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1  | INTRODUC TION

Glioma, which originates from the glial cells surrounding the neurons, 
is the most commonly observed intracranial tumour with the great-
est degree of malignancy and accounts for approximately 80% of 
all brain malignancies.1 The median survival of malignant glioma pa-
tients is only about 1 year, even after common treatments including 
surgical resection, radiotherapy and chemotherapy are performed.2 
Angiogenesis is among the factors vital to tumour development.3 
As is the case with most solid tumours, the survival and growth 
of fast-growing gliomas with an avascular area volume exceeding 
2 mm3 require newly generated blood vessels for the provision of 

the necessary oxygen, growth factors and nutrients.4 Several stud-
ies have shown that angiogenesis has the strongest prognostic sig-
nificance among all the clinical and pathological features of glioma, 
and that widespread angiogenesis tends to be associated with worse 
prognoses.5 Based on the clinical significance and potentialities of 
the therapeutic interventions for glioma, it is necessary to identify 
the targets and underlying molecular mechanisms that regulate gli-
oma angiogenesis.

Tumour necrosis factor (TNF, also referred to as TNF-α) ex-
erts its function using two receptors—TNF receptor I (TNFR1, 
p55 receptor) and TNF receptor II (TNFR2, p75 receptor)—which 
are members of the TNF superfamily.6 TNF plays a role in the 
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Abstract
Glioma is the most commonly observed primary intracranial tumour and is associ-
ated with massive angiogenesis. Glioma neovascularization provides nutrients for the 
growth and metabolism of tumour tissues, promotes tumour cell division and pro-
liferation, and provides conditions ideal for the infiltration and migration of tumour 
cells to distant places. Growing evidence suggests that there is a correlation between 
the activation of nuclear factor (NF)-κB and the angiogenesis of glioma. In this review 
article, we highlighted the functions of NF-κB in the angiogenesis of glioma, showing 
that NF-κB activation plays a pivotal role in the growth and progression of glioma 
angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed 
at glioma.
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promotion of tumour cell apoptosis through TNFR1 binding; 
however, it also promotes tumour cell growth through TNFR2.7,8 
TNFR2 activation leads to the recruitment of TNF receptor-as-
sociated factor 2 and motivates the pro-survival nuclear factor 
(NF)-κB pathway.9,10 NF-κB regulates the genes involved in tumour 
microenvironment development and proangiogenic and pro-in-
flammatory cytokine synthesis.11 Abnormal or constitutive NF-κB 
activity in glioma12 and a remarkable correlation between NF-κB 
activation level and glioma grade have been previously demon-
strated.13 Furthermore, accumulating evidence shows that consti-
tutive NF-κB activity could regulate the proangiogenic context of 
glioma. Notably, NF-κB restraint even led to the blocking of the 
angiogenesis of glioma in nude mice.14

Herein, we sought to discuss the current understanding of the 
molecular mechanisms of NF-κB in diverse glioma microenviron-
ments such as hypoxia, inflammation and oxidative stress, and its 
function as a therapeutic target for antiangiogenic strategies aimed 
at glioma.

2  | MOLECUL AR MECHANISMS AND 
TARGETED THER APIES

2.1 | NF-κB in hypoxia-induced glioma angiogenesis

During the entire process of angiogenesis, new capillaries sprout 
from the current capillaries, and endothelial cells (ECs) are released 
from their stroma and migrate and transfer to areas without capillar-
ies, thereby allowing them to differentiate into tubular structures. 
The newly generated capillaries provide a large amount of necessary 
oxygen and nutrients for fast-growing malignant tumours that have 
an avascular area volume greater than 2 mm315.

