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1  | INTRODUC TION

Cell fate is precisely regulated in the developmental process and 
human disease. Since the discovery of Mendelian, gene regulation 
models are continuously developing.1-4 In the beginning, the tran-
scriptional models were linear.5-8 In the 1980s, the first enhancer 
was identified which can increase gene expression by 200-fold.9 
With technological development, the study of chromatin is expanded 
into three dimensions (3D). Distal enhanced elements transmit the 

activation signal to the promoter by chromosome folding.10,11 These 
advances further explained the accuracy of gene expression regula-
tion, enriching theories of transcriptional models.

In 2013, Young and colleagues came up with the concept of 
the super enhancer (SE), as the region in the embryonic stem (ES) 
cells where Oct4, Sox2 and Nanog co-bind,12,13 with a huge region 
of the genome.14-16 Later, more and more biological macromol-
ecules were found in the formation of SEs, and more biological 
functions were found to be controlled by them.17-21 Based on the 
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Abstract
Complex biochemical reactions take place in the nucleus all the time. Transcription 
machines must follow the rules. The chromatin state, especially the three-dimen-
sional structure of the genome, plays an important role in gene regulation and ex-
pression. The super enhancers are important for defining cell identity in mammalian 
developmental processes and human diseases. It has been shown that the major 
components of transcriptional activation complexes are recruited by super enhancer 
to form phase-separated condensates. We summarize the current knowledge about 
super enhancer in the 3D genome. Furthermore, a new related transcriptional regula-
tion model from super enhancer is outlined to explain its role in the mammalian cell 
progress.
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characteristics reported previously, we describe that a SE is a clus-
ter of enhancers with short spacing in the genome occupying more 
than 12.5 kb, having accessible chromatin and enrichment of tran-
scriptional activators and core transcription factors.22-27 Super 
enhancers are ubiquitous and have higher activation capacity than 
typical enhancers, which are sensitive to cell state.28-32 They are 
found in a variety of cell types in the body and span many species 
such as humans and mice. In addition, the SEs are also identified 
in domestic animals.

Moreover, the chromatin phase-separated condensate is also 
detected at the locus of SEs, providing us with a new direction for 
research. There is an increasing amount of evidence suggesting that 
the transcriptional activation of SEs does not depend on rigid con-
struction. Here, the structural and functional basis of SEs in the 3D 
genome is discussed. A new working model has been proposed and 
used to explain some biological progress.

2  | SUPER ENHANCERS RELY ON 
DETERMINED CHROMATIN STATE

There are two basic conditions for gene activation, accessible chro-
matin and active transcription machines. In eukaryotes, the chroma-
tin structure of the SE plays an important role.33

2.1 | Histone modification and chromatin 
remodelling

Young and colleagues found that H3 lysine 27 acetylation 
(H3K27ac) is the label for super ehnancers,34,35 which makes chro-
matin structures looser, providing ideal sites for active transcrip-
tion machine. In addition, master transcription factors tend to 
co-bind at the SEs (Figure 1A).36,37 In the case of mouse ES, the 
SE is occupied by the transcription factor Oct4. Once the sites of 
H3K27ac are changed, the binding of Oct4 was also changed.38 
Furthermore, Histone H3 lysine 4 methylation is considered as a 
marker for the SEs as well.39,40

Mohd-Sarip proved that acetylated lysine residues are recog-
nized by SWI/SNF, an important component of the chromatin re-
modelling complex.41 With the help of ATP, this complex can move 
labelled nucleosomes, forming exposed DNA.42-44 The depletion of 
SWI/SNF leads to the formation of inaccessible chromatin, result-
ing in the gene not being activated effectively even when the acti-
vators are present.

