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ABSTRACT Vibrio parahaemolyticus is the most common cause of seafood-borne ill-
ness reported in the United States. The draft genomes of 132 North American clinical
and oyster V. parahaemolyticus isolates were sequenced to investigate their phyloge-
netic and biogeographic relationships. The majority of oyster isolate sequence types
(STs) were from a single harvest location; however, four were identified from multi-
ple locations. There was population structure along the Gulf and Atlantic Coasts of
North America, with what seemed to be a hub of genetic variability along the Gulf
Coast, with some of the same STs occurring along the Atlantic Coast and one shared
between the coastal waters of the Gulf and those of Washington State. Phylogenetic
analyses found nine well-supported clades. Two clades were composed of isolates
from both clinical and oyster sources. Four were composed of isolates entirely from
clinical sources, and three were entirely from oyster sources. Each single-source clade
consisted of one ST. Some human isolates lack tdh, trh, and some type III secretion
system (T3SS) genes, which are established virulence genes of V. parahaemolyticus.
Thus, these genes are not essential for pathogenicity. However, isolates in the mono-
phyletic groups from clinical sources were enriched in several categories of genes
compared to those from monophyletic groups of oyster isolates. These functional cate-
gories include cell signaling, transport, and metabolism. The identification of genes in
these functional categories provides a basis for future in-depth pathogenicity investi-
gations of V. parahaemolyticus.

IMPORTANCE Vibrio parahaemolyticus is the most common cause of seafood-borne ill-
ness reported in the United States and is frequently associated with shellfish con-
sumption. This study contributes to our knowledge of the biogeography and func-
tional genomics of this species around North America. STs shared between the Gulf
Coast and the Atlantic seaboard as well as Pacific waters suggest possible transport
via oceanic currents or large shipping vessels. STs frequently isolated from humans
but rarely, if ever, isolated from the environment are likely more competitive in the
human gut than other STs. This could be due to additional functional capabilities in
areas such as cell signaling, transport, and metabolism, which may give these iso-
lates an advantage in novel nutrient-replete environments such as the human gut.
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V ibrio parahaemolyticus is a halophilic, Gram-negative bacterium that inhabits
coastal estuarine environments (1). In the United States, V. parahaemolyticus is the

leading cause of seafood-borne infections (2). The incidence of V. parahaemolyticus
infection continues to increase in the United States and globally (3, 4). Consumption of
raw or undercooked seafood harboring V. parahaemolyticus can result in mild to acute
gastroenteritis, while contact with seawater containing this bacterium occasionally
results in wound infections and, rarely, sepsis (5). The pathogenicity of this bacterium
has historically been linked to the presence of two hemolysin genes: the thermostable
direct hemolysin (tdh) and the tdh-related hemolysin (trh) (1). However, recent studies
have shown that some strains produce cytotoxic and enterotoxic effects independent
of their hemolysin production (6, 7). Also, some clinical isolates have been reported to
lack one or both of the virulence markers tdh and trh, and phylogeny is independent
of the genes (8–10). In light of this, type III secretion systems (T3SSs) have been investi-
gated as potential pathogenicity factors for V. parahaemolyticus (11, 12). Among iso-
lates that carry the hemolysin genes, certain serotypes (O3:K6 and O4:K12) and/or
sequence types (STs) (ST3 and -36) are thought to be more virulent, as inferred by their
illness incidences (13–15). In addition to the apparent divergence in the virulence
potential of V. parahaemolyticus based on serotype or ST, there is a strong correlation
with isolate/source location, suggesting that geography may play a role (16). For exam-
ple, the majority of shellfish-associated V. parahaemolyticus illnesses in the United
States have been from the Pacific Northwest and the Northeast Atlantic coasts (15, 17)
rather than the Gulf Coast, which is also a major producer of commercial shellfish and
where V. parahaemolyticus thrives (1, 18–20). Together, these data indicate that there
is still much to be learned about the population dynamics and virulence potential of
this species.