Due to abnormalities in the structure of malignant tumours, 
local or temporary hypoxia and a lack of nutritional components 
may lead to EC apoptosis and tumour angiogenesis inhibition.16,17 
Nevertheless, migrating ECs often overcome these adverse condi-
tions to boost tumour angiogenesis. ECs are stimulated by vascular 
endothelial growth factor (VEGF) or adhere to extracellular matrix 
(ECM) molecules, leading to the augmentation of anti-apoptotic 
genes via the phosphatidylinositol 3-kinase (PI3K)/Akt or NF-κB 
signalling pathways.18,19 Akt induces the transcription function of 
NF-κB by stimulating the RelA/p65 transactivation subunit via IκB 
kinase and activation of the protein kinase p38.20 Studies have 
reported that the induction of cell survival signals by PI3K/Akt 
partially mediates the activation of NF-κB transcription factors.20 
The VEGF released by glioma cells stimulates EC proliferation, re-
sulting in angiogenesis.21 Interestingly, TNF, which could induce 
the apoptosis of ECs, was detected in glioma but did not inhibit 
the associated angiogenesis.22,23 It was reported that human um-
bilical vein ECs must activate NF-κB in order to avoid undergo-
ing TNF-induced apoptosis.24 Using a human brain microvascular 
endothelial cell (HBMVEC) and U251 glioma cell co-culture sys-
tem, investigators found that EC apoptosis was induced by serum 

starvation and reversed by recombinant VEGF protein and a cul-
ture medium of hypoxic U251 glioma cells. In addition, hypoxia 
treatment activated TNF-induced VEGF and NF-κB to upregulate 
the antiapoptotic gene expressions, such as those of Bcl-2, Bcl-XL, 
survivin and X-chromosome-linked inhibitor of apoptosis protein 
(XIAP) in ECs25 (Figure  1). Therefore, it is clear that the hypoxic 
environment of glioma, in addition to not killing ECs, promotes NF-
κB-dependent angiogenesis.

Galectin-3 (gal-3) is a b-galactoside binding protein that is in-
volved in several types of pathological tumour progression, such 
as angiogenesis, cell proliferation and anti-apoptosis.26-28 Evidence 
shows that gal-3 is visibly upregulated in a hypoxia-inducible fac-
tor (HIF)-1α-dependent manner in mouse fibroblasts and nucleus 
pulposus cells under hypoxic conditions.29,30 In addition, HIF-1α is 
a pivotal transcriptional regulator of the hypoxic response, which 
upregulates its target genes including vascular endothelial growth 
factor (VEGF) and matrix metalloproteinase (MMP) to boost tumour 
angiogenesis and invasion.31 Hypoxia is a commonly observed fea-
ture of solid tumours such as gliomas, in which a high proportion 
of gal-3 accumulates.32,33 Gal-3 is released by tumour cells for the 
induction of EC chemotaxis and motility and the stimulation of an-
giogenesis (Figure  1). Gal-3 knockout U87 glioma cells implanted 
subcutaneously in nude mice blocked tumour growth in vivo.34 In 
vitro, Ikemori et al found that gal-3 protected T98G glioma cells from 
apoptosis in the absence of oxygen and nutrition, and the knock-
down of gal-3 induced double apoptosis. It is worth noting that the 
upregulation of gal-3 was dependent not only on HIF-1α but also on 
NF-κB.35 Hypoxia-induced NF-κB was conducive to the regulation 
of the HIF-1α and gal-3 genes and prevention of cell death caused 
by hypoxia.36,37 Based on the above-stated literature, it can be con-
cluded that hypoxia in glioma protects both ECs and tumour cells 
against death, which facilitates angiogenesis and leads to tumour 
aggravation, directly or indirectly.

N-myc downstream-regulated gene-1 (NDRG1) is considered 
a regulatory gene in the hypoxic microenvironment of glioma.38 In 
untreated glioma patients, high NDRG1 expression was associated 
with increased survival, and the gene also reduced the rate of angio-
genesis.39 Thomas et al indicated that the expression of NDRG1 was 
markedly upregulated during hypoxia in glioma, and that an NDRG1-
overexpressing glioma implantation model with reduced angiogenic 
activity reduced the rate of glioma growth and resistance to antian-
giogenic treatment. The anti-angiogenesis gene TNFSF15 showed a 
30-fold increase in glioma development, with an increasing expres-
sion of NDRG1, and demonstrated that anti-angiogenesis was pos-
itively correlated with TNFSF15. Interestingly, mutated NF-κB and 
activator protein (AP-1) in the TNFSF15 promoter region reversed 
the anti-angiogenesis of NDRG140 (Figure 1). The research demon-
strated that NF-κB and AP-1 are positively correlated with TNFSF15 
expression in glioma.