If chromatin is modified by inert epigenetic modification, such 
as H3K9 methylation, SEs will be destroyed. Indeed, H3K9 meth-
ylation can be recognized by heterochromatin protein 1 (HP1α), 
a common chromatin silence marker, which may cause the for-
mation of heterochromatin.45-48 Other histone modifications 
may also affect SEs. HDAC7 can regulate genes in breast cancer 
stem cells through SEs. When changed, the characters of SEs are 
shifted.49

With advances in microscopic imaging, chromatin phase-sepa-
rated condensates were observed in vitro.50,51 Rosen and his col-
leagues found that specific histone modifications promote the 
formation of chromatin phase-separated condensate. According to 
their report, when normal histone is acetylated, it destroys previ-
ous chromatin condensates. Nucleosomes that are nearby dissolve, 
forming an unstable state. After adding coactivators Brd4, which 
can be recruited by acetylated lysine, new condensates are con-
structed.52,53 Super enhancers are very sensitive to histone mod-
ification. Excess or loss of modification may cause changes. With 
absolute quantification of architecture (AQuA-HiChIP), Gryder dis-
covered that rapid histone deacetylase inhibition resulted in abnor-
mal contact, which destroyed the super enhancers.54 In summary, 
the formation of super enhancers in eukaryotes depends on the dis-
tribution of nucleosomes and the modification of histones.

2.2 | DNA methylation and chromatin accessibility

The modification of DNA, especially DNA methylation, also has ef-
fects on the function of SEs. Generally, the GC ratio of SEs is much 
higher than that of typical enhancers. Hypomethylating agents, that 
is inhibitors are shown to reduce the activity of super enhancers.55 
Among the different SEs, the GC ratio also varies. In 2020, Bell 
found that SEs are typified by distinctive CpG methylation dynam-
ics.56 In the same locus, the DNA methylation level is different, and 
the activity of the SE is also different. Thus, at the same locus of 
the genome, different levels of DNA methylation lead to differences 
in SE activity between embryonic stem cells (ESCs) and epiblast 
stem cells (EpiSCs). Most of these affected genes are related to the 
naïve state.56 Moreover, Song reported that DNA methylation can 
regulate the level of H3K27ac through the balanced binding of DNA 
methyltransferase and transcription factors.57

The chromatin of the SE is highly accessible. Many studies have 
observed that the transcriptional regulatory regions identified by 
DNase hypersensitivity almost coincide with the locus of the super 
enhancer.58-60 The application of transposable-accessible chro-
matin-sequencing (ATAC-Seq) provides further evidence.33 At the 
same time, histone-less DNA is fragile and is prone to double-strand 
breaks (DSBs). The DSB repair mechanism is closely related to SEs. If 
removed, the expression of SE-associated genes decreased, further 
confirming this model.61

3  | SUPER ENHANCERS RELY ON SPECIFIC 
TOPOLOGIC ALLY A SSOCIATED DOMAINS 
( TADS)

Previous studies have shown that chromatin modification at a site 
can alter the surrounding nucleosome dynamics, causing activa-
tion or silencing of nearby genes.62-64 It has also been proved that 
proximal enhancers activate promoters by diffusing. However, as a 
strong activator that plays a precise regulatory role, SEs must have 
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individual working spaces. There is an abundance of data showing 
that SEs rely on specific TADs.65

Genomic loci are found to contact each other frequently. For 
instance, evaluating the three-dimensional (3D) conformation of 
the HoxB locus in mouse ESCs revealed that, the architectural pro-
tein CTCF, essential for the formation of chromatin loops and en-
hancer-promoter interactions, mediates the correct folding of the 
genome.66 The development of sequencing technology provides fur-
ther evidence of the genome structure.51,67-69 With Hi-C, it is shown 
that TADs are fundamental elements of the eukaryotic genomic.70-72 
Architectural proteins build chromatin to TADs and serve as the 
boundaries.73 Moreover, architectural proteins are extensively de-
tected at the edge of the SEs.73-76 Thus, it was determined that the 
CTCF is the boundary both for the TADs and the SEs, indicating the 
relationship between them (Figure 1B). In T-cell acute lymphoblastic 
leukaemia (T-ALL), when the CTCF-mediated insulation is absent, the 
relevant TAD fused, and resulting in an abnormal contact between 
the SE and the promoter of MYC, leading to the up-regulation of 
oncogenes.77 Differences in TADs can rewire interactions between 
the SE and the promoter.78,79

Using high resolution in situ Hi-C, researchers found that in mam-
mals and insects the genome contains more TADs than we realized, 
most of which are smaller than what we detected with the previous 
Hi-C.80 Different densities of chromatin interactions further affect the 
function of the SEs. In 2018, Yuan and colleagues observed that SEs 
are hierarchically organized.81 According to the frequency of chromatin 
interaction, SEs can be divided into hub and non-hub enhancers. There 
are more frequent interactions in hub enhancers than in the non-hub 
enhancers. The ablation of hub enhancers that have more influences re-
sulted in profound defects in the cell state. Moreover, when using the 
CRISPR-mediated chromosome modification to remove different small 
TADs in one SE, the expression levels of related genes were inconsis-
tent.82,83 These diverse and complex interactions are scattered within 
the SE providing more possibilities for the regulation of gene expression.

