel et al. 2015), affect ar-
terial dilation and vascular pressure (Earley et al. 2009),
mediate endothelial Ca2+ influx and respond to vasodila-
tory responses (Mendoza et al. 2010). Moreover, TRPV4
plays a positive role in blood vessels and cardiac repair
processes, such as through inducing collateral vessel
growth during regeneration of arterial circulation (Troidl
et al. 2009) and increasing calcium cycling and cardio-
myocyte contractility (Jones et al. 2019). Given that the
mechanosensitive cation channel Trpv4 can interact
with primary cilia to activate klf2a expression during
valve formation (Heckel et al. 2015), we analyzed their
relationship during heart regeneration. klf2a and Notch
expression in ablated hearts is markedly inhibited in
trpv4−/− mutants. The expression of early cardiac tran-
scription factors is impaired, as is cardiomyocyte prolif-
eration and reprogramming, leading to a reduction in
heart regeneration (Galvez-Santisteban et al. 2019).
These data indicate that the mechanosensitive ion chan-
nel Trpv4 is of great importance for Klf2-Notch activa-
tion in the cardiac regenerating process, but its
molecular mechanism and relationship with primary
cilia remain to be explored.

Prospect
In this review, we briefly summarize the functions of the
Notch signaling pathway in embryonic development and
tissue regeneration, and we focus especially on several
heart injury and stress models. Then, we reveal the es-
sential role of hemodynamic alteration in endocardial
Notch activation in larval cardiac regeneration. We dem-
onstrate that primary cilia and ion channels can respond
to mechanical force and activate klf2 expression after
ventricle ablation, subsequently leading to Notch signal
activation, cardiomyocyte proliferation and reprogram-
ming. Although these data shed light on the regulation
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of Notch signaling during regeneration, many questions
remain unanswered. Does hemodynamic alteration play
important roles in inducing the damage response and re-
generative program in other heart injury models or in
other species? What is the relationship between primary
cilia and mechanosensitive ion channels, and what are
the factors involved in signal transduction? What are the
ligands for Notch receptor activation and where are they
localized? These are all important questions that warrant
further investigation.
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