Based on the aforementioned evidence, hypoxia promotes NF-
κB-dependent angiogenesis in glioma. However, the hypoxic regula-
tory gene NDRG1 induces the upregulation of the anti-angiogenesis 
gene TNFSF15 also depends on the transcriptional activity of NF-κB. 
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F I G U R E  1   Role of NF-κB in glioma angiogenesis under a hypoxic microenvironment. Hypoxia-induced NF-κB is conducive to the 
upregulation of the HIF-1α, VEGF, gal-3 and MMP genes, which are released by tumour cells to induce EC chemotaxis and motility and 
stimulate angiogenesis. Hypoxia activated TNFR2 and VEGFR induced NF-κB to upregulate the expression of antiapoptotic genes, such as 
Bcl-2, Bcl-XL, survivin and XIAP in ECs. NDRG1 induced the upregulation of anti-angiogenesis gene TNFSF15 by the activation of NF-κB 
and AP-1 in the TNFSF15 promoter region. TNFSF: tumour necrosis factor super family; TNFR: tumour necrosis factor receptor; NF-κB: 
nuclear factor-κB; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor receptor; PI3K: phosphatidylinositol 
3-kinase; Gal-3: galectin-3; XIAP: X-chromosome-linked inhibitor of apoptosis protein; HIF: hypoxia-inducible factor; MMP: matrix 
metalloproteinase; AP: activator protein; ECM: extracellular matrix; NDRG1: N-myc downstream-regulated gene-1

F I G U R E  2   Role of NF-κB in glioma angiogenesis under an inflammatory microenvironment. TNF activates the transcriptional activity of 
NF-κB for IL-6, IL-8, MMPs and IGFBP1, by TNFR2, leading to angiogenesis. The newly formed blood vessels are allowed to recruit a larger 
number of inflammatory cells such as macrophages, leading to the further release of proangiogenic cytokines. TAM: tumour-associated 
macrophages; M-CSF: macrophage colony-stimulating factor; SYK: spleen tyrosine kinase; IGFBP: insulin-like growth factor binding protein; 
IL: interleukin; TNF: tumour necrosis factor; TNFR: tumour necrosis factor receptor; PI3K: phosphatidylinositol 3-kinase; NF-κB: nuclear 
factor-κB; MMP: matrix metalloproteinase
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Therefore, NF-κB exerts multiple effects on the angiogenic system 
in glioma under a hypoxic microenvironment.

2.2 | NF-κB in inflammation-induced glioma 
angiogenesis

Some interactions exist between inflammation and angiogenesis in 
the course of glioma progression.41 The angiogenesis of glioma de-
pends on the interaction between tumour cells, ECs and surround-
ing inflammatory cells. In the tumour environment, newly formed 
blood vessels are allowed to recruit inflammatory cells continuously, 
leading to the release of proangiogenic cytokines, including VEGF-A, 
MMP, chemokines and pro-inflammatory factors. In this manner, 
a larger number of blood vessels are formed, ending in a vicious 
cycle.42,43 The process requires the induction of a large number of 
pro-inflammatory factors, such as TNF, interleukin (IL)-8 and IL-6, 
leading to capillary budding. NF-κB, activated by TNF through the 
phosphorylation of IκB,44 binds to the promoters of IL-8 and IL-6 to 
activate them45-47 (Figure 2).

IL-8 is a chemical attractant cytokine that attracts and activates 
neutrophils at the site of inflammation and has an angiogenic ef-
fect.47 It has been reported that the binding of IL-8 to its receptors 
in ECs in vitro, CXCR1 and CXCR2, can activate ECs and facilitate 
tumour angiogenesis.48,49 The expression level of IL-8 is directly 
related to the degree of glioma angiogenesis. Furthermore, Xie 
et al used NF-κB inhibitors to suppress IL-8 secretion in vitro and in 
vivo.14 Studies focusing on IL-6 in vitro indicated that it affects the 
human inflammatory response and is related to tumour angiogene-
sis through the transcriptional activity of angiogenic growth factors 
such as VEGF and MMP.50,51 Meanwhile, the IL-4 and IL-10 released 
by microglia have anti-inflammatory effects in the glioma environ-
ment.52 The IL-4 released by macrophages can be used as anti-in-
flammatory agents of TNF.53 Importantly, IL-4 inhibits the migration 
of ECs to inflammatory regions and inhibits their differentiation into 
organized vascular structures.54