During genetic engineering operations, ectopic expression of 
cis-regulatory elements and promoters can form TAD, but this is not 
a super enhancer. Similarly, in addition to maintaining the boundaries 
of the TADs, CTCF is also involved in the formation of sister chroma-
tids. The functionality of the SE is included in the TADs. Super en-
hancers are cis-regulatory elements that regulate gene expression. 

F I G U R E  1   Super enhancers rely 
on a determined chromatin state. A, 
The maintenance of a super enhancer 
depends on epigenetic modifications. 
H3K27 acetylation loosens the chromatin 
and provides accessible transcription 
factor binding sites, which are essential 
for the function of the SE. In contrast, 
the H3K9 methylation region causing 
the chromatin to be denser and forming 
inert regions prevents the binding of 
active transcription machines. B, CTCF 
restricts the super enhancers in specific 
regions. With the help of chromatin 
remodelling complexes such as SWI/
SNF, active chromatin modifications are 
prone to spreading, especially at the locus 
of SEs. The existence of architectural 
protein limits the SEs to a specific region, 
allowing for orderly gene regulation, 
and maintaining the conformation of the 
genome. C, Super enhancers rely on a 
determined chromatin state. The genome 
is divided into regions with the help of 
architectural proteins. In the regions 
where the SEs are located, the active 
transcription machine forms a phase-
separated condensate that maintains the 
precise regulation of genes
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Indeed, they are a part of the genome. Super enhancers’ formation is 
based on specific genomic states (Figure 1C).84

4  | SUPER ENHANCERS RECRUIT 
TR ANSCRIPTIONAL AC TIVATION 
COMPLE XES TO WORK

Super enhancers have a stronger transcriptional activation capac-
ity. The density of proteins close to the SEs is much higher in the 
genome, suggesting a frequent interaction (Figure 2A). A growing 
number of immunoprecipitation-mass spectrometry (IP-MS) data 
suggest that these macromolecules are linked to each other, forming 
huge complexes (Figure 2B). Specific chromatin conformation pro-
vides space for the binding of active molecules, and the execution of 
biological functions depends on the associated protein coordination.

4.1 | Master transcription factors

Super enhancers were originally thought to be aggregates of core 
transcription factor binding motifs.85-88 In mESCs, core transcrip-
tion factors Oct4, Sox2 and Nanog are enriched in SEs to maintain 
the pluripotent network.89,90 Of these, Oct4 was considered the 

most important. Under the naive state, genes associated with the 
SE are more sensitive to the inactivation of Oct4. Destruction of 
these SEs leads to the expression of genes similar to the depletion 
of Oct4.15 Later, this pattern was observed in various cell types. 
In 501mel melanoma cells, Sox10 was found to co-locate with the 
H3K27ac labelled SEs. After the distribution of Sox10 was changed 
by inhibitors, the activity of melanocyte pigmentation changed.91

Analyses of the complexes in the region of SEs can help us find 
new master transcription factors. Combined with the IP-MS data of 
Sox2 and related bioinformatics data, Ding et al, identified Tex10 as 
an important transcription factor for the establishment and mainte-
nance of ESC.92 Using the same method, Shih-Hwa and colleagues 
found Ash2l as recruiting activated complexes at SEs.93 To explore 
the Trophectoderm (TE) lineage development, Lee identified rele-
vant SEs to look for TE specific transcription factors. More than 150 
transcription factors have been identified, and 27 of them are highly 
correlated with gene transcription of TE.85 Collectively, the relation-
ship between TFs and SEs helps us to understand gene regulation.

