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The weaponization of digital communications and social media
to conduct disinformation campaigns at immense scale, speed,
and reach presents new challenges to identify and counter hos-
tile influence operations (IOs). This paper presents an end-to-end
framework to automate detection of disinformation narratives,
networks, and influential actors. The framework integrates nat-
ural language processing, machine learning, graph analytics, and
a network causal inference approach to quantify the impact of
individual actors in spreading IO narratives. We demonstrate
its capability on real-world hostile IO campaigns with Twitter
datasets collected during the 2017 French presidential elections
and known IO accounts disclosed by Twitter over a broad range of
IO campaigns (May 2007 to February 2020), over 50,000 accounts,
17 countries, and different account types including both trolls
and bots. Our system detects IO accounts with 96% precision,
79% recall, and 96% area-under-the precision-recall (P-R) curve;
maps out salient network communities; and discovers high-impact
accounts that escape the lens of traditional impact statistics based
on activity counts and network centrality. Results are corrobo-
rated with independent sources of known IO accounts from US
Congressional reports, investigative journalism, and IO datasets
provided by Twitter.

causal inference | networks | machine learning | social media | influence
operations

A lthough propaganda is an ancient mode of statecraft, the
weaponization of digital communications and social media

to conduct disinformation campaigns at previously unobtain-
able scales, speeds, and reach presents new challenges to iden-
tify and counter hostile influence operations (1–6). Before the
internet, the tools used to conduct such campaigns adopted
longstanding—but effective—technologies. For example, Mao’s
guerrilla strategy emphasizes “[p]ropaganda materials are very
important. Every large guerrilla unit should have a printing press
and a mimeograph stone” (ref. 7, p. 85). Today, many powers
have exploited the internet to spread propaganda and disin-
formation to weaken their competitors. For example, Russia’s
official military doctrine calls to “[e]xert simultaneous pressure
on the enemy throughout the enemy’s territory in the global
information space” (ref. 8, section II).

Online influence operations (IOs) are enabled by the low
cost, scalability, automation, and speed provided by social media
platforms on which a variety of automated and semiautomated
innovations are used to spread disinformation (1, 2, 4). Sit-
uational awareness of semiautomated IOs at speed and scale
requires a semiautomated response capable of detecting and
characterizing IO narratives and networks and estimating their
impact either directly within the communications medium or
more broadly in the actions and attitudes of the target audi-
ence. This arena presents a challenging, fluid problem whose
measured data are composed of large volumes of human- and
machine-generated multimedia content (9), many hybrid inter-
actions within a social media network (10), and actions or
consequences resulting from the IO campaign (11). These char-

acteristics of modern IOs can be addressed by recent advances
in machine learning in several relevant fields: natural language
processing (NLP), semisupervised learning, and network causal
inference.

This paper presents a framework to automate detection and
characterization of IO campaigns. The contributions of this
paper are 1) an end-to-end system to perform narrative detec-
tion, IO account classification, network discovery, and estimation
of IO causal impact; 2) a robust semisupervised approach to IO
account classification; 3) a method for detection and quantifica-
tion of causal influence on a network (10); and 4) application
of this approach to genuine hostile IO campaigns and datasets,
with classifier and impact estimation performance curves eval-
uated on confirmed IO networks. Our system discovers salient
network communities and high-impact accounts in spreading
propaganda. The framework integrates natural language pro-
cessing, machine learning, graph analytics, and network causal
inference to quantify the impact of individual actors in spreading
IO narratives. Our general dataset was collected over numer-
ous IO scenarios during 2017 and contains nearly 800 million
tweets and 13 million accounts. IO account classification is per-
formed using a semisupervised ensemble-tree classifier that uses
both semantic and behavioral features and is trained and tested

Significance

Hostile influence operations (IOs) that weaponize digital com-
munications and social media pose a rising threat to open
democracies. This paper presents a system framework to auto-
mate detection of disinformation narratives, networks, and
influential actors. The framework integrates natural language
processing, machine learning, graph analytics, and network
causal inference to quantify the impact of individual actors
in spreading the IO narrative. We present a classifier that
detects reported IO accounts with 96% precision, 79% recall,
and 96% AUPRC, demonstrated on real social media data col-
lected for the 2017 French presidential election and known
IO accounts disclosed by Twitter. Our system also discovers
salient network communities and high-impact accounts that
are independently corroborated by US Congressional reports
and investigative journalism.

