
Vol.:(0123456789)

Molecular Diagnosis & Therapy (2021) 25:9–27 
https://doi.org/10.1007/s40291-020-00505-3

REVIEW ARTICLE

System‑Wide Pollution of Biomedical Data: Consequence of the Search 
for Hub Genes of Hepatocellular Carcinoma Without Spatiotemporal 
Consideration

Ankush Sharma1,2,4   · Giovanni Colonna3

Accepted: 1 December 2020 / Published online: 21 January 2021 
© The Author(s) 2021

Abstract
Biomedical institutions rely on data evaluation and are turning into data factories. Big-data storage centers, supercomputing 
systems, and increased algorithmic efficiency allow us to analyze the ever-increasing amount of data generated every day in 
biomedical research centers. In network science, the principal intrinsic problem is how to integrate the data and information 
from different experiments on genes or proteins. Data curation is an essential process in annotating new functional data to 
known genes or proteins, undertaken by a biobank curator, which is then reflected in the calculated networks. We provide 
an example of how protein–protein networks today have space-time limits. The next step is the integration of data and infor-
mation from different biobanks. Omics data and networks are essential parts of this step but also have flawed protocols and 
errors. Consider data from patients with cancer: from biopsy procedures to experimental tests, to archiving methods and 
computational algorithms, these are continuously handled so require critical and continuous “updates” to obtain reproduc-
ible, reliable, and correct results. We show, as a second example, how all this distorts studies in cellular hepatocellular car-
cinoma. It is not unlikely that these flawed data have been polluting biobanks for some time before stringent conditions for 
the veracity of data were implemented in Big data. Therefore, all this could contribute to errors in future medical decisions.

Supplementary Information  The online version contains 
supplementary material available at https​://doi.org/10.1007/s4029​
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1  Introduction

In this review, we illustrate the consequences that occur 
when data and information from two unrelated scientific 
fields converge into common biomedical repositories if not 
properly “annotated”. This may lead to alterations in the 
chain of processes that define decision making and models 
in Big-data systems for medicine.

Although the term “Big data” is a commercial term, we 
use it to show the ability to analyze and relate an enormous 
amount of often heterogeneous data to discover new correla-
tions/patterns between different events with the possibility of 
accurate predictions [1, 2]. Network science, with the sup-
port of artificial intelligence, promises to make a significant 
contribution to medicine, but we must realize that it is a very 
complex technical-scientific enterprise that must integrate 
heterogeneous processes, information, and data. As such, it 
must be considered still in its infancy.

In particular, we explain how the structural properties 
of intrinsically disordered proteins (IDPs) and the intrin-
sic phenotypic heterogeneity of genes in tumor tissues may 
introduce and propagate errors when involved in metabolic 
networks as omics data without consideration of spatiotem-
poral events. The discovery of IDPs [3] changed the study 
of living systems. It is clear today that these multifunctional 
flexible fluctuating proteins manage key roles in many bio-
logical functions. Recent estimates [4] suggest that databases 
contain about 40 million compact and globular proteins, of 
which about 70,000 are IDPs and the remaining are “mixed 
proteins” that have fixed-in-time and disordered structures in 
the same molecule. These numbers show the importance and 
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Key Points 

Large-scale multimodal data on patient health is an 
important factor in the development of personalized 
medicine.

Biomedical Big data is inherently versatile. However, 
generation, storage, and analysis processes can incorpo-
rate inaccuracies that occur when the different structure–
function relationships of the intrinsically disordered pro-
teins and the post-translational modifications of proteins, 
used without a spatiotemporal interpretation, generate 
inaccurate interpretations in hub genes’ protein–protein 
interaction networks.

We encourage the biomedical community to search for 
a solution that can rectify data retrospectively, as pitfalls 
and flaws must be avoided when generating clinical deci-
sions in personalized medicine..

found for a disease, should merge in the human proteomics 
network because of common genetic relationships [14, 15]. 
We explain how compromised functional correlations also 
derive from chemical–physical modifications of the same pro-
teins encoded by hepatocellular carcinoma (HCC) genes. This 
happens because no accurate logical-semantic classification 
is performed during archiving processes in the computational 
analysis systems. This involves imperfect interactions because 
of the incorrect attribution of the space-time context in which 
they are operating. Through fast and massive transfers from 
biobank to Big data biomedical systems, it is very likely that 
we will find these metabolic models in medicine-related deci-
sion-making processes.

2 � Big Data in Biomedicine

2.1 � Semantic Logic

Before dealing with the biomedical aspects, a general, albeit 
minimal, picture of what Big data is and its logic is neces-
sary. Big data is characterized by extensive data collections, 
in terms of volume, speed, and complexity, and thus requires 
specific technologies and analytical methods for information 
extraction [16]. Therefore, a Big-data system has at least two 
fundamental characteristics: a continuous increase in data 
volume and an ability to manage a high-speed information 
flow. Data are gained from widely heterogeneous sources, 
both from structured meta-data (data from information sys-
tems organized as archives) and non-structured mega-data 
(images, annotations, etc.) [17, 18]. These Big-data systems 
continuously growing, so adequate tools and methodologies 
to extract and process the information are needed. The reli-
ability of the data must be controlled during their generation, 
acquisition, extraction, archiving, integration, analysis, and 
modeling to avoid erroneous interpretations [19]. The value 
of the data is in its quality rather than its quantity. When 
the algorithms analyze large masses of data, both struc-
tured and unstructured, to search for all existing relations 
between them, they need to know the precise meaning of 
each node, term, and entity, otherwise it becomes impossi-
ble to establish precise models (see Box 1 in the Electronic 
Supplementary Material for more detail and explanations). 
Thus, ontologies, semantics, and interoperability become 
essential logical issues and must be applied consistently 
[20]. For example, when two (or more) different functions 
could be applied to the same node (e.g., a protein) in a net-
work, they must first be assessed ontologically and semanti-
cally to define which is appropriate in that context, certainly 
not all of them. The application of Big data has extended 
into many fields of human knowledge, but what we want to 
briefly explain here is the fundamental role of these systems 
in modern biomedical disciplines [2, 21].

weight of “disorder” in functional activities. Their “broad 
functions spectrum” depends on the many molecular forms 
generated by post-translational covalent modifications [5]. 
Therefore, we should consider their particular functional and 
structural properties entirely in the specific cancer tissue and 
metabolic context in which they are active. Any attribution 
outside the correct context introduces uncertainties. Even 
the intrinsic phenotypic heterogeneity generated in tumor 
tissues by disease progression [6, 7] may introduce critical 
inaccuracies in biomedical data, as we show through the 
disconcerting discovery of hundreds of different hub genes 
from networks reported in recent literature for human hepa-
tocellular carcinoma (HCC). We also present some tips for 
solving these issues.

