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Abstract Near (NIR) and mid (MIR) infrared spectro-

scopies have been studied as potential methods for non-

destructive analyses of the fresh fruits quality. In this study,

vitamin C, citric acid, total and reducing sugar content in

‘Valência’ oranges were evaluated using NIR and MIR

spectroscopy with multivariate analysis. The spectral data

were used to build up prediction models based on PLS

(Partial Least Squares) regression. For vitamin C and citric

acid, both NIR (r = 0.72 and 0.77, respectively) and MIR

(0.81 and 0.91, respectively) resulted in feasible models.

For sugars determination the two techniques presented a

strong correlation between the reference values and ana-

lytical signals, with low RMSEP and r[ 0.70 (NIR:

sucrose RMSEP = 12.2 and r = 0.75; glucose RMSEP =

6.77 and r = 0.82; fructose RMSEP = 5.07 and r = 0.81;

total sugar RMSEP = 12.1 and r = 0.80; reducing sugar

RMSEP = 20.32 and r = 0.82; MIR: sucrose RMSEP =

9.47 and r = 0.80; glucose RMSEP = 6.70 and r = 0.82;

fructose RMSEP = 5.20 and r = 0.81; total sugar

RMSEP = 11.72 and r = 0.81; reducing sugar RMSEP =

20.42 and r = 0.81). The models developed with MIR

presented lower prediction error rates than those made with

NIR. Therefore, infrared techniques show applicability to

determine of orange quality parameters in a non-destruc-

tive way.

Keywords Non-destructive analyses � NIR � MIR �
Chemometrics � PLS � Intact fruit quality � Oranges

Abbreviations

CIE Comission Internationale de l’Éclairage

HPLC High performance liquid chromatography

FAO Food and Agricultural Organization

MIR Middle infrared

NIR Near infrared

PLS Partial least squares

r Pearson correlation coefficient

rcal Pearson correlation coefficient of the

calibration

rVal Pearson correlation coefficient of the validation

RMSEC Root mean square error of calibration

RMSEP Root mean square error of prediction

RMSEV Root mean square error of validation

SSC Soluble solids content

USDA United States Department of Agriculture

Introduction

Brazil is the world’s largest orange grower, followed by the

United States and China (USDA 2019). Brazilian orange

production accounts for approximately 25.2% of the total

global number (FAO 2019), and most of the produced

orange is being used for juice production (USDA 2019). In
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the 2018–2019 growing seasons, the world orange pro-

duction is estimated to reach 54.3 million tons, which will

be at the highest levels in 8 years (USDA 2019).

Orange quality, a combination of characteristics and

attributes as sugar and organic acid contents, plays an

essential role in the degree of acceptability by consumers

(Cayuela and Weiland 2010). As well as physical and

chemical attributes, nutritional parameters became an

important target during the purchase choice. Orange juice

is one of the most nutrient-dense fruit juices, two hundred

and thirty-seven ml of orange juice provides 21 g of total

sugars and 124 mg of ascorbic acid (O’Neil et al. 2012).

In a study to evaluate the effect of the major information

on the package of orange juices, the authors found that the

nutritional information vitamin C was an important factor

for most evaluators, suggesting the concern and preference

they have to consume products that provide to them some

health benefit (Gadioli et al. 2013).

Ascorbic (vitamin C) and citric acid contents are

important criteria to assess the nutritional value of oranges

(Jun-fangl et al. 2007). Sugars are also significantly

important to orange quality, denoting 85% of the soluble

solids commonly used for classification purposes during

citrus marketing (USDA 2019). Sucrose and the reducing

sugars fructose and glucose are the main sugars present in

orange juice (Kelebek et al. 2009).

Increasing consumer demand for good quality attributes,

such as sweetness and nutritional content, coupled with

industry demand for innovative tools for rapid and cost-

effective monitoring of quality, has stimulated interest in

spectroscopy techniques for citrus fruit quality monitoring

and evaluation (Bizzani et al. 2017). Infrared spectroscopy

has shown good applicability in fruit quality assessments,

the major advantages of near-infrared (NIR) and mid-in-

frared (MIR) spectroscopies over conventional methods are

related to their short analytical times—only a few sec-

onds—as well as their non-destructive character (Nicolai

et al. 2014). The conventional analytical methods for

determining these parameters are destructive, require much

time, chemicals, and trained personnel, besides generating

waste.