Previous investigations of V. parahaemolyticus utilizing multilocus sequence typing
(MLST), pulsed-field gel electrophoresis (PFGE), and multiple-locus variable-number
tandem-repeat analysis (MLVA) have indicated high genetic diversity (9, 21–24).
However, the availability of whole-genome sequencing (WGS), more powerful comput-
ing, and better algorithms has made phylogenetic analysis based on the data collected
from the entire genome possible. Also, genome sequencing has made in silico MLST
analysis possible (25, 26). Previous sequencing of V. parahaemolyticus demonstrated
substantial genetic similarity between disease-associated clinical and certain environ-
mental isolates, even with relatively limited strain sets (15, 27). This suggests that
sequencing additional genomes from diverse clinical and environmental V. parahaemo-
lyticus isolates will provide information for further insight into the ability to transition
from an environmental niche to a human pathogen (27).

In this study, we sequenced 132 V. parahaemolyticus genomes that are geographi-
cally representative of North America and diverse regarding serotype and ST. The draft
genome data were used for phylogenetic analyses, including maximum likelihood
analysis and whole-genome distance analysis (WGDA), which have been successfully
applied to bacterial genomes, as well as in silico MLST (26, 28, 29). These analyses were
used to infer biogeographical and phylogenetic relationships of V. parahaemolyticus as a
means to understand the genomic variation within V. parahaemolyticus. In addition, the
data were used to further investigate the differential virulence potentials of isolates.

RESULTS
Genome description. Draft genomes were collected for 132 V. parahaemolyticus

isolates from oysters collected from the coasts of North America and patients in the
United States. Rarefaction analysis indicated that this population contains all the genes
in V. parahaemolyticus as the asymptote occurs at a pangenome size of 8,191 genes,
prior to sampling all 132 genomes (Fig. 1). The core genome consisted of 3,726
genes (see Fig. S1 in the supplemental material), with much of the pangenome being
composed of genes from fewer than 24 isolates (18%).

Population genetics and biogeography. There were 61 STs identified from the
132 isolates (Table 1), of which 35 were represented by only one isolate and 21 were
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associated with multiple serotypes. Five isolates could not be assigned sequence types
by MLST due to recA or pntA genes that could not be typed. The three most frequent
STs were ST36, ST1151, and ST3. Only two sequence types, ST775 and ST34, were col-
lected from both oyster and clinical sources.

However, some geographic structure among the STs of oyster isolates is apparent.
Most STs were isolated from only one site (Fig. 2A). Exceptions to this are ST676, which
was isolated from Alabama and Virginia; ST23, which was isolated from Florida and
Louisiana; ST32, which was isolated from Alabama, Louisiana, and New Jersey; and
ST1152, which was isolated from Maine and Prince Edward Island (Canada). With the
exception of Maine, all sites lacking a dominant ST were on the Gulf Coast.

To further test the hypothesis that there was geographically meaningful population
structure among the oyster isolates, STRUCTURE was used and identified three sup-
ported clusters (Fig. 2B). One of these (cluster S1) included ST32 and ST34 isolates pri-
marily from the Gulf Coast (Alabama, Louisiana, and Florida) but also had a representa-
tive isolate from New Jersey. Another cluster (S2) consisted of only ST676 isolates from
both Alabama and Virginia. The third cluster (S3) included ST23, ST28, ST775, ST1153,
and ST1148 isolates, which had representatives from several locations in the Southeast
(Florida, Louisiana, and South Carolina) plus one from Washington.

Phylogenetics and clustering. When the early-diverging bipartitions of the likeli-
hood tree are considered, 9 partitions are identified (Fig. 3). Of these, four (partitions 3,
4, 5, and 7) are composed of only clinical isolates, three (partitions 1, 2, and 6) are com-
posed of only oyster isolates, and two (partitions 8 and 9) contain both clinical and oys-
ter isolates. Seven of the identified bipartitions (1 to 7) consist of only one ST. STs that
include multiple serotypes and are monophyletic in the likelihood tree are ST3, ST36,
and ST636. Whole-genome distance analysis was also conducted and largely supported
the likelihood analysis, as eight of the well-supported partitions in the likelihood tree
were also found in the distance tree (Fig. S2 and Table S1), lending more support to
these clades.