Biomedical researchers are faced with high-dimensional 
data from a number of sources, including microarrays and 
next-generation sequencing [8, 9]. The analysis and accurate 
interpretation of biological information is crucial because, in 
such data, the number of variables (genes and their coded 
products) is many times greater than the number of tested 
samples. The challenge in genomic data is in applying appro-
priate computational methods to the ever-increasing size of 
high-throughput multiomics data [10]. Processing and integra-
tion of multiomics data requires in-depth technical and biolog-
ical knowledge of how these data are generated [11]. Even the 
extraction of large-scale genomic experiments from the sci-
entific literature through data mining relies on computational 
approaches and statistical control [12] to transform it into a 
reduced set of accurate information as, for example, when 
contextualizing molecular changes associated with a physi-
ological mechanism [13], functional links, experimentally 
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2.2 � Type and Purpose of Biomedical Big Data

Multiomics, medical imaging, device data, and electronic 
health records (EHRs) represent the central data types in 
biomedicine. EHRs are an appropriate example of medical 
Big data because they represent a powerful tool for improv-
ing the quality of healthcare [22]. In fact, clinical data are 
the fundamental basis of medical information to integrate 
with specific biobanks to implement precision medicine 
[23]. These medical records are an electronic compilation of 
longitudinal data (data collected through a series of repeated 
observations of the same patient over some extended time) 
related to the healthcare of individuals. For example, by cou-
pling EHRs with genomic biobanks, EHRs could provide 
clinical phenotypes for genomic studies [24]. However, the 
integration of multiomics data with EHRs is currently still 
in a nascent stage. Using biomedical Big data in precision 
medicine [25] will require significant scientific and techni-
cal developments, including infrastructure, engineering, and 
project and financial management. Substantial challenges 
remain in the provision of an accurate interpretation of EHR 
data to allow for its repurposing in clinical and genomic 
research, where algorithms will be used to accurately find 
cases of disease through specific controls. Such algorithms 
integrate a good deal of heterogeneous information, such as 
laboratory and test result data, medication records, billing 
codes, and clinical notes, to accomplish necessary recall and 
precision [26]. Clinical records contain unstructured (nar-
rative) clinical documentation so requires natural language 
processing through ontological dictionaries and semantics.

All this should work to support clinicians in making a 
diagnosis. It is crucial to understand that they face a com-
plex pyramid of data and analytics. At the bottom of the 
pyramid is the input of raw clinical data and information 
about patients; the next level is data organization with spe-
cific semantic codes; next is the coupling with biobanks for 
critical evaluation of hospitalized patients; at the top is a per-
sonalized diagnosis aided by the clinical decisional support. 
Every level of the pyramid has a clear relationship with the 
next, where the goal is to have certain and accurate knowl-
edge in the preceding levels as the foundation for forecasting 
outcomes at the higher levels. Thus, it is important that data 
imported from biobanks are error free and that information 
transfer between the levels occurs without error. Data collec-
tion is faster than the ability to process and analyze informa-
tion. In fact, the gap between the rather slow and sometimes 
imprecise semantic and functional interpretation of biomedi-
cal information and its rapid acquisition is increasing. If the 
semantic analysis is inaccurate or slow, errors are generated 
that the system is no longer able to recognize [27]. There-
fore, correct integration of molecular information, such as 
multiomics data or phenotypic information relating to indi-
vidual patients from EHRs, is becoming crucial [28]. Recent 

advances in single-cell genome and RNA sequencing [29] 
are having a substantial impact in medicine because of their 
greater precision in defining the space-time context, thus are 
the biobanks destined to be integrated in standard medical 
practice. Therefore, we can imagine “biomedical Big data” 
as a complex system of heterogeneous information where 
groups of functional correlations and patterns exist among 
specific events in this mass of data. Extracting these groups 
and their hidden relationships is one of the major purposes 
of using Big data because this is how new medical models 
can support clinical decisions. The best way to represent 
these relationships is through graphs (network medicine) 
where the entirety of their correlations acts as a complex 
system [30, 31]. We define a system as complex when it 
comprises many interactions among the constituent compo-
nents (including interactions between the system and exter-
nal environment), even in their evolution over time. One of 
the main features is that the individual knowledge of each 
component is insufficient to establish the overall evolution 
of the system [32]. Furthermore, a complex system is char-
acterized by a considerable number of variables, where only 
their interactions determine the global behavior by showing 
unpredictable non-linear behaviors unrelated to the single 
elements or the sum of their properties [29, 32]. Without 
further explanation outside the context of this review, we 
want to highlight that, in medicine, interactive networks can 
also be used for a new representation of patient care.

2.3 � Perspective for Biomedical Big Data

A new stream of research is beginning to investigate the dig-
ital health networks originating from digital medical records 
(i.e., EHRs) to test whether the whole structural organization 
generated by patient care as nodes shares properties similar 
to those of biological networks that show a power law char-
acteristic of scale-free networks. The networks are scale free 
if the fraction of nodes with degree k follows a power law 
distribution K−α, where α is greater than 1. This law requires 
that, in the representation of the distribution of the degrees 
of connectivity of each node present in the calculated net-
work, the nodes with low connectivity are in the majority 
and the nodes with high connectivity, and therefore with the 
role of aggregators, are very few [33]. First attempts have 
shown that, despite differences in theme, content, and data 
type, the net of digital medical records follows properties of 
power laws [34]. For example, EHR’s connect patient, doc-
tor, diagnosis, drugs, medical processes, instrumental and 
biochemical-clinical analyses, and administrative processes, 
as functional nodes. Through specific coding of these nodes 
(e.g., the Logical Observation Identifiers Names and Codes 
[LOINC] [35] used for laboratory digitized records), we can 
implement the correct semantic and functional relationships 
among all the players through a network representation with 
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scale-free properties. Even if it does not appear as such to 
most people, the individual patient’s medical record can 
be considered as a node (or, better, a module) of the social 
hospital network [34]. Through these networks, patients’ 
biomedical data, the capabilities of individual doctors, and 
the costs of certain medical protocols can be extracted and 
analyzed; they are also transferred to the archives of the 
biomedical Big data system. In a network, we can grasp the 
features of the individual nodes, but they are of no use when 
we analyze the nonlinear global biomedical behaviors that 
emerge from relational aggregations between nodes [36].