Author contributions: S.T.S., E.K.K., E.D.M., D.C.S., O.S., and D.B.R. designed research;
S.T.S., E.K.K., and E.D.M. performed research; S.T.S., E.K.K., and E.D.M. analyzed data;
and S.T.S., E.K.K., E.D.M., and D.B.R. wrote the paper.y

Reviewers: M.S., Columbia University; K.S., University of Washington; and S.W., Stanford
University.y

The authors declare no competing interest.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 S.T.S., E.K.K., E.D.M., and D.B.R. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: stsmith@ll.mit.edu or rubin@
stat.harvard.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2011216118/-/DCSupplemental.y

Published January 7, 2021.

PNAS 2021 Vol. 118 No. 4 e2011216118 https://doi.org/10.1073/pnas.2011216118 | 1 of 10

http://orcid.org/0000-0003-0730-0535
http://orcid.org/0000-0001-8880-0691
http://orcid.org/0000-0002-2928-0806
http://orcid.org/0000-0003-4847-3010
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:stsmith@ll.mit.edu
mailto:rubin@stat.harvard.edu
mailto:rubin@stat.harvard.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://doi.org/10.1073/pnas.2011216118
https://doi.org/10.1073/pnas.2011216118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2011216118&domain=pdf&date_stamp=2021-01-07


Fig. 1. Framework block diagram of end-to-end IO detection and charac-
terization.

on accounts from our general dataset labeled using Twitter’s
election integrity dataset that contains over 50,000 known IO
accounts active between May 2007 and February 2020 from 17
countries, including both trolls and bots (9). To the extent possi-
ble, classifier performance is compared to other online account
classifiers. The impact of each account is inferred by its causal
contribution to the overall narrative propagation over the entire
network, which is not accurately captured by traditional activity-
and topology-based impact statistics. The identities of several
high-impact accounts are corroborated to be agents of foreign
influence operations or influential participants in known IO cam-
paigns using Twitter’s election integrity dataset and reports from
the US Congress and investigative journalists (9, 11–15).

Framework
The end-to-end system framework collects contextually relevant
data, identifies potential IO narratives, classifies accounts based
on their behavior and content, constructs a narrative network,
and estimates the impact of accounts or networks in spread-
ing specific narratives (Fig. 1). First, potentially relevant social
media content is collected using the Twitter public applica-
tion programming interface (API) based on keywords, accounts,

languages, and spatiotemporal ranges. Second, distinct narra-
tives are identified using topic modeling, from which narratives
of interest are identified by analysts. In general, more sophis-
ticated NLP techniques that exploit semantic similarity, e.g.,
transformer models (16), can be used to identify salient nar-
ratives. Third, accounts participating in the selected narrative
receive an IO classifier score based on their behavioral, lin-
guistic, and content features. The second and third steps may
be repeated to provide a more focused corpus for IO narra-
tive detection. Fourth, the social network of accounts partic-
ipating in the IO narrative is constructed using their pattern
of interactions. Fifth, the unique impact of each account—
measured using its contribution to the narrative spread over the
network—is quantified using a network causal inference method-
ology. The end product of this framework is a mapping of the
IO narrative network where IO accounts of high impact are
identified.

Methodology
Targeted Collection. Contextually relevant Twitter data are col-
lected using the Twitter API based on keywords, accounts, lan-
guages, and spatiotemporal filters specified by us. For example,
during the 2017 French presidential election, keywords include
the leading candidates, #Macron and #LePen, and French
election-related issues, including hostile narratives expected to
harm specific candidates, e.g., voter abstention (17) and unsub-
stantiated allegations (6, 18). Because specific narratives and
influential IO accounts are discovered subsequently, they offer
additional cues to either broaden or refocus the collection. In

Fig. 2. Word clouds associated with the “offshore accounts” topic in English (Top) and French (Bottom). Topics are selected from those generated from the
English corpus (N = 152,203) and the French corpus (N = 1,070,158) as described in SI Appendix.
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Fig. 3. P-R classifier performance with 3,151 known IO accounts (9) and
language-specific training data: combined English and French (red curves ,
N = 17,999), English only (green curves , N = 13,155), and French only (blue
curves , N = 13,159), cross-validated using a 90 : 10 split and all data (solid
curves) and Snorkel positives omitted (dashed curves).

the analysis described in the preceding subsection, 28 million
Twitter posts and nearly 1 million accounts potentially relevant
to the 2017 French presidential election were collected over a
30-d period preceding the election, and a total of nearly 800 mil-
lion tweets and information on 13 million distinct accounts were
collected.