4.2 | Mediators and coactivators

The mediators and coactivators are thought to bind together with 
enhancers.94 The concentration of mediators is higher than that of 

F I G U R E  2   Super enhancers collect 
phase separation condensates. A, Based 
on previous studies, we have made a 
model diagram of the enrichment degree 
of transcription factors on SEs of mESCs. 
Comparison of the activation signals of 
a SE with a typical enhancer, the super 
enhancer occupies a larger logic of the 
genome which can collect more activation 
signals. B, By using previous IP-MS data, 
we can identify the components collected 
by SEs. Here is the main composition 
collected by Oct4, Sox2 and Nanog in 
mESCs. A wide range of interactions can 
be observed among these factors. C, 
Network interactions of major proteins 
associated with super enhancers are 
reported in the literature. In both human 
and mouse pluripotent cells, the factors 
recruited by SEs are highly conserved. 
These factors can be divided into eight 
categories, and their interactions are 
extensive. D, Factors that are collected 
by SEs with extensive interactions can 
form phase-separated condensates 
in physiological states. The main 
constituents of condensates are shown
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other regions which can also be used to identify SEs. In general, the 
mediator has 25 subunits in yeast and 33 in mammals which play 
an essential role in the regulation of Pol II.95-98 In, 2019, Zamudio 
showed that mediators can bind to a variety of signalling molecules, 
assisting the cell type-specific response.99 Different mediators have 
varying functions, some of which are found only in a particular line-
age, while others are widely found in different lineages. In a cer-
tain state of cells, the SE loses its function when its core mediator 
is depleted.

Many studies have shown that the mediator has extensive in-
teraction with coactivators.100,101 The bromodomain and extra-ter-
minal domain (BET) protein family can recognize acetylated lysine 
residues. By mediating the formation of SEs, numerous studies have 
shown that Brd4 is related to SEs, can bind positive transcription 
elongation factor B (P-TEFb) to promote transcriptional elonga-
tion.102-104 When cells are in the prime state of ESCs, the depletion 
of Brd4 leads to cell differentiation. When cells are in the naïve state, 
the combination of Brd4 and Tet1 maintains the pluripotency of the 
cells.105 Further research has shown that JQ1, a brd4-specific inhib-
itor, can break SEs of cancer stem cells, becoming a new target for 
cancer.106 Furthermore, mediators and coactivators take part in the 
formation of the SE-associated activation complex.

4.3 | Chromatin regulars

It is shown that epigenetic enzymes are present in the chromatin 
complex.21,107-109 CBP/P300, the main histone acetylase, has been 
shown to be a companion to the SE. Histone demethylase is no ex-
ception. In 2019, Wong et al reported that the histone demethylase 
JMJD6 can form protein complexes with BRD4, regulating the pro-
liferation of neuroblastoma cells.110 Tet1, an extensive and powerful 
DNA demethylase, is also extensively involved in the regulatory net-
work. In the process of mouse reprogramming, Tet1 was proved to 
be able to replace Oct4, completing the construction of ESCs related 
super enhancers.111 In addition, chromatin kinetics-related mol-
ecules are also associated with SEs, such as Brg1, the most famous 
component of chromatin remoulding complexes. Meanwhile, other 
elements have been found such as the architectural protein and co-
hesion.112 Moreover, high mobility group proteins like HMGA1 are 
needed to maintain the enhancer substructures.

4.4 | RNAs

In addition to proteins, RNAs also participate in the formation of 
SE-associated complex. Long non-coding RNA (lncRNA) is not dis-
tributed randomly in the genome but has an obvious overlap with 
the super enhancer.113 Also, Rothschild et al identified a strand of 
lncRNA that takes part in the SEs’ formation, without which, gene ex-
pression in B cells was blocked.114 Justifiably, enhancer RNA(eRNAs) 
cannot be absent in the SE, as they assist the transcription-activated 
complexes to perform their duties.115 The eRNAs are synthesized 

on enhancers occupied by the Tet.116 During the differentiation of 
skeletal myoblast, seRNA-1 and −2 generated by the SE drives myo-
genic differentiation.117 In Banani's study, eRNA acted as a scaffold 
for the formation of a protein-nucleic acid complex.118 With Ric-seq, 
Cai et al further provided evidence that RNAs and their binding pro-
teins participate in the construction of 3D chromatin structures. 
Moreover, they also mediate the transmission of Pol II activated by 
the SE.119