Two of the three clusters found by STRUCTURE analysis of the oyster isolates (Fig.
2B) were monophyletic based on the phylogenetic analysis. ST32 and ST34 isolates
were clustered by STRUCTURE (Fig. 2, S1) and form a well-supported monophyletic
clade in the likelihood tree (Fig. 3, partition 9). ST676 isolates (Fig. 2, S2) from two loca-
tions, Virginia and Alabama, form a monophyletic group (Fig. 3, partition 6). From the
third STRUCTURE cluster (Fig. 2, S3), ST23, ST775, and ST1153 isolates are all part of a
large partition (Fig. 3, partition 8) but do not form a monophyletic group. ST28 and
ST1148 isolates, which were also part of cluster S3 by STRUCTURE, were not part of a

FIG 1 Genome gene discovery and pangenome. (A) To evaluate the completeness of the gene-finding effort, a rarefaction plot was constructed by listing
the COG to which each V. parahaemolyticus isolate belonged, resampling the isolates with replacement using random.randrange in Python 3.6, and then
listing and counting the unique COGs. This was done for increasing numbers of isolates. For each number of isolates, 10 replicates were done. The plot
was constructed with Plotnine, geom_point. (B) The pangenome was constructed to demonstrate a core genome with a highly variable auxiliary genome.
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FIG 2 Geographic distribution of V. parahaemolyticus isolates from oysters. (A) Geographic distribution of the identified STs. The map
was constructed using Python 2.7 with the help of Basemap from mpl_toolkits.basemap and inset_axes from mpl_toolkits.axes_grid1.

(Continued on next page)
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well-supported clade with those STs in either the likelihood or whole-genome distance
analysis trees (Fig. 3; Table S1).

Comparison of the genomes using k-mer-based pairwise distance emphasized the
higher diversity among the V. parahaemolyticus isolates (Fig. 4A) than what is com-
monly seen in other bacterial species. This analysis also enabled the differentiation of
related groups that were distributed spatiotemporally, suggesting that they are phylo-
genetically linked. Further analysis with population partitioning using nucleotide k-
mers (PopPUNK) identified five primary clusters, each containing isolates of a single ST
(Fig. 4B): ST36 (17 isolates), ST1151 (6 isolates), ST3 (6 isolates), ST735 (5 isolates), and
ST65 (5 isolates). Some smaller genomic clusters of four or fewer isolates also contain-
ing a single ST (ST676 and -775) were identified. Interestingly, PopPUNK clusters 1, 3,
and 5 were composed of the same STs (ST36, -3, and -65) as the monophyletic clades
of clinical isolates by the likelihood analysis (Fig. 3, partitions 4, 3, and 5, respectively)
but were spatiotemporally separate in this analysis. PopPUNK clusters 2 and 4 and one
of the smaller clusters (,5 isolates) were composed of ST1151, -735, and -676 found in
the monophyletic clades of oyster isolates in the likelihood analysis (Fig. 3, partitions 2,
4, and 6; Table S1).

Potential pathogenicity genes. To visualize a potential pattern between T3SS and
TDH family genes and pathogenicity, a heat map was constructed with the isolates
sorted by the total number of T3SS and TDH family genes that each possesses (Fig. 5).
In most cases, when PCR detected both tdh and trh, InterPro annotated the two genes as
tdh. However, there were two instances (ST636_CDC_K4558-2 and ST772_CDC_K5125)
where PCR did not detect either tdh or trh but two tdh-related genes were found in the
genomic sequence. In addition, there were some instances where PCR detected trh and
multiple instances of tdh-related genes were found in the genomic sequence: two in some
isolates (ST775_FDA_R137, ST1134_FDA_R7, and ST1134_FDA_R8) and, surprisingly, even
three for some ST3 isolates (CDC_K5528, CDC_5010-1, CDC_5010-2, and CDC_4637-2).
Isolates from both humans and oysters were among those predicted to have two tdh-
related genes.

Twenty-six T3SS genes were present in all 132 draft genomes (Fig. 5). There were
also several genes found in only some genomes: the T3SS inner membrane P protein
was found in 102 isolates, and the T3SS ATPase (FliL), the T3SS FHIPEP sorting domain,
and the T3SS substrate exporter were found in 91 isolates. There were 11 isolates that
had either additional T3SS genes or extra copies of some T3SS genes: the 7 ST3 iso-
lates, which comprise a monophyletic clade; CDC_K5439, CDC_K5331, and FDA_R130,
which cluster near the ST3 isolate clade; and the relatively unrelated isolate FDA_R125
(Fig. 3). There were 5 T3SS genes that were possessed by only these 11 isolates: the
injected virulence protein YopP/YopJ, a putative T3SS apparatus protein, the putative
T3SS protein Spa33, the putative T3SS system EscC protein, and the putative T3SS sys-
tem lipoprotein precursor EprK. The same 11 isolates had second copies of two genes:
the T3SS host injection protein YopB and the inner membrane channel protein LcrD/
HrcV/EscV/SsaV.