Narrative Detection. Narratives are automatically generated from
the targeted Twitter data using a topic modeling algorithm (19).
First, accounts whose tweets contain keywords relevant to the
subject or exhibit predefined, heuristic behavioral patterns within
a relevant time period are identified. Second, content from these
accounts is passed to a topic modeling algorithm, and all topics
are represented by a collection or bag of words. Third, interesting
topics are identified manually. Fourth, tweets that match these
topics above a predefined threshold are selected. Fifth, a nar-
rative network is constructed with vertices defined by accounts
whose content matches the selected narrative and edges defined
by retweets between these accounts. In the case of the 2017
French elections, the relevant keywords are “Macron,” “leaks,”

“election,” and “France”; the languages used in topic modeling
are English and French.

IO Account Classification. Developing an automated IO classifier
is challenging because the number of actual examples is nec-
essarily small, and the behavior and content of these accounts
can change over both time and scenario. Semisupervised classi-
fiers trained using heuristic rules can address these challenges
by augmenting limited truth data with additional accounts that
match IO heuristics within a target narrative that does not
necessarily appear in the training data. This approach has the
additional intrinsic benefits of preventing the classifier from
being overfitted to a specific training set or narrative and pro-
vides a path to adapt the classifier to future narratives. IO
account classifier design is implemented using this semisuper-
vised machine-learning approach built with the open source
libraries scikit-learn and Snorkel (20, 21) and soft labeling func-
tions based on heuristics of IO account metadata, content, and
behavior. The feature space comprises behavioral character-
istics, profile characteristics, languages used, and the 1- and
2-grams used in tweets; full details are provided in SI Appendix,
section C, and feature importances are illustrated in Results (see
Fig. 4). Our design approach to semisupervised learning is to
develop labeling functions only for behavioral and profile char-
acteristics, not narrative- or content-specific features, with the
expectation that such labeling functions are transferable across
multiple scenarios.

The classifier is trained and tested using sampled accounts rep-
resenting both IO-related and general narratives. The approach
is designed to prevent overfitting by labeling these sam-
pled accounts using semisupervised Snorkel heuristics. These
accounts are collected as described in Targeted Collection. There
are four categories of training and testing data: known IO
accounts (known positives from the publicly available Twitter
elections integrity dataset) (9), known non-IO accounts (known
negatives composed of mainstream media accounts), Snorkel-
labeled positive accounts (heuristic positives), and Snorkel-
labeled negative accounts (heuristic negatives). All known
positives are eligible to be in the training set, whether they are
manually operated troll IO accounts or automated bots. Because
we include samples that represent both accounts engaging in
the IO campaign and general accounts, our training approach
is weakly dependent upon the IO campaign in two ways. First,
only known IO accounts whose content includes languages rele-
vant to the IO campaign are used. Second, a significant fraction
(e.g., 67%) of Snorkel-labeled accounts (either positive or nega-
tive) must be participants in the narrative. Finally, we establish
confidence that we are not overfitting by using cross-validation

Fig. 4. The 100 most important features in the French and English combined classifier, represented by relative size in a word cloud.
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Fig. 5. Community membership in the French narrative network (Fig. 2). Colors show inferred membership from a blockmodel (28).

to compute classifier performance. Additionally, overfitting is
observed without using Snorkel heuristics (SI Appendix, sec-
tion C.2), supporting the claim that semisupervised learning is
a necessary component of our design. Dimensionality reduction
and classifier algorithm selection are performed by optimizing
precision-recall performance over a broad set of dimensionality
reduction approaches, classifiers, and parameters (SI Appendix,
section C). In Results, dimensionality reduction is performed
with Extra-Trees (ET) (20) and the classifier is the Random
Forest (RF) algorithm (20). Ensemble tree classifiers learn the
complex concepts of IO account behaviors and characteristics
without overfitting to the training data through a collection of
decision trees, each representing a simple concept using only a
few features.