As mentioned above, angiogenesis is the formation of new cap-
illaries based on existing blood vessels and is the result of inflam-
mation. Macrophages are among the most important inflammatory 
immune cells in the tumour matrix. Tumour-associated macrophages 
(TAMs) are recruited to the periphery of tumour cells, have immune 
function, and release a wide array of inflammatory mediators and 
cytokines.55 Therefore, TAMs are considered as bridges that link in-
flammation and tumours.56

It has been confirmed that glioma-derived macrophage colo-
ny-stimulating factor (M-CSF) induces microglia and macrophages 
towards the M2 phenotype, thereby increasing the rate of tumour 
growth.57 Another study suggested that the level of M-CSF was 
upregulated in both glioma tissue and its serum, and that it in-
duced angiogenesis in vivo and in vitro through the macrophage/
microglia-secreted insulin-like growth factor binding protein 1 
(IGFBP1). Notably, investigators found that spleen tyrosine ki-
nase (SYK) activated the PI3K/Akt pathway, further leading to the 

NF-κB-dependent upregulation of M-CSF in glioma.58 Thus, the 
upregulation of M-CSF induces angiogenesis through a SYK-PI3K-
NF-κB-dependent mechanism. Additionally, TAMs increase the 
expression of IL-8 through the NF-κB pathway to promote angio-
genesis (Figure 2). Interestingly, anti-inflammatory drugs, including 
pentoxifylline, pyrrolidine dithiocarbamate and dexamethasone 
block, the expression of the IL-8 induced by macrophages at least 
partially through the NF-κB pathway.59

Human cytomegalovirus (HCMV) has been shown to be as-
sociated with glioblastoma, with more than 90% of glioblasto-
mas (GBMs) showing HCMV infection.60,61 Previous reports have 
shown that HCMV pp71 is a viral protein that boosts the progres-
sion of the cell cycle and promotes the angiogenic glioma microen-
vironment through the induction of the stem cell factor (SCF).62,63 
Lisa et al found that pp71, by the activation of the NF-κB pathway, 
led to the upregulation of SCF and induction of pro-inflammatory 
responses with the upregulation of some pro-inflammatory cy-
tokines (IL-8, IL-1B, IL-6, LIF, PTGS2 and IL-1A), MMPs (MMP-3, 
12, 1 and 7) and angiopoietins.64 The poor prognoses associated 
with human GBM may be attributed to the selective enhance-
ment of pp71 levels and NF-κB activation in pro-inflammatory 
environments.

Manoj et al demonstrated that T11-target structure (T11TS), 
sheep red blood cell membrane protein with immune-enhanc-
ing and cell cycle-regulating effects,65,66 exerted antiangiogenic 
and anti-tumour functions in an animal model and clinical glioma 
samples.67 Their latest results indicate that the pro-inflammatory 
cytokine expression of TNF, IL-8, IL-6 and NF-κB is enhanced in gli-
oma-associated ECs. T11TS treatment repressed the NF-κB signal-
ling pathway in glioma-induced animal models and thus induced the 
downregulation of pro-inflammatory cytokines and upregulation of 
anti-inflammatory cytokines, IL-4 and IL-10, for glioma angiogenesis 
elimination68 (Table 1). Therefore, the expression of IL-8 and IL-6 in 
the glioma-associated ECs induced by TNF is blocked by the NF-κB-
mediated pathway, which has important implications for anti-angio-
genesis therapy.