Infrared spectroscopy can be defined as the study of the

interaction of an electromagnetic wave (in the infrared

range 14,000 to 50 cm-1, divided into three areas: near IR

(14,000–4000 cm -1), mid-IR (4000– 400 cm -1), and far

IR (400–50 cm -1)) with matter (Rodriguez-Saona and

Allendorf 2011; Dufour 2009). Orange quality has been

analyzed, several times, by using NIR in the last few years

(Ncama et al. 2017; Huang et al. 2014; Liao et al. 2014; Liu

et al. 2011; Cayuela and Weiland 2010; Xia et al. 2007).

Cayuela and Weiland (2010), using two different

portable NIR-spectrometers, built SSC and acidity predic-

tion models in a non-destructive way, reaching R2 = 0.91

and 0.83, respectively. Liu et al. (2015), in a study, using

NIR to determine SSC, pH, TA (titratable acidity), and

vitamin C in Newhall navel oranges, developed satisfactory

prediction models, by LS-SVM (Least Squares Support

Vector Machine) with a prediction correlation coefficient

higher than 0.82. NIR has also been used to quantify

vitamin C contents in oranges, showed low RMSEP with

RMSEV = 3.90 mg 100 g-1 (Jun-fang et al. 2007).

MIR, on the other hand, has not been used to analyze

whole fruits, due to its low radiation penetration in the

sample, the use of which is rather restricted to fruit pulps

and juices, e.g., in the determination of total sugars in

passion fruit (R2 = 0.91 and RMSEP = 7.91 mg g-1DW)

(Oliveira et al., 2014) and apricot pulps (Sucrose,

R2 = 0.85 and RMSEP = 0.80 g.100 g-1; Glucose,

R2 = 0.87 and RMSEP = 0.26 g.100 g-1; Fructose,

R2 = 0.74 and RMSEP = 0.15 g.100 g-1) (Bureau et al.

2009). Nevertheless, the study of the use of MIR to

determine quality parameter in intact fruits can show good

results when associated with peel chemical composition

related to internal quality composition, as essential oil and

sugars in the peel that is related to the maturity stage of

fruit (Dugo et al. 2011; Ladaniya 2008). One of the

advantages of using MIR instead NIR to quantify is the

absorption band features; in MIR, the bands are more

distinct than in the NIR spectrum, where there are com-

binations of bands and overtones (Dufour 2009; Pavia et al.

2010).

This study set out to evaluate NIR and MIR techniques

as well as the chemometric method named partial least

squares (PLS) regression in an effort to develop models for

determining the contents of ascorbic acid, citric acid, and

sugars in ‘Valência’ oranges.

Materials and methods

Plant material

Oranges (Citrus sinensis) (n = 410) of ‘Valencia’ cultivar

were harvested in three stages (beginning, middle, and crop

end) during the 2015 crop season from a commercial

orchard in the state of São Paulo, Brazil. The fruits were

sanitized and selected by the absence of defects and dis-

eases and stored at 12 �C ± 1.5 at relative humidity of

90%. From the total of samples, 80 fruits were used,

exclusivity, for standard physical and chemical character-

ization, 230 oranges were used to develop the sugar PLS

models and 150 to organic acids PLS models in the cali-

bration step and external validation.
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Physical and chemical characterization

Fresh weight, equatorial diameter, peel color, soluble-

solids content, and pH were determined by standard

methods using a set of 80 oranges, and each fruit was

individually analyzed. These fruits were individually

weighed to the nearest 0.01 g in a Marte AS 2000C (São

Paulo, Brazil) electronic scale. The values were expressed

in grams. The cross-sectional diameter (i.e., the equatorial

diameter) was measured to the nearest 0.02 mm with a

Mitutoyo digital caliper (Aurora, Illinois).