4.5 | Others

It has been reported that more and more molecules are components 
of SEs. Because of the large volume and high degree of integration 
in the SE-related complex, almost all molecules that have similar 
locations are inevitably included. The nuclear matrix protein SAFA 
(also known as HnRNPU) activates immune-related SEs to establish 
a cellular antiviral defence line after virus invasion.120 Scientists also 
found that a large number of signalling factors for the WNT, TGF-b 
and JAK/STAT pathways also enter and concentrate in the complex 
at super enhancers.121-123

Due to the limitations in technology, it is not possible to enrich 
all components collected by SEs through experiments as a result of 
one or a few factors, but the increasing number of different data in-
dicates that more and more molecules may be involved in this biolog-
ical process (Figure 2C). These molecules interact to form complexes 
that support the function of the super enhancer.

5  | PHA SE-SEPAR ATED CONDENSATES 
ARE FORMED BY SUPER ENHANCER-
A SSOCIATED COMPLE XES

The transcription-activated complexes recruited by the SEs, as the 
very large functional polymers that have about 10-fold molecu-
lar density than the typical enhancer, need a stable structure to 
maintain their conformation in a physiological state. Advances in 
biochemistry have often led to alternative theories. The discovery 
of the chromatin undergoing liquid-liquid phase separation (LLPS) 
under physiologic conditions provides us with new insights.124 A se-
ries of recent developments indicate that the components of tran-
scriptional activation complexes recruited by SEs take part in the 
formation of this condensate.125

In 2018, a report by Sabari showed that MED1 and Brd4 were 
important components of phase-separated condensates.126 They 
share the same location and change rapidly after the environment 
of physiological salt is destroyed. Under the confocal microscopy, 
it was shown that phase-separated condensates divide cells into 
small compartments, which are immiscible with unmodified chro-
matin droplets, like small membrane-free organelles.127 Several 
parallel studies have also supported this theory. Scientists fur-
ther discovered that the mediator and coactivator interact with 
other components through their intrinsically disordered regions 
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(IDRs).126 According to Staby's study, disordered protein intrinsic 
disorders (ID) of transcription factors itself mediate many aggre-
gations.128 Through several specific examples, Liu further elabo-
rated on the contribution of this exquisite structure.129 In addition, 
Benjamin further explored ID mediated interactions and found 
that signalling factors could also take part in the formation of 
phase separation condensates through IDRs. On the other hand, 
from the perspective of energy, the SEs release more entropy by 
agglutination of more elements at higher density through a wide 
range of interactions, which is more trend for the construction of 
phase-separated condensates.130

Of course, there is an extensive molecular exchange between 
the phase-separated condensates and their environment. Young and 
colleagues proved that hypophosphorylated Pol II entered the me-
diator condensates preferentially through the IDR at the C-terminal 
domain of the large subunit. Once phosphorylated by cyclin-depen-
dent kinases (CDKs), this incorporation was reduced and Pol II was 
released as a result of transcriptional activity.131 The processed Pol 
II is further recruited by RNA-binding proteins close to the promoter 
of downstream genes to realize the transmission of the activation 
signal.119 Regulatory molecules constructing phase-separated con-
densates to form micro-organelles, provide a physical basis for the 
precise regulation mediated by SEs (Figure 2D).

6  | SUPER ENHANCERS PERFORM 
TR ANSCRIPTIONAL AC TIVATION THROUGH 
SPATIAL PROXIMIT Y R ATHER THAN A 
RIGID BRIDGE

Scientists have shown that the workspace of the SE is a loop.132-134 
Previous studies have hypothesized that the SE acts as a 3D struc-
tural architecture of cells recruiting a variety of factors to form a 
large complex that achieves physical contact with the promoter, that 
is, there are rigid physical bridges. This theory seems to be logical. 
An extensive amount of Chip-seq data also seems to support this 
point.