Due to the variation in copy number within the T3SS and tdh gene groups, annota-
tions that were prevalent in isolates within monophyletic clades of clinical isolates
(ST3, ST36, and ST65) (Fig. 3, partitions 3, 4, and 5) relative to monophyletic clades of
oyster isolates (ST676, ST735, and ST1151) (Fig. 3, partitions 6, 1, and 2) were examined,
omitting isolates from mixed clades (Fig. 6). While some analyses strictly control for
phylogeny, we wanted to be able to determine if gene abundances were consistent
within the clades and not only across clades (or isolation source). In some cases, genes

FIG 2 Legend (Continued)
inset_locator. Pie charts were added at approximate locations of collection sites as demonstrated at http://www.geophysique.be/2010/
11/15/matplotlib-basemap-tutorial-05-adding-some-pie-charts/. The size of each pie chart is proportional to the total number of isolates
from that location. Pie slices are proportional to the number of times that an ST was isolated at each site. (B) Genetic/geographic
structure among the oyster isolates. STRUCTURE was used with MLST genes and geographic locations as priors. The maximum value of
ln P(D) corresponded to a k value of 5, which was the lowest k value for which the members within each cluster with an Fst value of
.0.2 shared genes. Graphs were created in R version 3.2.2 using the default plotting functions.
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with an annotation were abundant, with all isolates having more than 15 genes with
the annotation: major facilitator superfamily (MFS) transporters, EAL domains, and
acyl-CoA N-acyltransferases. In other cases, the overall numbers were low, with all iso-
lates having at least 1 but fewer than 10 genes: thiamine diphosphate-binding, RmlC-
like cupin, integrase/recombinase N-terminal, flavin mononucleotide (FMN)-binding
split barrel, and 3-keto-5-aminohexanoate cleavage enzymes. With other annotations,
some isolates had none, and others had one or two: pyridoxamine 5-phosphate oxi-
dase, FMN dependent; DUF2787; and glycosyltransferase family 11 (GT11). It was also

FIG 3 Likelihood tree demonstrating the phylogenetic relatedness of the 132 V. parahaemolyticus isolates. The phylogenetic relationships between isolates
from clinical and oyster sources were based on a core genome of 3,726 genes. The likelihood tree was created with RAxML with the GTRCAT model with
100 bootstrap replicates based on the core genome. The 12 largest supported (bootstrap values of .70) clades are colored. Clinical isolates are labeled in
red, and oyster isolates are labeled in blue. Clusters identified by STRUCTURE are identified by “SX,” where “X” is the cluster number provided in the
STRUCTURE analysis.

Phylogeny and Biogeography of Vibrio parahaemolyticus Applied and Environmental Microbiology

February 2021 Volume 87 Issue 3 e01403-20 aem.asm.org 9

https://aem.asm.org


variable as to how differentiated the clinical isolates were from the oyster isolates for
all annotations (Fig. 6), the difference in numbers was statistically significant, and it
was generally apparent that clinical isolates had more than oyster isolates.

DISCUSSION
Population and genetic continuity in the Gulf and East Coasts. As reported in a

previous study using a subset of these isolates, ST36 and ST3 are the most frequent
STs in this isolate collection. Both ST36 and ST3 were comprised only of clinical isolates
collected on various dates and from multiple regions with O4:K12/O4:Kut and pan-
demic-related serotypes, respectively, as previously described for these STs (9, 24).
However, these data show high diversity regarding the residual STs of the isolates
tested regardless of the method of analysis used (likelihood or genome distance).

STRUCTURE identified three clusters with Fst values indicative of population struc-
ture along the Gulf Coast and Atlantic Coast of North America and even including one
isolate from the Pacific Coast, consistent with the results of others (30, 31).
Phylogenetic support was lacking for one of these clusters detected with STRUCTURE.
This is not surprising as MLST alleles represent a small portion of each genome and
probably should not be used for phylogenetic purposes when larger data sets are
available. However, the incongruence between the phylogenetic results and the MLST
results could be indicative of horizontal gene transfer between phylogenetically distant
strains (32). Indeed, genomic recombination and horizontal gene transfer were inferred
using genomic distance analysis by the presence of multiple clusters (i.e., colored dots
adjacent to one another and not forming a distinctive monochromatic group). The pre-
cise mechanism, as well as the selection pressure, that results in limiting the genotype
diversity has not been identified thus far, although seroconversion has been investi-
gated (33), and is a question that requires additional examination.