A HunterLab MiniScan XE Plus colorimeter (Hunter

Associates Laboratory, Inc., Reston, VA) was used to

evaluate peel color according to the L, a* and b* (color

space) system proposed by the Commission Internationale

de l’Éclairage (CIE). Two-color readings were performed

in the equatorial region of each fruit. The results were

expressed as a hue angle (oh).

The soluble solids content (SSC) was determined using

an Atago RX-5000cx (ATAGO, Bellevue, WA) refrac-

tometer, and the results were expressed as �BRIX. The pH

measurements were performed by using a QX 1500

QUALSTRON equipment at room temperature (± 24� C).

Reference analysis for infrared calibration

Ascorbic and citric acid determination

The contents of L-ascorbic and citric acids were deter-

mined by high-performance liquid chromatography

(HPLC) through a methodology adapted from Kelebek

(2009). A Varian liquid chromatograph equipped with an

Agilent C18 (2.5 9 25 mm, 5 lm) column and an ultra-

violet–visible detector set at 254 nm (L-ascorbic acid) and

214 nm (citric acid). Phosphate buffer (0.1 M) at pH 2.5

was used as the mobile phase with a flow rate of 1.0 mL

min-1, and the injection volume was 20 lL. The concen-

tration of each acid was determined by using a calibration

curve that was prepared with pure L-ascorbic and citric acid

standards (Sigma Aldrich, St. Louis, MO).

After the juice extraction, the samples were brought to a

known volume with 3% (w/v) metaphosphoric acid, filtered

through a disposable filter made up of hydrophilic Teflon

(porosity of 0.45 lm), and protected from light to prevent

organic acid degradation. The analyses were performed,

individually, in each fruit in duplicate.

Total and reducing sugars

Total and reducing sugars were quantified by HPLC with a

methodology adapted from Kelebek (2009), using a Varian

liquid chromatograph equipped with an HPX 87H column

and a refractive index (RI) detector. The column was

maintained at room temperature (25 �C). Sulfuric acid

(H2SO4 0.5 mM) was used as the mobile phase with a flow

rate of 0.6 mL min-1. 20 lL of each sample was injected

into the system. Juice samples of each fruit were extracted

and stored at -28 �C. Samples were thawed, diluted to

1:10 ratio with ultrapure water (Milli-Q�), and filtered

through a disposable filter made up of hydrophilic Teflon

(porosity of 0.45 lm) before the analyses. Standards

comprised 99%? pure sucrose, 99.5%? pure D-glucose,

and 99% ? pure D-fructose (Sigma Life Science).

Near-infrared (NIR) spectroscopy

The oranges reflectance NIR spectra were collected using

the Spectrum 100 N spectrometer (Perkin-Elmer Corp.,

Norwalk, CT). The spectral resolution was 32 cm-1 and 32

spectra were co-added to improve the signal to noise ratio

over the 4000–10,000 cm-1 range. The analysis was per-

formed in each fruit, individually, in the equatorial region,

and the average of these three spectra was used to build up

the models.

Mid-infrared (MIR) spectroscopy

The MIR attenuated total reflectance (ATR) spectra were

acquired in an Agilent Cary 630 FTIR spectrometer at

wavenumbers ranging from 650 to 4000 cm-1, with a

resolution of 16 cm-1, and using 64 scans per sample. The

analysis was performed in four equidistant equatorial

positions of each orange. The average of four spectra was

used to build up the models.

Data processing

The chemometric analyses were performed using the Ori-

gin 8.1 (OriginLab, Northampton, MA, USA) and Pirouette

v.4.5 (Infometrix, Inc. Bothell—WA) softwares. NIR

spectra were mean-centered, processed with Standard

Normal Variation (SNV), and Savitzky-Golay first

derivative method with a twenty-one points window. The

MIR spectra were mean-centered, normalized between 1 to

0, and with Savitzky-Golay first derivative method with

five points of window.

The partial least squares (PLS) regression models we

constructed using the NIR and MIR data as independent

variables (X matrices) and the data obtained with the ref-

erence methods as dependent variables (Y matrices), 70%

of the total orange set, used to build the models, were used

to develop the calibration models, and internal validation

and 30% were used in the external validation procedure.