However, this theory cannot explain the formation of chroma-
tin phase-separated condensate. From another point of view, the 
length of time that transcription factors and PolII remained on the 
chromatin was measured in seconds, using fluorescence recovery 
after photobleaching (FRAP) and single-molecule experiments.135,136 
This temporal effect is insufficient to maintain the stability of the 
bridge structure. Using high-resolution Hi-C, Suhas SP Rao found 
that mammalian cells contained more transcription loops than pre-
viously reported. It was found that 90% of these transcription loops 
are associated with CTCF.137 In 2019, Khattabi described a new tran-
scriptional activation hypothesis.138 With different degron systems, 
he observed that acute depletion of mediators and Pol II has little 
impact on P-E contacts whereas the cohesin depletion does.132,139 
New technologies can usually explain old disputes; thus, the tran-
scription activate machine comes into play when the enhancer comes 
into contact with the promoter by CRISPR/Cas9.140,141 Architectural 

molecules bring the chromatin closer and form a stable conforma-
tion, providing a spatial basis for SEs.142 Above all, SEs that perform 
transcriptional activation do not depend on a rigid bridge but spatial 
proximity (Figure 3A and B).143,144

7  | SUPER ENHANCER—A NE W MODEL OF 
A TR ANSCRIPTION MACHINE

Based on previous publications, we propose a SE-mediated tran-
scription mode to pave the way for future research (Figure 4). First, 
as a regulatory element on the genome, the formation of SEs de-
pends on specific chromatin states and spatial structures. Second, 
many regulatory molecules gather in the chromatin regions where 
the SEs are located. The molecules in these regions are very dense, 

F I G U R E  3  Enhancer-promoter interaction model. A, The 
transcriptional activation complex recruited by the super enhancer 
is not rigid but exists as a condensate. B, Previous theories have 
suggested that there is a rigid bridge between enhancers and 
promoters. Recent studies have shown that SEs send activation 
signals to downstream genes through spatial proximity

F I G U R E  4   Super enhancer-related transcriptional regulation 
model. With the help of architectural proteins, the chromatin 
structure is determined. The inactive transcription machine is 
recruited and activated by SE-associated condensates. Mature 
transcription machines are then released and recruited to 
downstream genes
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forming huge transcriptional activation complexes, which interact 
with each other to construct phase-separated condensates. Third, 
SE-mediated transcriptional activation depends on spatial proximity 
rather than a rigid bridge. There are molecular exchanges between 
the super enhancer-associated condensate and the surroundings. 
Inactive Pol II is recruited, and phosphorylated Pol II is excreted. 
High-density biological macromolecules combine in an orderly fash-
ion at the SE locus, forming membrane-free organelles by chromatin 
phase separation, thus, ensuring the precise regulation of genes.

8  | SUPER ENHANCERS REGUL ATE 
BIOLOGIC AL PROCESSES

A gene can express in different cells, playing different roles with dif-
ferent conditions of chromatin.145 With an approach called cluster-
ing of genomic regions analysis method (CREAM), we can identify 
that the specific combination of cis-regulatory elements determines 
the state of the cell.146 Although SEs can achieve a level of gene ac-
tivation that is about 26 times that of typical enhancers, the activity 
of a single SE does not determine the fate of an entire cell. The fate 
of the cell depends on the combination of all SEs. Many SEs can exist 
in multiple lineages. For example, during the differentiation of ESCs 
to EpiSCs, some SEs can be detected continuously.56 With the same 
SE, different transcription factors can lead to different gene expres-
sion. Even with the same SE and the same transcription factors, dif-
ferent ligands also lead to changes. With nerve cells, LUSC, instead 
of P63, binds to SOX2, causing the cells to become cancerous.147 
Minor differences in SEs can create a different landscape of gene 
expression. In pancreatic adenocarcinoma (PAAD), combined with 
transcriptome data, 169 genes were found to be associated with the 
copy number variations (CNVs) of elements in a super enhancer.148

Super enhancers are involved in many biological processes. The 
overactivation of proto-oncogene is mostly related to the abnormal-
ity of SEs. The rapid rate of cell replication further accelerates the 
disordered assembly of chromatin.149 The abnormal fusion of the 
super enhancer's locus with other regions of the genome in cancer 
cells causes abnormal activation of proto-oncogenes making it dif-
ficult to cure.150 The fate of the cell is dynamic, implying that there 
are also dynamic changes in the SEs. Nishida et al found that the high 
expression of inflammation-related genes is turned on by epigenetic 
changes, especially the construction of SEs. Inhibition of the associ-
ated SEs can reduce this response.151