Network Discovery. The narrative network—a social network of
participants involved in discussing and propagating a specific
narrative—is constructed from their observed pattern of inter-
actions. In Results, narrative networks are constructed using
retweets. Narrative networks and their pattern of influence are
represented as graphs whose edges represent strength of inter-
actions. The (directed) influence from (account) vertex vi to
vertex vj is denoted by the weighted edge aij . For simplicity in
the sequel, network vertex vi is also referred to as i . The influ-
ence network is represented by the adjacency matrix A=(aij ).
Because actual influence is not directly observable, the influ-
ence network is modeled as a random variable with Poisson
distribution parameterized by the observed evidence of influ-
ence. Specifically, influence aij is modeled with prior distribution
aij ∼Poisson(frequency of interactions from i to j ), as counts of
interactive influence in real-world networks. Observations of
past interactions or influence on a subset of edges can be used
to estimate the rates on the missing edges through inference on
a network model that captures realistic characteristics such as
sparsity, varying vertex degrees, and community structure (22).

Impact Estimation. Impact estimation is based on a method that
quantifies each account’s unique causal contribution to the over-
all narrative propagation over the entire network. It accounts
for social confounders (e.g., community membership, popular-
ity) and disentangles their effects from the causal estimation.
This approach is based on the network potential outcome frame-
work (23), itself based upon Rubin’s causal framework (24).
Mathematical details are provided in SI Appendix, section D.

The fundamental quantity is the network potential outcome of
each vertex, denoted Yi(Z,A), under exposure to the narrative
from the source vector Z via the influence network A. Precisely,
Z is a binary N vector of narrative sources (a.k.a. treatment vec-
tor). In this study, vertices are user accounts, edges represent
influence as described in Network Discovery, and the potential
outcomes are the number of tweets in the narrative. The influ-
ence network is an important part of the treatment exposure
mechanism. An accounts exposure to the narrative is determined
by both the sources and exposures to them delivered through
the influence network. The impact ζj of each vertex j on the
overall narrative propagation is defined using network potential
outcome differentials averaged over the entire network:

ζj (z)
def
=

1

N

N∑
i=1

(Yi(Z= zj+,A)−Yi(Z= zj−,A)). [1]

This causal estimand is the average difference between
the individual outcomes with vj as a source such that
zj+ := (z1, . . . , zj := 1, . . . , zN )T, versus vj not a source,
zj− := (z1, . . . , zj := 0, . . . , zN )T. This impact is the average
(per vertex) number of additional tweets generated by a user’s
participation in the narrative. The source is said to be uniquely
impactful if it is the only source.

It is impossible to observe the outcomes at each vertex with
both exposure conditions under source vectors zj+ and zj−;

4 of 10 | PNAS
https://doi.org/10.1073/pnas.2011216118

Smith et al.
Automatic detection of influential actors in disinformation networks

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011216118/-/DCSupplemental
https://doi.org/10.1073/pnas.2011216118


CO
M

PU
TE

R
SC

IE
N

CE
S

Fig. 6. Classifier scores over the French narrative network (Fig. 2). The 0 to 1 score range indicates increasing similarity to known IO accounts.

therefore, the missing potential outcomes must be estimated,
which can be accomplished using a model. After estimating
the model parameters from the observed outcomes and vertex
covariates, missing potential outcomes in the causal estimand
ζj can be imputed using the fitted model. Potential outcomes
are modeled using a Poisson generalized linear mixed model
(GLMM) with the canonical log-link function and linear predic-
tor coefficients (τ ,γ,β,µ) corresponding to the source indicator
Zi , n-hop exposure vector s

(n)
i , the covariate vector xi , and the

baseline outcome. The covariate vector xi includes the potential
social confounders such as popularity and community member-
ship. These confounders are accounted for through covariate
adjustment to disentangle actual causal impact from effects of
homophily (birds of a feather flock together) and vertex degree
on outcomes, by meeting the key unconfounded influence net-
work assumption 2 in SI Appendix, Assumption 2. For correct-
ness and rigor, imputation of the missing potential outcomes is
designed to meet the unconfoundedness assumptions that lead
to an ignorable treatment exposure mechanism under network
interference, detailed in SI Appendix, section D.4. The GLMM
for the potential outcomes is

Yi(Z,A)∼Poisson(λi),

log λi = τZi +

Nhop∑
n=1

s
(n)
i τ

n∏
k=1

γk

+βTxi +µ+ εi , [2]

where τZi represents the primary effect from the source,∑Nhop
n=1 s

(n)
i τ

∏n
k=1 γk represents the accumulative social influ-

ence effect from n-hop exposures s(n)i to the source, γk (between
0 and 1) represents how quickly the effect decays over each
additional k th hop, βTxi is the effect of the unit covariates xi
including potential social confounders such as popularity and
community membership, µ is the baseline effect on the entire
population, and εi ∼Normal(0,σ2