Oceanic currents, as well as shipping vessels, could play a role in the distribution, di-
versity, and genetics of V. parahaemolyticus (34, 35). The highest-diversity site was on
the Gulf Coast side of Florida, probably influenced by the Yucatan and Loop currents
and their small offshoots, which could be carrying organisms picked up by the

FIG 4 Vibrio parahaemolyticus genome relatedness using whole-genome distance comparisons. (A) Genome distance using k-mers with an all-against-all
comparison. (B) Genomically related isolate network using PopPUNK to demonstrate specific genomic clusters that are epidemiologically related within a
cluster but genetically distinct between the groups. Colors represent the same genomic group. The distance between groups indicates relatedness as
determined using whole-genome distance. Clusters are labeled with the unique cluster identification from this analysis (clusters 1 to 5), the ST that
comprises the cluster, and the likelihood tree partition to which the isolates belong (“LX,” where “X” is the partition number in Fig. 3).

Miller et al. Applied and Environmental Microbiology

February 2021 Volume 87 Issue 3 e01403-20 aem.asm.org 10

https://aem.asm.org


FIG 5 Heat map of counts for SEED and InterProScan annotations. Counts of annotations for SEED T3SS genes and InterProScan
annotations for TDH genes and PCR results for tdh and trh are shown. Per-isolate counts for T3SS and TDH annotated clusters along with

(Continued on next page)
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Caribbean current from Caribbean islands and the northern coast of South America.
Alabama seems to have much lower diversity, but there were only two isolates repre-
sented by two STs, so the detected diversity was as high as it could have been. The
other Gulf Coast sites also have high diversity relative to most non-Gulf sites and could
be influenced by the complex offshoots of the Loop and Mexican currents. STs found
on both the Gulf and East Coasts could be an indication of connectivity due to the
Florida current and the Gulf Stream. The only other site without a clear majority
sequence type is Maine, which is near the convergence of the Gulf Stream and the
Labrador current, presenting two possible sources of V. parahaemolyticus and a more
variable environment that prevents one ST from dominating. The isolate with ST1148
could have been introduced to the Pacific Coast via ballast water, as has been previ-
ously suggested for V. parahaemolyticus (35).

Gene content and pathogenicity. There was good general agreement between
previous PCR detections of tdh-related genes and the genomic results. In most cases
where there was PCR detection, tdh-related genes were annotated within the
genomes, and when both tdh and trh were detected via PCR, multiple copies of tdh-
related genes were found in the proteins predicted by InterPro. The few cases where
more genes were annotated from the genomic data than were detected via PCR could
be due to a single set of primers amplifying in two places or gene sequence diversity.
The use of multiple techniques largely validated but also complemented one another.
The two approaches together provide multiple lines of evidence for the existence of
clinical isolates lacking any tdh or trh gene and showing that while these bacteria may

FIG 5 Legend (Continued)
previous PCR results for TDH and TRH, included for comparison, were visualized within a heat map created with Plotnine, geom_tile. For
ease of visualization, isolates are listed in the order of phylogeny based on the likelihood tree (i.e., isolates at the top are in partition 1 of
Fig. 3).

FIG 6 Jitter plot with numbers of genes in monophyletic groups. Annotation groups with statistically significant differences between clinical and oyster
isolates (P values of ,0.01 after Benjamini-Hochberg adjustment [75]) were included. Genes enriched in isolates from monophyletic groups of human
isolates relative to monophyletic groups of environmental isolates were found by counting the number of gene clusters that each isolate was in for each
annotation. Isolate counts for each annotation for monophyletic human versus environmental isolates were then compared using Kruskal-Wallis tests. The
jitter plot was illustrated with Plotnine, geom_jitter. Red indicates clinical isolates, and blue indicates oyster isolates.
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use these genes during the infection process, they are not required or predictive of
pathogenicity.