The evaluation of the models was taken from the anal-

ysis of the Pearson correlation coefficient (r) of the cali-

bration (r Cal), validation (r Val) and prediction (R), as
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well as the root-mean-square errors of calibration

(RMSEC), validation (RMSEV), and prediction (RMSEP).

Results and discussion

Physical and chemical orange characterization

Table 1 shows the average and variation range of the mass,

diameter, skin color, SSC, and pH values of the orange

samples. The considerable variation in mass, SSC and pH

can be related to the uses of orange from four flowerings,

different nutritional and hormonal states of the plant,

and environmental conditions during plant growth (Tadeo

et al. 2008).

The mass values are similar to those reported to

Valencia’ oranges by Arruda and colleagues (2011) in

Brazilian orchards and those described by Magwaza et al.

(2013) when evaluating the quality of ‘Valencia’ oranges

using NIR spectroscopy. On the other hand, Bai et al.

(2016) obtained values up to 153 g per fruit in US orch-

ards, which is quite different from our findings. The range

of the values of the equatorial diameters allows the clas-

sification of oranges in classes 3 (80–93 mm), 6

(70–80 mm), and 12 (56–63 mm), according to the

CODEX standard (CODEX 2004).

The external color values agree with the 8hue reported

by Arruda et al. (2011) and Miranda et al. (2015). The 8hue

was used as a parameter to monitor the peel color and could

vary from 0� to 360�. Angles between 60 and 150 indicate

fruits with greenish to yellowish skin, respectively

(McGuire 1992). In this study, was used fruits from 76� to

108.62 �hue, covering greenish to yellowish oranges

(showing different stages of ripeness).

The soluble solids content, which denotes an indirect

measure of juice sweetness (Kader 2002), presented ranges

and averages similar to those found in the literature

(Cayuela and Weiland 2010; Tadeo et al. 2008). Particu-

larly for orange juice, pH is an important quality parameter.

Along with titratable acidity, pH suggests fruit acidity. It

was observed that the average pH was 3.47, pH values

higher than 3.5 suggest less acidic fruits, while those lower

than 3.5 suggest acidic fruits (Ting 1969).

Reference analysis for infrared calibration

Table 2 shows the average, standard deviation, and data

range values for vitamin C, citric acid, sucrose, glucose,

fructose, total, and reducing sugar that was used to cali-

brated infrared models. As in the routine physical–chemi-

cal characterization, the reference analysis results show a

wide range of values for each parameter. The largest

variations, six and tenfold, were observed in vitamin C and

citric acid, and the smallest variation (threefold) was

observed in the glucose/ fructose content. Such large

variation is essential for the models as the regression must

be calibrated in the full range of values found in the

samples (Nicolai et al. 2014).

NIR and MIR spectra

The spectra of two distinct samples (L1 and L2) are shown

in Figs. 1 and 2. L1 presents a low sugar content (sucrose:

24.59 g L-1; glucose: 29.70 g L-1; fructose: 27.98 g L-1;

total: 82.28 g L-1; and reducing: 57.69 g L-1), and L2

presents high levels of sugars (sucrose: 54.79 g L-1; glu-

cose: 50.08 g L-1; fructose: 48.90 g L-1; total: 153.78 g

L-1; and reducing: 98.98 g L-1).