ε ) provides independent and

identically distributed variation for heterogeneity between the
units. The amounts of social exposure at the nth hop are deter-
mined by (AT)nZ. This captures narrative propagation via all
exposure to sources within the narrative network. Diminishing
return of additional exposures is modeled using (elementwise)
log-exposure, s(n) = log ((AT)nZ+1). The influence matrix A,
with prior distribution specified in Network Discovery, is jointly
estimated with the model parameters τ , γ, β, µ, through Markov
chain Monte Carlo (MCMC) and Bayesian regression.

Results
Targeted Collection. The targeted collection for the 2017 French
presidential election includes 28,896,185 potentially relevant

Fig. 7. Classifier performance comparison: Snorkel-based classifier (red
curve , N = 415) vs. Botometer (green curve , N = 289) vs. Bot Sentinel (blue
curve , N = 288), given proxy, community-based truth. The dashed gray hor-
izontal line at 63% is the fraction of presumptively true examples in the
community-based proxy for known IO accounts and therefore represents
random chance precision performance.
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tweets and 999,883 distinct accounts, all collected over a 30-d
period preceding the election on 7 May 2017. Targeted collec-
tions for several other IO scenarios were also collected dur-
ing 2017, resulting in a dataset with 782,678,201 tweets and
12,723,995 distinct accounts. Of these, there are 3,151 known IO
accounts that posted in English or French (SI Appendix, Fig. S1).
The great majority of accounts are unrelated to both these known
IO accounts and the French election, but will provide negative
examples for IO classifier training.

Narrative Detection. Narratives immediately preceding the elec-
tion are generated automatically by dividing this broad content
into language groups; restricting the content and time period
to election-related posts within 1 wk preceding the election’s
media blackout date of 5 May 2017; and filtering accounts
based on interaction with non-French media sites pushing nar-
ratives expected to harm specific candidates. Topic modeling
(19) is applied to the separate English and French language
corpora, and the resulting topics are inspected by us to iden-

tify relevant narratives. Two such narratives are illustrated in
Fig. 2 by the most frequent word and emoji usage appearing
in tweets included within the topic. From the English corpus
(N =152,203), 15 topics are generated and from the French
(N =1,070,158), 30 topics. These automatically generated top-
ics correspond closely to allegations claimed to be spread by
WikiLeaks, candidate Marine Le Pen, and others (14, 25). The
role of bots in spreading allegations using the #MacronLeaks
hashtag narrative is studied by Ferrara (26). Two topics, one
in English and one in French, pertaining to unsubstantiated
financial allegations (Fig. 2) will be used to identify accounts
involved in spreading these narratives, independent of whether
the accounts were used for narrative detection.

IO Account Classification. Twitter published IO truth data contain-
ing 50,230 known IO account identities and their multimedia
content (9). IO accounts represent a tiny fraction of all Twit-
ter accounts; e.g., Twitter’s 50,230 known IO accounts are only
0.02% of its 330 million active monthly users, and bots are

Fig. 8. Impact network (accounts sized by impact) colored by IO classifier score on the English narrative network (Fig. 2). Known IO accounts are highlighted
in triangles. Image credits: Twitter/JackPosobiec, Twitter/RT America, Twitter/Pamela Moore13, Twitter/TEN GOP.
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estimated to comprise 9 to 15% of all Twitter accounts (27). This
dataset is used along with heuristic rules to train a semisuper-
vised classifier (21) using the approach described in Methodology,
and the rulesets are detailed in SI Appendix, section C. The
classifier is trained and tested using content from these sources:
known IO accounts that have tweeted on any topic at least
once in either English or French, 20 known non-IO mainstream
media accounts, and Snorkel-labeled accounts randomly drawn
from our dataset, such that 67% are topically relevant and 33%
are topically neutral. There are 3,151 known IO accounts from
Twitter’s dataset in our dataset that have tweeted in English or
French. To account for a possible upper bound of up to 15% bots
(IO related or not), we randomly select 15,000 presumptively
false examples with 5,000 each of three false classes: topically
relevant accounts that tweeted at least once in English, at least
once in French, and topically neutral, randomly chosen from the
general dataset (SI Appendix, Fig. S1).
Precision-recall performance. Precision-recall (P-R) perfor-
mance of the classifier is computed via cross-validation using
the same dataset with a 90 : 10 split, averaged over 20 rounds
(Fig. 3). Because the number of known cases is limited, weak
supervision from the heuristic Snorkel labeling functions is
used to identify true examples before cross-validation (21).
All training is performed with Snorkel-labeled data, and
cross-validation is performed both using Snorkel-labeled data
(solid curves in Fig. 3) and omitting Snorkel positives (dashed
curves). Sensitivity to language-specific training data is also
computed by restricting topically relevant, false examples to
specific languages. All classifiers exhibit comparably strong
performance, and small differences in relative performance
are consistent with our expectations. All classifiers detect IO
accounts with 96% precision and 79% recall at a nominal
operating point, 96% area-under-the P-R curve (AUPRC), and
8% equal-error rate (EER). The English-only and French-only
classifiers perform slightly better (nominally 0 to 3%) than the
combined language model, consistent with the expectation that
models with greater specificity outperform less-specific models.
This strong classifier performance will be combined with addi-
tional inferences—narrative networks, community structure,
and impact estimation—to identify potentially influential IO
accounts involved in spreading particular narratives.