In addition to the hemolysins, T3SS genes are potentially associated with virulence,
perhaps by targeting the cytoskeleton, as do many T3SS effectors. Eleven of our iso-
lates, including all ST3 isolates, contained YopP/YopJ, which is involved in inducing ap-
optosis (36). Thus, these isolates have an additional weapon that they can use to ac-
quire resources from eukaryotic cells. This, however, does not explain why ST36 and
ST65 are so frequently isolated from humans, as these two genotypes lacked the YopP/
YopJ gene. While the T3SS may be an important tool in the arsenal of V. parahaemolyti-
cus, it does not explain the pattern of pathogenicity observed in this set of isolates.

The monophyletic clusters of clinical isolates (ST3-ST36-ST65) tend to have addi-
tional genes with specific annotations compared to isolates within monophyletic
groups of environmental isolates. These groups of genes can be broadly grouped func-
tionally into DNA handling, metabolic, and signaling. One of these annotations is for
integrase/recombinase, N terminal. The ST3-ST36-ST65 isolates could use additional
integrase capacity to acquire genes that could be used in the infection process (37).
These isolates are also enriched in genes involved in sensing the environment, signal
transduction, and gene expression. Bacteria that tend to thrive in nutrient-enriched
environments typically have more genes related to gene expression and signal trans-
duction. EAL domain proteins are involved in the synthesis of cyclic diguanylate used
in intracellular signaling, which could be useful in transmitting intracellular signals
related to changes in the extracellular milieu (38). Proteins of this type could help these
genotypes quickly take advantage of new resources not only in the ocean but also
when they find themselves in an unexpected environment, like a human. The ST3-
ST36-ST65 isolates also tend to have more MFS transporters. These proteins act as anti-
porters and symporters that link the transport of ions with the transport of other ions
or small organic solutes (39) and thus could help in nutrient absorption. Better nutrient
absorption would make more-rapid growth possible.

After detecting a change in their surroundings, the ST3-ST36-ST65 isolates could
use genes of metabolic function, in which they tend to be enriched, to support
enhanced growth. Some genes involved in carbohydrate metabolism may have direct
effects on their pathogenicity. As one example, RmlC-like cupin domains play a role in
the synthesis of L-rhamnose that may be involved in bacterial pathogenesis (40).
Glycosyltransferase family 11 (GT11) is a galactoside 2-L-fucosyltransferase, which trans-
fers fucose from guanosine-diphosphate fucose to a substrate (41), homologs of which
are involved in antigen synthesis in other bacterial species (42, 43). Thus, GT11 could
be important in the interaction of V. parahaemolyticus with a human host.

The ST3-ST36-ST65 isolates also appear to be enriched in genes related to the proc-
essing of metabolites. Acyl-CoA N-acyltransferases function in the synthesis of fatty
acids using acetyl-CoA and another lipid as the substrates and in the production of
ATP from amino acids (44, 45). Both functions could be beneficial to V. parahaemolyti-
cus during periods of low-nutrient stress, such as in coastal estuarine habitats. Other
marine organisms use acyltransferases and similar proteins to store fatty acids and wax
esters for use during periods of stress or dormancy (46, 47). Such a gene could be used
by V. parahaemolyticus to rapidly incorporate environmental lipids for more rapid
growth or to store them for use in times of stress (48). While there is much to be stud-
ied about how these genes enriched in the ST3-ST36-ST65 clade could contribute to
environmental survival, transmissibility, and pathogenicity, it is clear that there are
many potential benefits.

Rare in the marine environment but common in outbreaks. It is surprising that
ST3, ST36, and ST65, each of which forms a monophyletic clade, were prevalent among
clinical isolates but were not recovered from oysters in this study. While seafood-asso-
ciated outbreaks could be expected to be caused by genetically homogeneous organ-
isms (49), even with the bias in favor of sampling from clinical sources, enough samples
were taken from the environment that if ST3, ST36, and ST65 were common in the
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environment, these STs would be represented by at least a few oyster isolates.
However, previous work has found ST3 and ST36 isolates in the environment (15), but
that study was focused on an area where these STs were strongly predominant in
patients. They may become abundant in marine environments only under specific con-
ditions, remaining in unidentified oceanic reservoirs otherwise. The enhanced lipid
storage capability, inferred from the possession of extra copies of acyl-CoA N-acyltrans-
ferase genes, of ST3-ST36-ST65 isolates may enable them to spend more time as dor-
mant cells (50, 51) in marine habitats and be numerically inferior to other genotypes of
this bacterium, making them more difficult to detect. In contrast, they seem to have
some relative advantages in associating with humans. For example, they may be able
to take advantage of the more-nutrient-replete conditions of the human intestine
more quickly due to their enhanced transport and signaling systems as well as addi-
tional metabolic genes that allow them to outcompete other genotypes under these
conditions.