2.4 � Relationships Between a Node and Its Network

From this general overview, we further examine the molecu-
lar level of the genes and proteins, where omics data are 
born. In the network, the node, as a single entity, does not 
have great meaning, because it expresses its value only 
through the entire network. This implies that the properties 
of a network depend on the constitutive functional relation-
ships that each node implements with the other nodes in that 
biological system [37]. Hub nodes are particularly impor-
tant. They are highly connected nodes, present in real-world 
and biological networks, which include many representa-
tions of networks such as protein–protein interaction net-
works (PPINs), gene regulation networks, and residue inter-
action networks, among others. Hub nodes occupy important 
functional network positions; for example, in PPINs, they are 
often key targets for drugs [38]. Their role is to coordinate 
relationships between nodes by determining the robustness 
of the network. Therefore, the few hubs in a network [31] 
represent the weak points for the resilience of the whole sys-
tem. If a hub is targeted by a drug, functional relationships 
fail and the network collapses. A net is a heavily intertwined 
and mutually dependent dynamical system in which its func-
tional modules are organized around individual hubs. When 
direct connections between hubs change, the net changes 
its topology and the modules’ specificity. In fact, topologi-
cally, the modules’ specificity can be changed by changing 
interactions between hubs, but the net is destroyed if some 
hubs are eliminated [39].

3 � Computational Consequences 
of Post‑Translational Modifications

Incorrect attribution of functional capacities to a physical 
node that it does not possess leads to emergence of a very 
different set of characteristics. Translating into molecu-
lar terms, the attribution of different metabolic functions 
to the same node, for example those associated with post-
translational modifications (PTM) of a protein, leads to 
functional information that often has a different metabolic 

meaning, with possible distortions in the structural topology 
of the network. In fact, a PTM form is a covalently modi-
fied molecular form of a protein, thus, a new biomolecule 
performing different functions in different spatiotemporal 
contexts in respect to the native protein [40]. Therefore, the 
function of a PTM protein should be associated only with 
the specific context, i.e. tissue, in which the modified protein 
implements its constitutive functional relationships as a node 
of that specific network. This allows it to relate to the other 
node proteins that exist in that metabolic context, allowing 
the generation of a graph with the topology more suitable 
for that specific temporal event [41]. Therefore, it is nec-
essary to briefly explain what special properties biological 
evolution has given to hub proteins to make them possess a 
high degree of connectivity. Given the nature of this review, 
this is a point we cannot disregard. Proteome-wide screen-
ing approaches have provided information about interact-
ing proteins by discovering that the intrinsic disorder is a 
common feature of hub nodes. In particular, hub nodes with 
nuclear co-localization encode for IDPs [42, 43]. Intrinsic 
disorder favors interactions with many molecular partners 
and therefore their inclusion in functionally complex meta-
bolic contexts.

3.1 � A Concise Description of the Evolutionary 
Mechanisms Used for PTMs in Intrinsically 
Disordered Proteins

Evolution uses two main molecular mechanisms by which 
a protein containing intrinsic disorder can drive the disor-
der towards new biological functions: PTMs and alterna-
tive splicing (AS). Both mechanisms change the covalent 
molecular organization of the protein, albeit differently.

While AS is a mechanism that derives from gene expres-
sion, PTMs perform a chemical modification of proteins. 
We know about 300 distinct PTMs of eukaryote proteins as 
a consequence of the action of as many enzymes, and the 
human proteome contains up to a million modified poly-
peptides, where intrinsically disordered proteins (IDPs) and 
mixed proteins are preferential targets of multiple PTMs [5]. 
The quality and quantity of sequence modification changes 
the physico-chemical properties of the protein, even induc-
ing changes in the charge distribution. Thus, IDPs repre-
sent excellent functional hubs able to switch their modified 
molecular forms to new functional states. Unfortunately, the 
characterization of these “functional states” and how they 
change, when the context evolves, are not yet the focus of 
many studies because homogeneous samples of the modified 
IDPs from the specific tissue are required. Although vari-
ous experimental approaches exist [5], they are not being 
pursued because of the complexity of purifying the large 
quantity of sample needed.



13System‑Wide Pollution of Biomedical Data

3.2 � Structure–Function Relationships 
in the Operative Context of Modified IDPs

PTMs change the chemical-physical properties of the mol-
ecule. Consequently, if we do not associate each molecular 
form to its time- and context-dependent functional activity, 
our metabolic models will be incorrect. In fact, the different 
molecular forms will act differently, depending on the tissue 
and cell type, and vary according to the metabolic context. 
Therefore, when we collapse new functions, derived from 
the PTMs, to the native IDP sequence through annotations, 
we generate a flawed functional meaning of the network. 
When this information flows to a biobank, we generate com-
plications in the logical-semantic interpretation of the data 
because of the lack of the correct logical parameters that 
allow the attribution to each entity, word, molecule, and 
event, of the correct molecular and functional meaning. If 
the analytics of the biomedical Big-data system does not 
intercept the correct spatiotemporal functional activities, it 
will consider some biological functions that do not exist in 
a specific metabolic context.

Sequence chemical modification encodes for a form of the 
IDP that performs a precise informational function [44–46], 
so acting as an encoder and transmitter of the biological 
information. In fact, we can say that the modified polypep-
tide carries a piece of peculiar biological information merely 
when it gives actual form to this peculiar function. There-
fore, the view that the conformational ensemble distribu-
tions could be random contrasts with the great diversity of 
the many biological and pathological roles exerted by IDPs. 
From the point of view of information theory, this means the 
informational entropy of the modified polypeptide must be 
reduced, otherwise the biological information cannot be sent 
through the transmission channel [44–46], and the receiver 
(the interaction partner) cannot get the biological informa-
tion to make it work. From a structural point of view, this 
means that the molecular partner can only implement new 
biological information through the one-to-one recognition 
of a specific PTM polypeptide. Without a correct logical-
semantic classification of the properties of the transmitting 
node, the recognition of the molecular partner becomes a 
completely random event.