With this dataset, the original feature space has dimension
1,896,163: 17 behavior and profile features, 61 languages, and
1,896,085 1- and 2-grams. SI Appendix, section C lists the behav-
ior, profile features, and language features. Grid search over
feature dimensionality is used to identify the best feature set for
dimensionality reduction: 10 behavioral and profile features, 30
language features, and 500 1- and 2-grams. The most important
features used by the classifier are illustrated by the relative sizes
of feature names appearing in the word cloud of Fig. 4. Note
that the most important features for IO account classification are
independent of topic and pertain instead to account behavioral
characteristics and frequency of languages other than English or
French. This topic independence suggests the potential appli-
cability of the classifier to other IO narratives. Furthermore,
the diversity of behavioral features suggests robustness against
future changes of any single behavior.
Classifier performance comparisons. Several online bot classifiers
are used to report upon and study influence campaigns (3, 26,
29), notably Botometer (formerly BotOrNot) (30) and Bot Sen-
tinel (31). Indeed, Rauchfleisch and Kaiser (32) assert based
on several influential papers that analyze online political influ-
ence that “Botometer is the de-facto standard of bot detection
in academia” (p. 2). Despite the differences between general,
automated bot activity and the combination of troll and bot
accounts used for IO campaigns, comparing the classifier perfor-
mance between these different classifiers is important because
it is widespread practice to use such bot classifiers for insight

into IO campaigns. Therefore, we compare the P-R performance
of our IO classifier to both Botometer and Bot Sentinel. This
comparison is complicated by three factors: 1) Neither Botome-
ter nor Bot Sentinel has published classifier performance against
known IO accounts; 2) neither project has posted open source
code; and 3) known IO accounts are immediately suspended,
which prevents post hoc analysis with these online tools.

Therefore, a proxy for known IO accounts must be used for
performance comparisons. We use the observation that there
exists strong correlation between likely IO accounts in our
narrative network and membership in specific, distinguishable
communities independently computed using an MCMC-based
blockmodel (28). Community membership of accounts in the
French language narrative network (Fig. 2) is illustrated in Fig. 5.
Five distinct communities are detected, three of which are iden-
tified to have promoted Macron allegation narratives. The other
two narratives promote pro-Macron and pro-abstention narra-
tives. Accounts in this narrative network are classified on a 0
to 1 scale of their similarity to known IO accounts, shown in
Fig. 6. Comparing Figs. 5 and 6 shows that the great majority of
accounts in the “Macron allegation” communities are classified
as highly similar to known IO accounts and, conversely, the great
majority of accounts in the pro-Macron and pro-abstention com-
munities are classified as highly dissimilar to known IO accounts.
This visual comparison is quantified by the account histogram
illustrated in SI Appendix, Fig. S9.