As early as 1991, thalidomide was shown to be a potent TNF 
inhibitor that inhibited NF-κB activation with anti-inflammatory 
effects; in 1994, it was demonstrated to inhibit VEGF with antian-
giogenic effects.69,70 Investigators found that thalidomide inhibited 
the proliferation of ECs in vitro without affecting their viability, but 
did not suppress the proliferation of U251 glioma cells.71 NF-κB also 
controlled the genes related to vascular endothelial growth factor 
receptor (VEGFR) expression,72 and the anti-inflammatory and anti-
angiogenic effects of thalidomide were regulated to a certain extent 
by NF-κB. Thalidomide reduced inflammatory stimulation, includ-
ing the production of TNF indirectly, and interfered with the tran-
scriptional regulation of NF-κB in ECs directly for the simultaneous 
inhibition of glioma angiogenesis (Table  1). The inflammatory sup-
pression and antiangiogenic function offered by thalidomide may be 
beneficial for glioma patients with severe inflammatory factors infil-
tration-dependent angiogenesis, which further highlights the crucial 
role of inflammation in angiogenesis and regulatory role of NF-κB.
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In numerous types of tumours including gliomas, the interaction 
between inflammation and tumours has been recognized, and inflam-
mation is considered the ‘seventh sign of cancer’.73,74 Growing evidence 
shows that TNF is a key mediator of inflammation and tumour growth. 
Furthermore, the NF-κB activated by TNF further releases pro-inflam-
matory and proangiogenic factors to promote tumour vessel forma-
tion and tumour cell survival. Thus, understanding the mechanisms of 
NF-κB in the interaction and mutual promotion between inflammation 
and angiogenesis will provide new ideas for glioma treatment.

2.3 | NF-κB in oxidative stress-induced glioma 
angiogenesis

Interactions between inflammation and angiogenesis have been ob-
served in the course of pathological progression.41 One of the char-
acteristics of the cellular inflammatory process is a respiratory burst, 
which generates and accumulates a large amount of extracellular 
reactive oxygen species (ROS), thereby preventing the invasion of 
pathogens.75,76 However, the excessive accumulation of extracellular 
ROS leads to an imbalance of aerobic cells and tissues, called ‘oxida-
tive stress’, which is related to ageing and several heart and vascu-
lar diseases.77,78 Intracellular and extracellular ROS are involved in 
the angiogenesis process in many pathophysiological processes.79,80 
Intracellular ROS plays a crucial role in VEGF signalling in ECs.81 In 
the tumour microenvironment, the nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase family, plasma membrane-bound 
enzymes that generate superoxide, is a major source of ROS.82

ROS affect the angiogenesis of tumours in numerous ways, the 
most important of which is the regulation of NF-κB transcriptional ac-
tivation. Since NF-κB facilitates the synthesis of proangiogenic factors 
including IL-6 and IL-8, ROS could promote glioma angiogenesis.46,47 

The regulation of the NF-κB signalling pathway by ROS is very com-
plex and depends on multiple processes. However, the main regulatory 
mechanism is the phosphorylation and direct oxidation of the NF-κB 
subunit. Since antioxidants have been shown to decrease Ser-276 
phosphorylation to inhibit p65 transcriptional activity and oxidation 
of p50 by ROS suppress its DNA-binding ability, increased intracellu-
lar ROS reduce the p50 subunit activation and increase p65 subunit 
activation..11,83,84 The mutation status of the tumour suppressor gene 
p53 results in further NF-κB activation commands.11,85 P53-mutated 
tumours tend to show a greater degree of malignancy, with enhanced 
invasion and reduced sensitivity to apoptotic signals.86 Mateusz 
et al stated that graphite nanoparticles and graphene oxide nano-
platelets could reduce intracellular ROS-induced angiogenesis via the 
downregulation of NF-κB-dependent proangiogenic cytokines includ-
ing IL-6, IL-8, growth-regulated oncogene α (GROα) and monocyte che-
motactic protein 1 (MCP-1) in a p53wt glioma cell line (U87); however, 
they had no effect in a p53mut cell line (U118)84 (Figure 3 and Table 1).

In this regard, oxidative stress-induced angiogenesis depends on 
p53 mutation status and NF-κB regulation, which provides novel strat-
egies in the field of nanoparticle treatment for glioma angiogenesis.