Conclusions. This study used whole-genome sequencing of 132 V. parahaemolyti-
cus isolates to understand the distribution and genetics of this pathogen along coasts
of North America. Using in silico MLST from the draft genomes, a hub of genetic diver-
sity along the Gulf and southern Atlantic Coasts as well as lower diversity along the
northern portions of the Atlantic and Pacific Coasts were identified. In addition, the
data show that the results of MLST methods, which use only a small portion of the ge-
nome, are generally consistent with the results of a core genome maximum likelihood
phylogeny and that the results of distance phylogenetic methods, when applied to the
same genomic data, are broadly consistent with the results of the maximum likelihood
analysis. These results indicate that when time, sequencing capacity, or computational
capacity is limited, biologists can use faster and more affordable methods and still
obtain informative, but not comprehensive, results.

Additionally, this study looked for pathogenicity genes. The tdh, trh, and T3SS
genes, while present in many of our isolates, do not explain the apparent differences
in pathogenicity. Instead, the isolates from monophyletic clades consisting of only
human isolates were enriched in genes having to do with signal transduction, nutrient
absorption, energy transduction, and energy storage. This is consistent with a model in
which these strains can store energy efficiently for periods of dormancy and then
quickly respond to periods of high levels of nutrients by growing quickly and outcom-
peting other strains of the same bacterial species. Thus, it is possible that the strains
most frequently isolated from humans are difficult to detect in marine habitats
because they are more likely than other strains to be in a dormant state, but when lev-
els of nutrients become especially high, as in a human intestine, they are able to out-
compete their competitors. Further experimental work is needed to elucidate the abil-
ity of strains to persist and proliferate under various conditions in relation to the genes
possessed and the ecological factors that vary with geography. This experimental work
should include gene expression profiling, as pathogenicity could be influenced by
gene expression as well as gene content.

MATERIALS ANDMETHODS
Bacterial strains. The 61 oyster and 71 clinical well-characterized isolates used in this study (Table

1) were collected from 2006 to 2007 in the United States and Canada (10, 23). These isolates were
selected to be representative of the geographic diversity of North America for both environmental (oys-
ter) and patient isolates over a given period to avoid the introduction of broad temporal variation. The
isolates were stored at280°C until analysis.

Genomic DNA extraction. All isolates were grown in Trypticase soy agar (TSA; Thermo Fisher
Scientific, Waltham, MA) overnight at 37°C. High-molecular-weight DNA was extracted using the
QIAamp DNA minikit (Qiagen, Valencia, CA). The integrity of high-molecular-weight DNA was deter-
mined using a 2200 TapeStation with genomic DNA ScreenTape (Agilent Technologies, Santa Clara, CA)
as previously described (52).

Whole-genome sequencing, assembly, and annotation. Sequencing was conducted by the
Weimer laboratory at the University of California—Davis through the 100K Pathogen Genome Project
(http://www.genomes4health.org/) (53) as previously described (54). DNA was fragmented using the
Covaris (Woburn, MA) E220 ultrasonicator. Fragmented DNA (1mg) was used to construct sequencing
libraries using the HTP library preparation kit (Kapa Biosystems, Wilmington, MA), on a Bravo NGS
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workstation (Agilent Technologies). Fragmented double-stranded DNA (dsDNA) molecules were end
repaired (59), adenylated (39), and then ligated with dsDNA adapters using the NEXTflex-96 DNA barcode
(Bioo Scientific, Austin, TX). The size distributions of amplified libraries were confirmed using the 2100
bioanalyzer with a high-sensitivity DNA kit (Agilent Technologies). Finally, the indexed libraries were
quantified with a quantitative PCR (qPCR)-based library quantification kit (Kapa Biosystems) prior to
pooling for sequencing on the Illumina HiSeq 2000 platform with PE100 plus index reads (Illumina, San
Diego, CA). The genomic sequences were de novo assembled using SPAdes version 3.1.1 software (55)
with a k-mer length of 32. The draft genomes were annotated using the NCBI Prokaryotic Genomes
Automatic Annotation Pipeline (PGAAP) (www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html).