4 � The Case of Human SELK and Its 
Disordered C‑Domain: An Example 
of Multifunctional Spatiotemporal Events 
Exerted by PTMs

Here, we examine recent investigations on the structural and 
functional characterization of selenium-containing proteins 
[47, 48]. These proteins show disordered domains in the ter-
minal regions. In particular, a segment of 51 residues found 

in the C-terminal region of human SELK is a disordered 
domain [49]. This segment shows six phosphorylation sites, 
of which three were found in experiments. The combinato-
rial calculation with n sites occupied by K similar objects 
can estimate the action of the phosphorylating enzymes 
(kinases) on the six SELK sites. Thus, we can calculate how 
many total molecular forms we might get. We can calculate 
six single forms, 15 pairs, 20 triples, 15 quadruples, 6 quin-
tuples, and one sextuple for 63 likely molecular forms. We 
used STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) to check how many molecular forms are 
known for SELK.

STRING is an annotated database and web resource of 
protein interactions, based on PPINs. STRING aims to col-
lect and integrate this information, consolidating the known 
and expected PPI data for a large number of organisms. 
Associations in STRING include physical and functional 
interactions [50, 51]. In STRING, a score is provided for 
each PPI, indicating the estimated probability that an inter-
action is biologically significant, specific, and reproducible 
given the supporting evidence. STRING imports data from 
two channels: experiments (experimentally proven data) and 
databases (from text mining and biobanks). The score is a 
cutoff to limit the number of interactions. The highest score 
(0.9) is more likely to select true positives. Setting the cutoff 
lower (e.g., at 0.4) will increase the coverage but also the 
fraction of false positives.

Using STRING, through the first-order enrichment (direct 
interaction) partners (PPI enrichment p value: < 1.0e−16), 
we found 52 different functional known partners (Fig. 1). 
This value is in good agreement with the 63 potential 
molecular forms. At the same time, we are representing a 
non-existent metabolic context in which functional relation-
ships that should take place in specific cellular districts for 
different biological situations add up, so it is a misleading 
metabolic image since the conclusions we can draw from 
it are wrong. This metabolic representation is created by 
algorithms that do not recognize the logic and semantics 
that characterize specific biological events and rests on the 
absence of experimental studies aimed at characterizing the 
structural and functional knowledge necessary to position 
those same biological events in time and space.

In Table 1, we illustrate the structural effects of the vari-
able amount of PTMs (phosphorylation) on conformational 
states of the C-terminal segment alone. We can see that the 
native polypeptide at neutral pH populates a conformational 
state represented by ensembles of coils and chimeras of 
globules. When SELK accumulates phosphorylation to its 
six sites, the protein changes its conformational class with a 
sequential migration to ensembles populated by coils, hair-
pins, or chimeras of coils. This means that the PTM forms 
of SELK, by changing their chemical-physical and structural 
parameters, change the polypeptide structure. Therefore, 
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when we annotate extra features to a native protein, this is 
reflected in the network because these annotations collect 
all the functions found for a specific node with no context 
discrimination. This means that, in the network datasets, we 
consider the functional interactions independent from their 
biological context. STRING tries to minimize these effects 
by listing some known biological roles exerted by a node to 
select the most adequate role for the biological context under 
study. But it is a cat that bites its tail, because the interac-
tion network from gene expression experiments is calcu-
lated without knowing the functional interactions involving 
a specific node. This favors interactions with incorrect func-
tional partners. Today, this is poorly considered, but, in the 
meantime, the functional entropy increases among Big data, 
where, instead of stabilizing the information, we introduce 
misleading metabolic hypotheses with a high probability of 
propagation [52].

In the following, we illustrate how the different informa-
tion existing in different databases for the same protein can 
affect the topology of a graph. As an example, we compare 

BioGRID (Biological General Repository for Interaction 
Datasets) and STRING. BioGRID is an annotated database 
that shows the PPIs, genetic interactions, chemical interac-
tions, and PTM with a significant weight towards the physi-
cal interactions. In BioGRID, these interactions have been 
determined experimentally with classical methods (affinity 
chromatography and mass spectroscopy, two-yeast-hybrid, 
immunoprecipitations, and others) in solutions comprising 
ground cells [53, 54].

In Fig. 2a, we show the graph of the main first-order inter-
actions of SELK calculated by BioGRID. The graph shows 
12 nodes with first-order interactions, reported as physi-
cal (80% significant and 20% low). If we launch the same 
search for SELK on STRING, we have 11 nodes (Fig. 2b) 
but with different proteins. Only VIMP was present in both 
networks, and STRING gives the SELK-VIMP interaction a 
score of 0.966. The remaining interactions, all experimental, 
get high scores of 0.946–0.805. Yet, STRING’s interactions 
are functional, whereas those from BioGRID are physical 
and obtained from solutions of fragmented cells. Neither 

Fig. 1   The total amount of first-order functional interactions (52 interactors) found for human SELK through STRING. The graph shows the 
maximum enrichment for SELK (53 nodes; 540 edges; average node degree: 20.4; average local clustering coefficient: 0.833; p < 1.0e−16).
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approach reflects the real metabolic context in which the 
molecular partners should have been present or the cor-
rect molecular partner. The physical interactions used by 
BioGRID show the ability of two proteins to interact, as 
determined by biophysical techniques in a non-physiological 
context.

If instead we analyze through STRING the entire set 
of 12 proteins found with BioGRID, we have a new graph 
(Fig. 2c) that shows a different organization from the previ-
ous ones with some proteins not functionally connected into 
the graph. The two analysis systems give different results, 
although the STRING network parameters for the Fig. 2 
graphs are still significant. The two graphs in Fig. 2b and 
c also show different biological behaviors. In Fig. 2d, we 
report the network parameters in the number of biological 
processes, molecular functions, cellular components, and 
reactome pathways, as calculated by STRING, for networks 
in Fig. 2b and c. Parameters reported in the figure show how 
differences in the organization of the metabolic networks 
derive from the context in which the properties of nodes 
have been determined as well as from the network topology.

The two computational platforms should reflect the func-
tions of cells in the multicellular human system. Interactions 
assemble proteins into modules that drive the spatial and 
functional organization of tissues, defining PPINs whose 
topologies should encode each protein’s cellular environ-
ment, but these organizations vary with cell state. Thus, at 
present, network analyses do not show the actual function-
ing of cells, but only a static view of their functioning. They 
reflect these limits in the metabolic networks and knowl-
edge we can draw from them. The PTM forms, the iso-
forms of many proteins [55, 56], the short duration of many 

interactions, the interactions, and the metabolic context, or 
even the variability of protein expression, represent the bar-
riers that do not allow us yet to have complete knowledge 
of the whole repertoire of protein interactions and the meta-
bolic contexts in which they occur. In this framework, errors 
are likely and must be taken into account in precision medi-
cine. In fact, we can find them in biobanks where they will 
interact with medical data with unpredictable consequences.