Using membership in these Macron allegation communities
as a proxy for known IO accounts, P-R performance is com-
puted for our IO classifier, Botometer, and Bot Sentinel (Fig. 7).
Note that Botometer’s performance in Fig. 7 at a nominal 50%
recall is 56% precision, which is very close to the 50% Botome-
ter precision performance shown by Rauchfleisch and Kaiser
(32) using a distinctly different dataset and truthing methodol-
ogy (ref. 32, figure 4, “all”). Given this narrative network and
truth proxy, both Botometer and Bot Sentinel perform nominally
at random chance of 63% precision, the fraction of presump-
tive IO accounts. Our IO classifier has precision performance of
82 to 85% over recalls of range 20 to 80%, which exceeds ran-
dom chance performance by 19 to 22%. These results are also
qualitatively consistent with known issues of false positives and
false negatives in bot detectors (32), although some performance
differences are also likely caused by the intended design of
Botometer or Bot Sentinel, which is to detect general bot activ-
ity, rather than the specific IO behavior on which our classifier is
trained.

Network Discovery. Tweets that match topics of Fig. 2 are
extracted from the collected Twitter data. French language
tweets made in the week leading up to the blackout period,
28 April through 5 May 2017, are checked for similarity to the
French language topic. To ensure the inclusion of tweets on the
#MacronLeaks data dump (10, 14, 26), which occurred on the

Table 1. Comparison of impact statistics between accounts on
the English network: tweets (T), retweets (RT), followers (F), first
tweet time on 28 April, PageRank centrality (PR), and causal
impact (CI)

Screen name T RT F 1st time PR CI∗

@RT America 39 8 386,000 12:00 2,706 1.55
@JackPosobiec 28 123 23,000 01:54 4,690 1.43
@User1† 8 0 1,400 22:53 44 0.14
@User2† 12 15 19,000 12:27 151 0.41
@Pamela Moore13 10 31 56,000 18:46 97 1.65
@TEN GOP 12 42 112,000 22:15 191 1.38

∗Estimate of the causal estimand in Eq. 1.
†Anonymized screen names of currently active accounts.
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eve of the French media blackout, English language tweets from
29 April through 7 May 2017 are compared to the English topic.
In total, the French topic network consists of 6,927 accounts
and the English topic network consists of 1,897 accounts. For
visual clarity, network figures are generated on the most active
accounts, 459 in the French and 752 in the English networks.

Impact Estimation. Estimation on the causal impact of each
account in propagating the narrative is performed by computing
the estimand in Eq. 1, considering each account as the source.
Unlike existing propagation methods on network topology (33),
causal inference accounts also for the observed counts from each
account to capture how each source contributes to the subse-

quent tweets made by other accounts. Results demonstrate this
method’s advantage over traditional impact statistics based on
activity count and network topology alone.

Impact estimation and IO classification on the English narra-
tive network (Fig. 2) are demonstrated in Fig. 8. Graph vertices
are Twitter accounts sized by the causal impact score (i.e., pos-
terior mean of the causal estimand) and colored by the IO clas-
sifier using the same scale as Fig. 6. Redness indicates account
behavior and content like known IO accounts, whereas blueness
indicates the opposite. This graph layout reveals two major com-
munities involved in narrative propagation of unsubstantiated
financial allegations during the French election. The large com-
munity at the top left comprises many accounts whose behavior
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Fig. 9. Impact versus classifier score, English narrative network (Fig. 2). Known IO accounts run by the Internet Research Agency (IRA) (9, 11–13, 15) are
highlighted. Image credits: Twitter/Pamela Moore13, Twitter/TEN GOP, Twitter/CassandraRules, Twitter/TXCowboysRawk.
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and content are consistent with known IO accounts. The rel-
atively smaller community at the bottom right includes many
mainstream media accounts that publish reports on this nar-
rative. Within this mainstream journalism-focused community,
the media accounts AP, ABC, RT, and Reuters are among the
most impactful, consistent with expectation. The most remark-
able result, however, is that known IO accounts are among the
most impactful among the large community of IO-like accounts.
The existence of these IO accounts was known previously (9, 12,
13), but not their impact in spreading specific IO narratives. Also
note the impactful IO accounts (i.e., the large red vertices) in the
upper community that appear to target many benign accounts
(i.e., the white and blue vertices).

A comparison between the causal impact and traditional
impact statistics is provided in Table 1 on several representative
and/or noteworthy accounts highlighted in Fig. 8. The prominent
@RT America, a major Russian media outlet, and @JackPoso-
biec, a widely reported (14) account in spreading this narrative,
corroborate our estimate of their very high causal impact scores.
This is also consistent with their early participation in this nar-
rative, high tweet counts, high number of followers, and large
PageRank centralities. Conversely, @User1 and @User2 have
low impact statistics and also receive low causal impact scores as
relatively nonimpactful accounts. It is often possible to interpret
why accounts were impactful. E.g., @JackPosobiec was one of
the earliest participants and has been reported as a key source
in pushing the related #MacronLeaks narrative (14, 26) (SI
Appendix, Fig. S10). In that same narrative, another impactful
account @UserB serves as the initial bridge from the English
subnetwork into the predominantly French-speaking subnetwork
(SI Appendix, section E).