Pangenome analysis. The pangenome was determined as described previously by Bandoy and
Weimer (56). Briefly, the genome sequences were assembled using Shovill (https://github.com/
tseemann/shovill), annotated using Prokka (57), and used as the data input for pangenome analysis
using Roary (58). Assembled genomes were variant called using Snippy (https://github.com/tseemann/
snippy). Gene presence/absence was visualized using Phandango (59) with the associated metadata.
Gene associations, metadata, and phenotypes were associated using Scoary (60).

Population genetics and biogeography. Genomes were analyzed for MLST sequence types (STs)
based on the allele types of the housekeeping genes dnaE, gyrB, dtdS, recA, pyrC, pntA, and tnaA through
the MLST database for V. parahaemolyticus at http://pubmlst.org/vparahaemolyticus/ (21). STRUCTURE,
which is a method for inferring population structure without incorporating any a priori information as to
membership (61, 62), was run using the MLST alleles from oyster isolates as the input and the geo-
graphic collection sites as priors. The burn-in consisted of 30,000 Markov chain Monte Carlo (MCMC) iter-
ations followed by 60,000 additional repetitions that were utilized. Values for k from 2 to 16 were tested.
The highest ln P(D) value corresponded to a k value of 5. This k value resulted in all well-supported clus-
ters (Fst . 0.2) sharing alleles, so it was used because there is no genetic basis in this data set for cluster-
ing isolates lacking shared alleles.

Phylogenetics. For the likelihood tree, nucleotide sequences from each cluster of orthologous
groups (COG) in the core genome were aligned using MAFFT (version 7.427) with “—adjustdirection” to
find reverse complements of genes when necessary to ensure that genes were oriented in the same
direction (63). The alignments were then concatenated with a custom Python script. The best likelihood
tree as well as the 100 bootstrap trees were found using raxmlHPC-PTHREADS (version 8.2.9) rapid boot-
strapping with a general time reversal rate categories (GTRCAT) model of nucleotide substitution and
rate heterogeneity (64).

For the distance tree, the assembly of paired-end reads was done with ABySS 1.5.2 using a k value of
64 (65) and as used previously (28, 29). Pairwise distances were determined using the Meier-Kolthoff
method as reported previously (66) and implemented locally using PanCake (29). A distance tree was
inferred using Mega7 with neighbor joining (67, 68) and visualized using MATLAB software (MathWorks,
Natick, MA, USA).

Genome variation was determined using total genomic distance with a k-mer (31-mer) approach as
a method to use the entire genome to determine relatedness between isolates as previously described
(56). Population partitioning using nucleotide k-mers (PopPUNK) was used to determine related genomic
clusters based on the whole-genome distance of the Vibrio isolates used in this study. PopPUNK uses
genomic distance with variable-length k-mer comparisons, enabling the analysis of divergence in core and
accessory gene contents within the same analysis to visualize a network-like vision of genome diversity (69).

Ortholog discovery and annotation. Open reading frames were found using Prodigal 2.6.3 (70).
The core genome was identified by first running all-against-all pairwise reciprocal BLAST (71), finding
pairwise reciprocal best hits (PRBHs) requiring an E value of,1� 10245 and a length of at least 80 nucle-
otides, and then grouping these into COGs (72). COGs were found with a custom Python script that first
identified preclusters from a sorted list of all PRBHs by clustering pairs sharing the first element and
then recursively looked for and grouped preclusters that overlapped by at least two gene identifications.
Clusters overlapping by only one gene identification remained as separate clusters. In these cases, one
was removed, with a preference for keeping the larger cluster. The core genome was then assembled
from COGs containing every isolate exactly once.

COGs were annotated by BLAST comparisons to isolates AQ3810 and RIMD_2210633 (downloaded
from https://theseed.org [73]) and with InterProScan (74) using the RESTful Web service and Python 3.6.
The InterPro annotations (identifiers starting with “IPR”) were used. In both cases, annotations with E val-
ues of ,1� 10245 were accepted. For T3SS genes, SEED annotations were preferentially used over
InterPro annotations because they were presumed to be more species specific and refined, but if
InterPro annotated a gene as being T3SS related, it was used unless the SEED annotation indicated that
it was flagellar. TDH family gene clusters were annotated with InterPro.

Data availability. All accession numbers and associated metadata are provided in Table 1.
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