5 � The Case of the Hepatocellular Carcinoma 
Hub Genes: An Example of Cancer 
Phenotype Heterogeneity, Where 
Knowledge of the Spatiotemporal Action 
of the Genes is Lacking

Although the clinical management of HCC has evolved con-
siderably over the last decade, and the use of some drugs 
has shown some survival benefit, surgical resection or liver 
transplantation are still the recommended therapy for accu-
rately selected patients. Immunotherapy approaches are 
awaited for these patients, but this cancer is peculiar because 
the coexistence of viral infections develops a complex immu-
nobiology, generating many hepatic mechanisms of immune 
regulation and tolerance. However, reliable markers to dis-
criminate mechanisms behind tumor progression remain 
to be identified. This prevents a formal clinical approach 
for the continuation of treatment during tumor progression. 
Researchers are still trying to obtain clear information, but 
even if a picture of its molecular pathogenesis is defined, 
the underlying molecular mechanisms will remain unclear. 
Next-generation sequencing has improved our understanding 

Table 1   Effect of phosphorylation on the structural organization of SELK

K, FCR, and NCPR values have been calculated according to Pappulab (http://pappu​lab.wustl​.edu/CIDER​/analy​sis/) [109], hydropathy values 
according to Kyte and Doolittle [110], and the isoelectric point on the platform Bachem (https​://www.bacan​dhem.com/de/servi​ce-suppo​rt/pepti​
de-calcu​lator​/). K (charge patterning parameter) is a parameter to describe the extent of charged amino acid mixing in a sequence; for a sequence 
of fixed composition, K goes from 0 to 1. FCR is the fraction of charged residues. As the fraction of charged residues increases, the relative 
impact of how those charges are spread across a sequence becomes more significant. Hydropathy is the 0–9 scaled Kyte–Doolittle hydropathy 
score for the sequence (9 most hydrophobic, 0 least hydrophobic) [110]. Phase plot region is the location where the sequence falls on the Das–
Pappu phase plot. Region 2 is the collapsed or expanded structure, where their behavior may depend on other factors (salt concentration, ligand 
binding, interactions, etc.), and region 3 includes strong polyampholytes: coils, hairpins and chimeras – here the types of structures that form 
may depend on the K value
ID sequence identification, NCPR net charge per residue, PTM post-translational modification

ID PTM K FCR NPCR Hydropathy Isoelectric point Plot region

Seq1 Native polypeptide 0.265 0.275 0.118 2.914 10.86 2
Seq2 + 1 phosphate 0.239 0.314 0.078 2.914 10.24 2
Seq3 +2 phosphate 0.265 0.353 0.039 2.808 9.68 3
Seq4 + 3 phosphate 0.262 0.392 0.000 2.686 8.49 3
Seq5 + 4 phosphate 0.219 0.431 -0.039 2.573 7.36 3
Seq6 + 5 phosphate 0.196 0.471 -0.078 2.451 6.91 3
Seq7 + 6 phosphate 0.177 0.510 -0.118 2.365 6.52 3

http://pappulab.wustl.edu/CIDER/analysis/
https://www.bacandhem.com/de/service-support/peptide-calculator/
https://www.bacandhem.com/de/service-support/peptide-calculator/
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of the heterogeneous cell subpopulations within tumor tis-
sue; however, we require not only the identification of a gene 
or protein and its associated signaling but also its correct 
spatiotemporal location in the pathophysiological events that 
characterize the progression of this cancer. We need this 
knowledge to develop targeted therapies.

In this context, many research teams are actively trying 
to identify this potential pharmacological target to design a 
molecule capable of treating this type of cancer. They look 
for genes that code for proteins that play key roles in tumor 

progression and with high connectivity, i.e., hub nodes. Our 
literature search for a reliable marker of progression or a 
target protein resulted in a confusing array of targets. We 
noticed that several teams reported the discovery of many 
hub genes for HCC. Therefore, we performed a systematic 
literature review in MEDLINE, with keywords referring 
to articles containing data on “hub genes in hepatocellular 
carcinoma”.

We searched for all articles published between 2014 and 
2018 that identified genes/proteins with a key role as target 

A B

C D

Fig. 2   The graphs obtained for the SELK protein using BioGRID and 
STRING. a Shows the BioGRID result for SELK only. BioGRID, 
unlike STRING, does not allow node enrichments but reports all 
the nodes that physically interact with SELK. b Shows the STRING 
result for SELK enriched with several interactors, similar to that from 

BioGRID. c Shows the STRING result for multiple searches with the 
set of proteins (including SELK) as reported by BioGRID in (a). d 
Shows the network parameters and functions reported by STRING for 
(b) and (c)
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or hub genes in this cancer. We selected articles reporting 
hub gene expression data [56–87]. In total, 324 hub genes 
were isolated from from patients with HCC (Table 2).

What was most surprising was the wealth of hub genes 
found in the literature for the same cancer. The previously 
mentioned 324 hub genes were in stark contrast to Bara-
basi’s model [88, 89], which featured only very few hub 
genes in a metabolic network. We also noted the arbitrary 
way in which a node was defined as a hub. The scale-free 
degree distribution characterizes the PPINs so it was unnec-
essary to identify any special degree scale. These studies 
mainly searched for target-based selected genes but with 
few comprehensive examinations for hub genes. Even more 
surprising, the entire set of these hubs contained 61 redun-
dant genes, each of which is repeated several times, for 177 
redundancies, reducing the total number of genes to 208. 
This raises concerns about the functional significance of 
the network properties found for the HCC genes [90], even 
though the studies were peer reviewed and published in rep-
utable journals. So far, a total of about 300 known cancer 
genes (around 1% of the human genome) are involved in 
all cancers as driver genes, and only 12 were predicted as 
drivers for HCC [91]. This shows we have found many more 
key genes than the literature and reinforces the concern that 
some conclusions about the role and functional significance 
of these proteins may not be robust. Recently, 560 genes 
associated with HCC were extracted from 1074 published 
articles [92] and another 1509 genes from biobanks [93]. 
Both groups presented a comprehensive analysis to select 
driver [92] and carbon metabolism genes [93]. The differ-
ent purposes of these studies did not lead to a search for hub 
genes; however, even though the genomic datasets were well 
populated, 208 hub genes is an unexpectedly large number.