Figure 1 shows the orange NIR reflectance spectra after

preprocessing (A) with a mean center, standard normal

variation (SNV), and Savitzky-Golay first derivative

method (SG) with a twenty-five points window and the raw

spectra (B). SNV has been often used in NIR to remove

baseline and path length problems. SG method has been

applied to enhance the resolution of overlapped peaks,

baseline shift, multiplicative interference from dispersion,

particle size, and change in light distance (Cen and He

2007). Therefore, these data preprocessing procedures are

Table 1 Results of the characterization of orange samples

Mean ± sd Interval

Mass (g) 188.04 ± 41.28 93.72—282.23

Diameter (mm) 71.17 ± 4.18 63.80—80.38

Skin color (�hue) 91.99 ± 10.07 76.00—108.62

SSC (� BRIX) 8.18 ± 1.03 4.80—11.48

pH 3.47 ± 0.39 3.47—4.23

SSC = soluble solids content; sd = standard deviation

Table 2 Average, standard deviation, and data interval of the vitamin

C, citric acid, sucrose, glucose, fructose, total and reducing sugar

Parameter N Average ± sd Interval

Vit C (mg L-1) 230 412.52 ± 146.54 175.6–1074.6

Citric acid (g L-1) 230 11.56 ± 6.25 4.10–40.25

Sucrose (g L-1) 150 51.24 ± 18.38 21.80–113.07

Glucose (g L-1) 150 44.14 ± 11.86 25.04–77.09

Fructose (g L-1) 150 40.80 ± 8.59 24.15–65.60

Total (g L-1) 150 134.47 ± 36.18 72.30–219.16

Reducing (g L-1) 150 84.22 ± 19.97 49.51–137.43

sd = standard deviation; N = sample universe
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commonly used to minimize or eliminates NIR baseline

variation and light scattering and overlapped peaks and

consequently to the development of more accurate models

(Cen and He 2007). Spectral preprocessing techniques also

helps to remove any irrelevant information, which cannot

be handled properly by the regression techniques (Nicolai

et al. 2014).

After the preprocessing and transformations of spectra,

it was noticed that the difference in baseline was corrected;

in addition, with the application of the first derivative,

some peaks, previously absent, were evidenced. Correction

of these problems is advantageous and important for the

chemometric step of developing the correlation models

with the wanted physicochemical parameters.

Therefore, the raw (1A) and processed (1B) NIR spectra

show three strong bands at 5000, 7000, and 8500 cm-1 that

have been assigned to OH, OH, and CH stretching vibra-

tion, respectively (Lin et al. 2009; Bizzani et al. 2017). The

PLS models using NIR spectra were built without data

from 6400 to 5600 cm-1 because this region is character-

ized by combination bands of amide groups, present in

protein molecules.

Figure 2 shows the MIR spectra of the same two oran-

ges samples. A is the original spectra, and B is the pre-

processed with mean-centered, normalization from 1 to

zero, SG first derivative method (SG) with five points of

window. In both spectral data sets (NIR and MIR), PLS

models were developed with raw and processed spectra.

However, those developed with the raw data did not show a

high correlation with the quality parameters due to defects

such as light scattering, baseline difference, etc.

The strong and broadband from 3200 to 3600 cm-1 in

MIR spectra (Fig. 2a) oranges has been assigned to the O–

H group of water, organic acids, and sugars (Bizzani et al.

2017; Huang et al. 2009). The sharp bands between 3000

and 2750 cm-1 have been assigned to C–H vibrations,

which are present in most of the organic molecules but are

strong in molecules, such as fatty acids (Bicudo et al. 2005)

and essential oils that are present in large amount in orange

peel. Limonene is the main component of the essential oils

found in citrus peel (Kader 2002). In general, the content of

peel oil increases with fruit maturity (Ladaniya 2008), with

some exceptions as Limonene level that decreases at the

beginning and end of the orange harvest season (Dugo et al.

2011). Therefore, harvest time is a critical parameter that

significantly influences the essential oil composition in

citrus (Bourgou et al. 2012). There are no studies that

report a correlation between oils’ peel composition and

the quality of oranges. Moreover, some results indicated

that sugar concentration of the orange peel, similar to what

occurs in the juice, changes during the maturation time

(Ladaniya 2008), accumulating with maturity. Sucrose and

glucose are the predominant sugars in the early stages of

peel maturation.

The band in 1730 cm-1 has been assigned to the C=O

groups found in organic acids, esters, aldehydes, and

ketones (Bicudo et al. 2005). The interval between 1790

and 706 cm-1 has been associated with the stretching of

C=O and C=C groups (Yang and Irudayaraj 2002). In

contrast, C–C and C–O stretching groups predominate at

bands between 1500 and 900 cm-1 (Pavia et al. 2010).

Bureau et al. (2019) observed that the region between 1500

and 900 cm-1 is the most adequate to quantify sugars.