Known IO account (9–13) @Pamela Moore13’s involve-
ment in this narrative illustrates the relative strength of the
causal impact estimates in identifying relevant IO accounts.
@Pamela Moore13 stands out as one of the most promi-
nent accounts spreading this narrative. Yet “her” other impact
statistics (T, RT, F, PR) are not distinctive and comparable in
value to the not-impactful account @User2. Additionally, known
IO accounts @TEN GOP and @TXCowboysRawk (9, 12, 13,
15) and Sputnik writer @CassandraRules (34) all stand out
for their relatively high causal impact and IO account classifier
scores (Fig. 9). Causal impact estimation is shown to find high-
impact accounts that do not stand out using traditional impact
statistics. This estimation is accomplished by considering how the
narrative propagates over the influence network, and its utility is
demonstrated using data from known IO accounts on known IO
narratives. Additional impact estimation results are provided in
SI Appendix, section E.

Influential IO Account Detection. The outcome of the automated
framework proposed in this article is the identification of influen-
tial IO accounts in spreading IO narratives. This is accomplished
by combining IO classifier scores with IO impact scores for a
specific narrative (Fig. 9). Accounts whose behavior and content
appear like known IO accounts and whose impact in spreading
an IO narrative is relatively high are of potential interest. Such
accounts appear in the upper right side of the scatterplot illus-
trated in Fig. 9. Partial validation of this approach is provided

by the known IO accounts discussed above. Many other accounts
in the upper right side of Fig. 9 have since been suspended by
Twitter, and some at the time of writing are actively spreading
conspiracy theories about the 2020 coronavirus pandemic (35).
These currently active accounts participate in IO-aligned nar-
ratives across multiple geo-political regions and topics, and no
matter their authenticity, their content is used hundreds of times
by known IO accounts (9) (SI Appendix, section F). Also note
that this approach identifies both managed IO accounts [e.g.,
@Pamela Moore13, @TEN GOP, and @TXCowboysRawk (9,
12, 13, 15)] as well as accounts of real individuals [@JackPoso-
biec and @CassandraRules (14, 34)] involved in the spread of
IO narratives. As an effective tool for situational awareness,
the framework in this article can alert social media platform
providers and the public of influential IO accounts and networks
and the content they spread.

Discussion
We present a framework to automate detection of disinforma-
tion narratives, networks, and influential actors. The framework
integrates NLP, machine learning, graph analytics, and network
causal inference to quantify the impact of individual actors in
spreading the IO narrative. Application of this framework to
several authentic influence operation campaigns run during the
2017 French elections provides alerts to likely IO accounts that
are influential in spreading IO narratives. Our results are corrob-
orated by independent press reports, US Congressional reports,
and Twitter’s election integrity dataset. The detection of IO nar-
ratives and high-impact accounts is demonstrated on a dataset
comprising 29 million Twitter posts and 1 million accounts col-
lected in 30 d leading up to the 2017 French elections. We also
measure and compare the classification performance of a semisu-
pervised classifier for IO accounts involved in spreading specific
IO narratives. At a representative operating point, our classi-
fier performs with 96% precision, 79% recall, 96% AUPRC,
and 8% EER. Our classifier precision is shown to outperform
two online Bot detectors by 20% (nominally) at this operat-
ing point, conditioned on a network–community-based truth
model. A causal network inference approach is used to quan-
tify the impact of accounts spreading specific narratives. This
method accounts for the influence network topology and the
observed volume from each account and removes the effects
of social confounders (e.g., community membership, popular-
ity). We demonstrate the approach’s advantage over traditional
impact statistics based on activity count (e.g., tweet and retweet
counts) and network topology (e.g., network centralities) alone
in discovering high-impact IO accounts that are independently
corroborated.

Data Availability. Comma-separated value (CSV) data of the narrative
networks analyzed in this paper have been deposited in GitHub (https://
github.com/Influence-Disinformation-Networks/PNAS-Narrative-Networks)
and Zenodo (https://doi.org/10.5281/zenodo.4361708).
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