To gather more information, we used the 208 hubs from 
HCC as seed to extract from human interactome a subnet 
or “module” on the assumption that genes involved in this 
subnet will share similar gene expression patterns or func-
tional modules in HCC [94]. The analysis on experimen-
tally evidenced interactions (non-redundant, no self-loops ) 
of human proteome from various databases retrieved using 
in-house R scripts (https​://bitbu​cket.org/datas​etsPP​I/ppi_
human​prote​ome/src/maste​r/) [95, 96] and visualized using 
Cytoscape [97] showed that the human interactome aver-
age degree was 43.65 and the hub nodes average degree is 
943.10. The functional module [98] should be a set of genes 
whose function is separable from those of other modules. 
The members of the module should share genetic or cellular 
interactions, being members of the same PPI ensemble or of 
the same metabolic or signaling pathway. In fact, PPI data 
reflect the association of proteins to achieve a common goal. 
As a result, members should share more interactions among 
themselves than with members of other modules [96].

We extracted a subnetwork of 204 nodes out of the 208 
HCC hubs, which showed experimentally validated interac-
tions in human proteome (Fig. 3a). In the subnet, 23 major 
proteins showed hubness with a high degree of connections.

The average degree of the 204 nodes is 14, which is very 
low considering they are all hubs. It is also low if com-
pared with non-hub nodes of the entire human interactome, 
and even lower given the average value of the proteome 
hub nodes is 943.1. In these 23 protein sets, only ten have 
a degree higher than 44. Their degrees range from 74 (JUN 
#1) to 34 (COPS5 #23), with the average of this subset being 
43, approximately 21.1 times lower than their correspond-
ing average degree in the human interactome. If we look at 
protein degree distribution (Fig. 3b), we see that the number 
of fractions with low degree (weakly interacting proteins) 
is very low, whereas the fractions with great interactivity 
are very high. But if we compare our net distribution with 
that of the entire human interactome we find that the gene 
expression profiles of the corresponding HCC proteins have 
a very flat distribution (Fig. 3c). In other words, many hubs 
found for HCC do not actually work as hubs. Altogether, the 
interaction parameters of the HCC module, when compared 
with the human interactome, suggest that the interactions are 
few with an apparently weak graph structure. An explanation 
is that many genes selected by researchers for HCC were not 
true hub nodes. In fact, this can be the effect of poor com-
putational evaluations or experimental errors. For example, 
if the degree distribution of a PPIN is biased toward cancer 
proteins, because there are many well-characterized proteins 
in the experimental set, the average degree should increase, 
whereas if there are many poorly characterized proteins 
in the experimental set, with no interactions reported yet, 
then the topological pattern and the degree distribution can 
change, and the degree should decrease. This is because a 
well-studied protein has more molecular partners and thus 
a higher degree. However, the collapse of PTM annotations 
on a single node can also change the net topology.

To show how these proteins interact, we analyzed through 
STRING and the experimentally evidenced interactome 
obtained from various databases visualized using Cytoscape, 
for the 208 non-redundant hub genes as a seed input node 
in Table 2. The network shows the gene acronym converted 
into those coded for the corresponding human proteins. The 
purpose of this evaluation is to ascertain how many pro-
teins can form a compact network with significant functional 
relationships in pairs (or “of the first order,” i.e., without 
intermediates). In Fig. 4, we show the effect of confidence 
scores (0.4 for middle value and 0.9 for the highest) on the 
metabolic network involving the hub nodes. We show that 
a more stringent data analysis provides more meaningful 
results but with a significant loss of PPIs. In Fig. 4a, four 
proteins (2%) are shown as non-interacting, which means 
they have no functional relationships, but we have 204 

https://bitbucket.org/datasetsPPI/ppi_humanproteome/src/master/
https://bitbucket.org/datasetsPPI/ppi_humanproteome/src/master/
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Table 2   Hub genes in hepatocellular carcinoma extracted from the literature

Set of 208 non-redundant genes extracted from a total of 324 hub genes found in the literature.  
The acronyms of the genes are listed alphabetically

Redundancy of the 61 hub genes. In paren-
theses the number of times that each gene 
has been found for a total of 177 times

A2M COL1A1 HSF1 POP1 DC20(9)
ABAT COL1A2 HSP POTEF BUB1(6)
ACAA1 COL4A1 HSP90AA1 POU3F4 CCNB2(6)
ACACA​ COMMD5 HSP90AB1 PRC1 TOP2A(6)
ACADM COPS5 HSPA1A PRKCA CCNB1(5)
ACSM3 CRYL1 IGF1 PRKDC CDK1(5)
ACTB CSNK2A1 ILF3 PRKG2 MAD2L1(5)
AGXT CXCL1 INCENP PTEN MYC(5)
AHSG CXCL12 ITGA2 PTGS2 HSP90AB1(4)
AKT1 CYCS JUN PYCRL ESR1(4)
ALB CYP2B6 KDM6B Q12834 PRKDC(4)
ALDH2 CYP3A4 KGK RACGAP1 ARHGAP39(3)
ALDH6A1 CYP4A11 KIF11 RAP2A AURKA(3)
APOA1 DAO KIF20A RFC4 BIRC5(3)
APOC3 DCAF13 KIF23 SCNN1A BUB1B(3)
AR DKK1 KIF2C SFN C8ORF33(3)
ARPC4 DLGAP5 KIF4A SIRT1 CCNA2(3)
ASL DNMT1 KNG1 SLA CDKN3(3)
ASPM DSCC1 KRAS SPARC​ CSNK2A1(3)
ATN DTL KRT18 SPC24 DSCC1(3)
AURKA ECHDC2 MAD2L1 SPP2 INTS8(3)
AURKB ECHS1 MAPK1 SRC NUDCD1(3)
AXIN2 EFNA4 MAPK8 STAT3 PCNA(3)
AZGP1 EGFR MCM10 STIP1 POP1(3)
BCL2 EGR1 MCM2 SUCLA2 PUSL1(3)
BHMT EHHADH MCM3 SUMO RFC4(3)
BIRC5 ENO1 MCM4 SUMO1 STIP1(3)
BMP4 ERBB2 MCM6 SUMO2 TGD5(3)
BUB1 ESPL1 MDM2 TFRC UBD(3)
BUB1B ESR1 MELK TGFB1 ACAA1(2)
CALM3 F2 MME TIGD5 ACADM(2)
CASP8 F8 MMP2 TK1 ACSM3(2)
CCNA2 FGF2 MT2A TOP1MT AURKB(2)
CCNB1 FN1 MUT TOP2A BCL2(2)
CCNB2 FOS MYC TP53 CDKN1A(2)
CCND1 FOXO1 NCAPG TPX2 CEP55(2)
CD8A GCDH NCOR1 TTK CHEK1(2)
CDC20 GINS1 NDRG1 TTR​ CKAP5(2)
CDC37L1 GKB NEK2 TXNRD1 COL1A1(2)
CDC45 GLI1 NPM1 UBD DLGAP5(2)
CDCA8 GMPS NSMCE2 UBR5 ERBB2(2)
CDH1 GNAO1 NUSAP1 UQCRC2 FOS(2)
CDK1 HBA1 OS VCAM1 FOXO1(2)
CDKN1A HBA2 PBK VEGFA HMMR(2)
CDKN3 HBB PCNA VIM HSF1(2)
CENPA HBD PEG10 VTN KIF20A(2)
CENPE HDAC1 PHF20L1 VWF KIF2C(2)
CENPF HLAB PIK3CD YWHAZ KNG1(2)
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nodes and 3502 interactions. Passing from score 0.4–0.9 
(Fig. 4b) we lose another 31 nodes (− 15%) leaving 1385 
PPIs (− 60.5%), but the decrease is even clearer when we 
analyze only data experimentally proven with the two pre-
vious scores (Fig. 4c and d). We lose 82 nodes (− 40.1%), 
leaving 359 PPIs (− 89.75%), and the network collapses with 
the highest score (52 PPIs in three small clusters; − 99.98%). 
This knockout perturbation of nodes shows that many inter-
actions are loosely or not at all connected to HCC and that 
the evolutionary pressure does not favor the net robustness 
[99–101]. We show the corresponding parametric values 
calculated for the networks in Table 3. 