In vitro, the transformation of cell fate has also been shown to 
be associated with SEs. During the somatic cell reprogramming, his-
tone modification-related enzymes are recruited by core transcrip-
tion factors and are pulled to the SEs’ region. As a result, the old 
SEs were broken. In the presence of Myc, chromatin becomes looser 
and the region of new SEs becomes exposed. Initially, established 
SEs began to play a weak role.152 After a brief intermediate state, 
a new cellular state is established.153 More interesting, only a few 
lucky cells can be completely reprogrammed. Some cells are only 
partially reprogrammed due to the incompletely established SEs. 

As reported in 2014, cells, which undergo an intermediate cell state 
with incomplete ES cell characteristics named F-Class, were repro-
grammed completely after adding the histone acetylase inhibitors, 
which further confirmed this theory.154 Of course, we can believe 
this transformation is widespread. As an important cell identification 
element, SEs are widely involved in biological processes.

9  | PROSPEC T

Since the establishment of molecular biology, scientists have long 
sought the rules governing molecules in the nucleus. It is generally 
accepted that gene activation requires two basic conditions, open 
chromatin and active transcription machinery. More and more re-
searchers have devoted the transition model through the latest tech-
nology.19,131 However, due to the differences in their research field, 
their results are fragmented. In this review, we summarize these 
studies and believe that the function of SEs depends on specific 
chromatin states. Architectural protein assemble chromatin into a 
precise 3D structure through extensive interactions. Also, the for-
mation of SEs with the help of TADs provides the structural basis 
for the recruitment of transcription activate complexes. Moreover, 
these complexes are organized as a phase-separated condensate, 
forming membrane-free organelles that can regulate gene expres-
sion more precisely.

Furthermore, we optimized knowledge related to SEs. Previous 
theories have suggested that there are rigid physical connections 
between SEs and promoters. This structure acts as a bridge, sending 
activation signals downstream. However, this contradicts the latest 
progress in molecular biology. We modified the original model and 
propose that the SE activates downstream genes through spatial 
proximity. According to our model and previous research, the pat-
tern of how SEs can regulate biological processes was also put for-
ward in order to provide references for the following research.

More systematic analysis through multiple omics can help us 
grasp the main contradiction. The fate of cells is determined by 
core transcription factors. As a major binding region of the core 
transcription factors, SEs play an important role in determining 
cell identity. The expression of a gene is regulated by many mole-
cules at the same time. Core transcription factors can be used to 
define SEs. Conversely, SEs can also be used to identify undefined 
core transcription factors, enriching the knowledge of transcription 
regulation.

The research on SEs can also solve problems in economic 
production and human life. In large animals, for example, under-
standing muscle-specific SEs can help us to screen and breed 
high-value livestock. Hearts from genetically modified pigs 
could be transplanted into baboons and that can be kept alive.155 
However, until now, the true pig embryonic stem cells have not 
been established.156 Production of multigene-edited pigs depends 
on repeated somatic cell nuclear transfers or inefficient microin-
jections. Understanding the SEs of pig embryos can help speed 
up this process. Moreover, SEs also have great potential in the 
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immune system. Suppressing the activation can lead to abnormal 
immune system responses. Because of the powerful gene activa-
tion capabilities, tumours can occur once super enhancers interact 
with oncogenes. As the SE inhibitor, JQ1 can inhibit various types 
of cancers.

From the foregoing discussion, a basic trend emerges. The 
study of cell fate determination is becoming more and more sys-
tematic and refined. Systematic analysis allows us to better under-
stand the state of the cell at a macro level, and refined regulatory 
mechanisms are essential to increase knowledge about the ge-
nome. As the functional core obtained from multiple omics, SEs 
must play more roles in cell processes. Understanding related reg-
ulatory mechanisms associated with SEs could help us solve more 
biological problems. The study of SEs will bring another leap for-
ward in life science.
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