When analyzing vitamin C solutions,Yang and Irudayaraj

Fig. 1 NIR spectra submitted to SNV and first derivative (25) (a);

original NIR spectra (b); red and black lines are high and low sugar

content samples, respectively; Dashed line: spectrum variables used

Fig. 2 Original MIR spectra (a); b)MIR spectra submitted to SNV

and first derivative (25); Dashed line: spectrum variables used.

L1 orange with low sugar content and L2 with high levels of sugar
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(2002) observed a strong correlation between the bands at

3500–3000 cm -1 and 1750–1000 cm-1 with different acid

concentrations.

The PLS models using MIR spectra were built without

data from 3656 to 4000 cm-1 and from 2777 to 1773 cm-1

regions because they do not present any band, only noise.

PLS models for vitamin C and citric acid Using NIR

and MIR data

Table 3 presents the results of Pearson correlation coeffi-

cient of the calibration (r Cal), Validation (r Val) as well as

the root-mean-square errors of calibration (RMSEC), val-

idation (RMSEV) for the PLS models developed with NIR

and MIR data for the determinations of the parameters

vitamin C and citric acid.

The PLS analyses were performed with 230 oranges

using 10 factors (F), except the NIR analyses of citric acid

that was 8. The choice of the number of factors was made

from the observation of RMSEC and RMSEV values,

where the number of suitable factors showed the smallest

error values (Geladi and Kowalski 1986).

According to Varmuza and Filzmoser (2016), models

with r above 0.7 and below 0.9 presents a strong correla-

tion, and models with r between 0.4 e 0.7 are considered

with moderate correlation. Therefore, vitamin C and citric

acid models developed with NIR and MIR data resulted in

models with a strong correlation. However, the rVal for

MIR was higher than NIR for vitamin C and citric acid,

mainly to citric acid with a correlation coefficient of vali-

dation step above 0.90. MIR also shows lower validation

error (RMSEV) to the citric acid PLS model, 1.7 g L-1,

indicating a great and accurate method to determine this

attribute.

Table 4 presents the results of the root-mean-square

errors of prediction (RMSEP) and r for external validation

with 99 oranges using 9 and 8 factors for vitamin C and

citric acids, respectively. Both techniques show r[ 0.7 for

both compounds. Like in the internal validation, MIR

shows higher r and lower RMSEP than NIR.

The lower performance of NIR is known to present

overburdened spectra containing many absorption combi-

nations with poorly defined bands. This might have hin-

dered the correlation between the signals and the quality

parameters (Bobelyn et al. 2007; Nicolai et al. 2014). Even

so, the models developed with NIR presented a strong

correlation and low mean errors. Magwaza et al. (2013)

evaluating the use of NIR in determining vitamin C in

’Valência’ oranges reported values of RMSEP close to that

found in this study, 90 mg L-1 on average. However, the

correlation coefficient values were below 0.60.

The use of NIR technique for determining citric acid and

vitamin C contents in intact oranges has been evaluated in

other studies, such as that carried out by Miyamoto et al.