We have to consider that the function pertains to the bio-
molecules between which a chemical reaction occurs in the 
cellular system, that is, a physical interaction aims at pro-
viding insights into molecular mechanisms of the function 
played by the molecules. To achieve complete and accu-
rate information on the biomolecules involved in the stud-
ies, carefully planned methods and experiments should be 
adopted to confirm the molecular interaction (e.g., affinity 
chromatography, mass spectrometry, immune techniques). 
Functional molecules interacting through a direct physical 
interaction can be shown. In most cases, when we say that 
two molecules have a functional relationship, we do not 
mean that they physically interact. In fact, we should meas-
ure the function through products of the functional activity 
using wet biochemical tests. Therefore, without experiments, 
we do not know whether the function, analyzed in silico, 
occurs via direct interaction or intermediates, which leads 
to assumptions of an interaction being a functional inter-
action. However, in the last few years, the speed of new 
protein discovery, or prediction, has pushed towards high-
throughput interaction-detection methods. Our examples 

show two possible conclusions: functional and physical. 
STRING cannot determine them with internal statistics or 
filtering. When the database channel drives functional data, 
this inherent uncertainty is involved. We can have actual 
knowledge of a functional relationship only, and only if, 
in the same experiment we measure the physical binding 
(binding curve and Kb, assessed by biophysical techniques) 
and functional quantitative parameters. Therefore, data 
and annotations, before being entered on a computational 
platform, should be classified according to their biological 
meaning through ontological and semantic processes. From 
a computational point of view, this lack introduces serious 
problems that change functional relationships and relative 
metabolic models.

Furthermore, the topology of molecular networks is 
organized according to common functional properties, 
where hub nodes should be part of the metabolic module that 
characterizes a disease [89, 90, 92, 94]. Here, we observe 
that genes, extracted from expression profiling data of the 
same disease from individual patients but different medical 
databases, show inconsistent functional relationships. These 
observations suggest that database contents are heterogene-
ous, perhaps because genes were not associated with the 
correct disease staging or cancerous cell phenotype. Thus, 
they have been stored in the databases with no adequate 
control of accuracy and veracity [102, 103]. Results show a 
great genomic heterogeneity of the original samples, where 
the spatiotemporal action of the genes is not known. In fact, 
we do not know the phenotypes of cancerous cells during 
disease progression to attribute the correct stage to genomic 
data. This also explains why the same protein has been asso-
ciated with so many different metabolic partners, because 
it shows the functional relationships of different metabolic 

Table 2   (continued)

Set of 208 non-redundant genes extracted from a total of 324 hub genes found in the literature.  
The acronyms of the genes are listed alphabetically

Redundancy of the 61 hub genes. In paren-
theses the number of times that each gene 
has been found for a total of 177 times

CEP55 HMGA1 PIK3CG ZIC2 KRAS(2)
CHEK1 HMMR PIK3R1 ZNF16 MCM2(2)
CKAP5 HRAS PLCB1 ZNF250 MCM4(2)
CLU HRG PLK1 ZWINT MELK(2)

MMP2(2)
MUT(2)
PLK1(2)
PRC1(2)
RACGAP1(2)
SPARC​(2)
VWF(2)
YDJC(2)
ZNF623(2)
ZWINT
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phenotypes [55]. In the same disease, a hub protein should 
always be associated with the same molecular partners with 
which it has metabolic continuity. Cancer reflects its genetic 
perturbations in the molecular network where interactions 
rest on the physical protein–protein associations of the effec-
tors of the pathological phenotype. Indeed, we must consider 
that many cancerous phenotypes could also reflect interac-
tions between molecular components not associated with the 
disease and, in addition, the high-throughput methods cover 
only a small part of the potential protein interactions in pairs 
of the more than 200 human cell types [104]. This means 

that we are trying to discover pathological mechanisms 
based on interactive maps that remain very incomplete. The 
proteins associated with HCC should not be randomly scat-
tered in the HCC interactome but should interact with each 
other, forming one or more connected modules.

In conclusion, the logical-semantic organization of PTM 
data of the analysis platforms, together with the lack of 
knowledge of the spatiotemporal action of the HCC genes, 
and the incompleteness of the human interactome data, have 
generated flawed metabolic relationships between HCC pro-
teins. This metabolic model might translate to biomedical 

Fig. 3   a The whole set of extracted proteins; b the 23 proteins with greater connectivity; c the distribution degree of the 209 nodes; d the com-
parison between the distribution of the 209 nodes with that in the human proteome
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Big data by introducing metabolic considerations that 
can change the robustness of precision medicine related 
to patients with HCC. Considering that many years have 
already passed, many of these relationships should already 
be an integral part of biomedical Big data.

