Table 5.
Mean performance characteristics of the taxonomy- and phenotype-based UC classifiers over 10 classification iterations.
Strategy: dataset | Taxonomy-based classifier | Phenotype-based classifier | ||||
---|---|---|---|---|---|---|
Mean sensitivity | Mean specificity | Mean AUC | Mean sensitivity | Mean specificity | Mean AUC | |
Single:CHN | 0.7909 | 0.9048 | 0.9277 | 0.8091 | 0.8857 | 0.9281 |
Single:ESP | 0.3000 | 0.8667 | 0.6583 | 0.3250 | 0.7741 | 0.5815 |
Single:NLD | 0.6300 | 0.9376 | 0.9240 | 0.5500 | 0.8678 | 0.8232 |
L1O:CHN | 0.6324 | 0.5955 | 0.6791 | 0.4189 | 0.8791 | 0.6832 |
L1O:ESP | 0.3051 | 0.8626 | 0.6607 | 0.3308 | 0.7714 | 0.5751 |
L1O:NLD | 0.7354 | 0.4972 | 0.6944 | 0.8364 | 0.1022 | 0.4341 |
Mixed: all datasets | 0.5970 | 0.8590 | 0.8153 | 0.5667 | 0.7836 | 0.7240 |
Mean across all variants | 0.5701 | 0.7891 | 0.7656 | 0.5481 | 0.7234 | 0.6785 |
In the L1O strategy description, the name of the dataset corresponds to the test set (for example, the “L1O:CHN” description means that the classifier was trained on the ESP and NLD datasets and tested on the CHN dataset). Cell color reflects the characteristics' values (greater values correspond to darker colors).