(1998) on the quantification of citric acid in whole oranges

through NIR spectroscopy, in which the developed PLS

Table 3 Correlation coefficients and errors of PLS models developed

with NIR and MIR data for the determinations of the quality

parameters

Parameter Method RMSEV r VAL RMSEC r CAL

Vit C (mg L-1) NIR 107.2 0.72 89.3 0.82

MIR 103.4 0.78 89.7 0.82

Citric acid (g L-1) NIR 4.1 0.77 3.7 0.83

MIR 1.7 0.91 1.6 0.92

Sucrose (g L-1) NIR 11.0 0.77 8.9 0.87

MIR 7.0 0.90 6.5 0.91

Glucose (g L-1) NIR 7.8 0.76 6.0 0.88

MIR 7.7 0.74 6.7 0.83

Fructose (g L-1) NIR 5.2 0.80 3.9 0.90

MIR 6.4 0.70 5.5 0.79

Total (g L-1) NIR 21.9 0.79 17 0.89

MIR 13.8 0.72 11.9 0.81

Reducing (g L-1) NIR 12.6 0.78 9.3 0.90

MIR 23.6 0.75 20.1 0.83

NIR = near-infrared; MIR = mid-infrared RMSEV and RMSEC =

root-mean-square errors of validation and calibration, respectively; r

Val and r Cal = Pearson’s correlation coefficients of validation and

calibration, respectively

Table 4 Statistical outcomes of the PLS prediction models for MIR

analytical signals for vitamin C, citric acid, sucrose, glucose, fructose

as well as total and reducing sugars vitamin C and citric acids,

respectively, NIR and MIR data

Parameter Method RMSEP r

Vit C (mg L-1) NIR 94.9 0.71

MIR 75.1 0.81

Citric acid (g L-1) NIR 3.8 0.75

MIR 3.01 0.83

Sucrose (g L-1) NIR 12.2 0.75

MIR 9.4 0.80

Glucose (g L-1) NIR 6.7 0.82

MIR 6.7 0.82

Fructose (g L-1) NIR 5.0 0.81

MIR 5.2 0.81

Total (g L-1) NIR 12.1 0.80

MIR 11.7 0.81

Reducing (g L-1) NIR 20.3 0.82

MIR 20.4 0.81

NIR = near-infrared; MIR = mid-infrared; RMSEP = root-mean-

square errors of prediction; R = Pearson’s correlation coefficients of

prediction; n = sample universe
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models showed a Pearson’s correlation coefficient of 0.83.

In the investigation done by Pissard et al. (2013), NIR-

based models for the determination of vitamin C in apples

were developed and led to r = 0.89.

MIR technique showed the best models, as indicated

RMSEP = 75.1 and r = 0.81 for vitamin C as well as

RMSEP = 3.0 and r = 0.83 for citric acid. For MIR, there

are no other studies on its use for non-destructive analyses

of oranges. The results of this study show there is a cor-

relation between organic acid concentration in the juice

with some compounds of orange peel, most probably

essential oil that during the maturation change its con-

centration and composition. Even with a low MIR radiation

penetration, it was observed a strong correlation and a low

prediction error.

PLS models of sugar contents

Table 3 presents the results of Pearson correlation coeffi-

cient of the calibration (r Cal), Validation (r Val) as well as

the root-mean-square errors of calibration (RMSEC), val-

idation (RMSEV) for the PLS models developed with NIR

and MIR data for the determinations of the sucrose, glu-

cose, fructose, total and reducing sugars, using 150 samples

and 6 to 10 factors.

Therefore, the models developed with NIR and MIR data

for sugars (Table 2) resulted in models with a strong corre-

lation. However, the r Val for NIR was higher than MIR for

almost all measurements, except to sucrose where r Val value

was 0.90. On the other hand, the RMSEV values were lower

MIR for sucrose, glucose, and total sugars and NIR RMSEV

values were lower for fructose and reducing sugars.

Table 4 presents the results of the root-mean-square errors

of prediction (RMSEP) and r for external validation with 45

oranges using 5 and 8 factors for sucrose, glucose, fructose,

total, and reducing sugars. The models present a strong

correlation with r[ 0.70. In addition, the RMSEP values of

each quality parameter were similar for both methods and

were lower than those found in the internal validation

(Table 3). Even though the use of MIR to assess the quality

parameters of whole fruits is still limited, this technique

showed promising results. This finding suggests the power of

this model in separating a sample containing high sucrose

concentrations from those having low sucrose concentration.

Conclusion

The applicability of spectroscopic techniques in NIR and

MIR range combined with PLS regression was evaluated

for the determination of sugars and organic acids contents

in intact oranges. The results demonstrated the potential of

NIR and MIR-techniques to determine orange quality in a

non-destructive way. Mid infrared shown best PLS models,

with higher correlation coefficients and lower errors to all

parameters, except fructose and reducing sugars. There-

fore, it can be an alternative for quality control of raw

materials for several food products. Further studies to

optimize the prediction models should be conducted to

reduce RMSEP values and tests to prove the correlation

between the essential oil composition of orange peel and its

juice quality parameters.
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