6 � Concluding Remarks

We have illustrated how some methodological limits in net-
work medicine can generate flawed results. These results are 
stored in biobanks from which biomedical Big-data systems 

collect knowledge. At present, network biology remains 
focused on static models that do not cover the functional 
conditions in time and space, which is a limit to the under-
standing of human diseases and their treatment. The modern 
race for biomedical Big data does not take these limits into 
account because the need to obtain biomedical computer 
systems for precision medicine is strongly connected to mar-
keting and competitiveness and so is constrained in a time-
bound manner. Therefore, it is necessary that both the bio-
medical and the technological world understand these limits 
and the substantial vulnerabilities that these inaccuracies, 

Fig. 4   The different PPI networks obtained from the hub genes of 
hepatocellular carcinoma. STRING has translated the names of the 
genes into those of the respective proteins. a The network obtained 
for the 208 hub genes found in the literature with a confidence score 
of 0.4. The proteins that have not shown relations with the rest of 
the network are visible in the upper-right part of the panel. b The 
same network but with a confidence score of 0.9 to obtain relation-
ships with greater significance. The number of proteins that do not 

exchange interactions is increased (see also Table 3). c and d The PPI 
networks obtained using only the experimentally validated interac-
tions as data sources. The networks have a confidence score of c 0.4 
and d 0.9. Notice how the use of experimentally validated interac-
tions reduces the significant relationships between proteins with the 
collapse of the network (d). High resolution figures of the networks 
are shown in supplementary material figures 1S to 4S
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which remain under-considered, can pollute the data core 
with unpredictable future errors.

Although the illustrated cases may appear to be specific, 
their frequency may be high because the evaluation of a sin-
gle article in a specific field as a typical case apparently does 
not show the inconsistencies that the analysis of many simi-
lar articles does. The robustness of HCC networks regarding 
the perturbations of the system by using different levels of 
statistics based on the connectivity between disease–gene 
associations shows clear failure. This reflects an inadequate 
sampling or staging, but we cannot exclude that the many 
hub genes that show unusual weak interactions may instead 
reflect the presence of various methodological errors. Conse-
quently, flawed scientific data may enter public international 
repositories through scientific articles and the databases of 
clinical institutions that collect genomic data and EHRs from 
their patients without adequate checks and controls (Fig. 5). 
The data extracted from public databases may produce sci-
entific models that may be skewed by these intrinsic errors. 
In addition, articles that do not undergo peer review but 
are published by the thousands of pseudoscientific journals 
disseminate misleading models [105, 106]. These data also 
flow into the biomedical Big-data system. The result is that 
biomedical knowledge is afflicted by multifaceted pollution, 
which may slow its rigorous progression. Thus, data vari-
ety, veracity, and heterogeneity represent both an enormous 
challenge and a cause for concern for Big data [107, 108]. 
However, we can improve error detection by embracing a 
more comprehensive approach to monitoring the logic and 
semantics of data from so many different sources. Through 
logic and semantics, we interpret the different meaning of 
similar terms or actions by placing them in the correct con-
text with the correct meaning.

The widespread use of biomedical data is teaching us how 
to quantitate many aspects of human health. This, together 
with machine learning techniques, means we can build 

models of human health in ways we could never do before. 
We are using artificial intelligence and biomedical Big data 
to guide medicine with excellent decision systems or pre-
dictions, but they require data with high-quality controls. 
In Big data, veracity checks are particularly important in 
terms of the biases, noise, and abnormalities in data being 
analyzed [102, 103]. Flawed data transforms Big data into 
a giant with clay feet. A critical point is to integrate infor-
mation through different knowledge domains to establish 
an interface or interaction between two biological events or 
objects. Thus, as the interactome (the synonym connectome 
is most used in brain research) is a map of all functional con-
nections in an organism, and the interactomics is the map-
ping of these connections, biomedical Big-data systems try 
to discover new patterns through the complex interactome 
connected with patient care. These technologies are finding 
useful applications for humans in the medicine knowledge 
domain. Myriad biomedical information (biological, clini-
cal, and patient care related) extrapolated from many and 
different archives through special algorithms converge in an 
immense system of archives that should provide us a diag-
nosis, a cure, or a prognosis for a single patient. To imple-
ment a suitable “connectome model” for patient care, it is 
necessary to understand the particular purposes and impact 
of a definite data category in establishing the ultimate deci-
sion. Although this remains unclear to many people, we are 
moving towards a level of more complex connectivity, where 
today’s metabolic or genomic networks will be specialized 
modules of a larger and multifaced network of interactions 
in the service of medicine. As such, data should be as error 
free as possible. After the event, it is impossible to eliminate 
them.

A second critical point is that data science in medicine 
requires people with strong interdisciplinary skills for 
advanced analytics of fast data with the best understanding 
of the basic processes, both technological and scientific.

Table 3   Network parameters in STRING

An average node degree is a numerical value of how many interactions (at the score threshold) a protein has on the average in the network. The 
clustering coefficient is a measure of how connected the nodes in the network are. 2 channels denote data retrieved from experimentally proven 
data channel as well as databases and text mining channel
Exp stands for experimental channel only

Network parameters Source: 2 channels
Confidence  
Score = 0.4

Source: 2 channels 
Confidence  
Score = 0.9

Source: 1 channel 
(Exp) Confidence 
score = 0.4

Source: 1 channel (Exp) 
Confidence  
score = 0.9

Interactions 3502 1385 359 52
Number of connected nodes 204 173 91 Collapsed network with 

three clusters of 28 
nodes

Average node degree 34.3 13.6 3.52 0.51
Average local clustering coefficient 0.652 0.542 0.283 0.163
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Furthermore, our analysis shows that wet and in silico 
researchers cannot work alone; such isolation favors imper-
fect analyses and conceptual errors and means that the meth-
odological aspects of other disciplines are not considered, 
leading to partial and sometimes even erroneous results and 
analyses.

The enthusiastic rush to precision medicine involves all 
these problems without the understanding that the clinical 
models it will produce could be already flawed. A search of 
PubMed for “data pollution” or “information pollution in 
biomedicine”, found no articles (the only pollution found 

was atmospheric). Therefore, action is necessary before the 
increased volume of biomedical information makes it dif-
ficult, if not impossible, to separate out the waste. Our con-
clusion can only be that we must remove the weeds before 
harvesting.
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