Skip to main content
. 2021 Jan 18;7:603740. doi: 10.3389/fmolb.2020.603740

Table 5.

Mean performance characteristics of the taxonomy- and phenotype-based UC classifiers over 10 classification iterations.

Strategy: dataset Taxonomy-based classifier Phenotype-based classifier
Mean sensitivity Mean specificity Mean AUC Mean sensitivity Mean specificity Mean AUC
Single:CHN 0.7909 0.9048 0.9277 0.8091 0.8857 0.9281
Single:ESP 0.3000 0.8667 0.6583 0.3250 0.7741 0.5815
Single:NLD 0.6300 0.9376 0.9240 0.5500 0.8678 0.8232
L1O:CHN 0.6324 0.5955 0.6791 0.4189 0.8791 0.6832
L1O:ESP 0.3051 0.8626 0.6607 0.3308 0.7714 0.5751
L1O:NLD 0.7354 0.4972 0.6944 0.8364 0.1022 0.4341
Mixed: all datasets 0.5970 0.8590 0.8153 0.5667 0.7836 0.7240
Mean across all variants 0.5701 0.7891 0.7656 0.5481 0.7234 0.6785

In the L1O strategy description, the name of the dataset corresponds to the test set (for example, the “L1O:CHN” description means that the classifier was trained on the ESP and NLD datasets and tested on the CHN dataset). Cell color reflects the characteristics' values (greater values correspond to darker colors).