2.4 | Caspase in NF-κB-dependent glioma 
angiogenesis

Caspase-8 was initially identified as participating in death receptor-
induced apoptosis.87 Apoptosis signalling is usually absent in cancer, 
and caspase-8 expression is also suppressed.88,89 However, caspase-8 
shows high expression in glioma and may be associated with poorer 
prognoses. In glioma models, caspase-8 could facilitate the expression 
of NF-κB-dependent proangiogenic cytokines and tumour promot-
ers.90 Further, it has been confirmed that it exerts growth-promoting 

F I G U R E  3   Role of NF-κB in glioma 
angiogenesis under a microenvironment 
of oxidative stress. The ROS produced 
by NADPH oxidase and TNFR2 mediates 
the activation of NF-κB and the main 
regulatory mechanism of ROS is the 
phosphorylation and direct oxidation 
of the NF-κB subunit (reduce p50 
activation and increase p65 activation), 
and the activation of NF-κB further 
depends on the p53 mutation status. The 
transcriptional activity of NF-κB for IL-6, 
IL-8, GROα and MCP-1 promotes glioma 
angiogenesis. NF-κB: nuclear factor-
κB; ROS: reactive oxygen species; IL: 
interleukin; TNFR: tumour necrosis factor 
receptor; NADPH: nicotinamide adenine 
dinucleotide phosphate; GRO: growth-
regulated oncogene; MCP: monocyte 
chemotactic protein
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effects in several conditions, such as fibrosis,91 wound healing, tissue 
regeneration92 and tumour reunion.93 Feng et al found that dying gli-
oma cells, following radiation, built a proangiogenic microenvironment 
by the caspase 3-dependent NF-κB/COX-2/PGE axis.94 These results 
demonstrate that certain cancers such as glioma may reverse cas-
pase-8 or the caspase-3 pro-apoptotic function that is dependent on 
NF-κB, leading to the promotion of blood vessel formation (Figure 4).

2.5 | MicroRNAs in NF-κB-dependent glioma 
angiogenesis

MicroRNAs (miRNAs) are a type of small, non-coding RNA molecules 
that participate in cell differentiation, maturation and signal trans-
duction by imperfectly base-pairing with complementary sites of 
their target genes, leading to target mRNA degradation or translation 
inhibition.95 Zhang et al found that miR-124-3p was reduced in human 
glioma, which led to the negative regulation of neuropilin-1 (NRP-1). 
NRP-1 is expressed as a multifunctional receptor in various human 
tumours, including gliomas, and the degree of expression is related to 
the clinicopathological characteristics of the host tumours.96 The ex-
pression of p-PI3K, p-Akt and p-p65 (NF-κB) was markedly reduced 
when miR-124-3p was overexpressed in glioma cells compared to the 
control group, and the total protein levels of PI3K, Akt and p65 were 
unchanged. These authors also found that the overexpression of miR-
124-3p led to the inhibition of glioma development and blood ves-
sel formation in vivo, in a glioma-bearing patient-derived xenograft 
(PDX) model. Therefore, the overexpression of miR-124-3p signifi-
cantly inhibited glioma cell growth and angiogenesis by targeting the 
PI3K/Akt/NF-κB pathway in both in vitro and in vivo PDX models.97

Similarly, other investigators suggested that the overexpression 
of miR-129-5p in glioma cells medium culturing HBMVEC showed 
fewer capillaries, branches and shorter tube lengths, and that the 
overexpression of miR-129-5p in glioma cells was associated with 
lower VEGF expression than that in the control group.98 MiR-129-5p 
overexpression obviously reduced the MMP-2 and MMP-9 protein 
levels and the luciferase activities of NF-κB, indicating that miR-
129-5p blocked the NF-κB pathways to suppress glioma angiogene-
sis and growth (Figure 4).

There is an urgent need to investigate the effects of dysregu-
lated miRNAs on NF-κB-induced angiogenesis in glioma, to gain a 
better understanding of the biological basis of the occurrence and 
development of glioma angiogenesis.

2.6 | Target NF-κB-dependent angiogenesis for 
glioma therapy

2.6.1 | Matrix metalloproteinase

Angiogenesis is related to invasion and is used for glioma grading.99 
A recent study showed similar molecular mechanisms for angiogen-
esis and invasion.100 The new formation of blood vessels can be 

considered to an invasive course in which activated ECs proliferate, 
adhere to the ECM molecules and migrate.101 MMPs are involved 
in angiogenesis, invasion and ECM degradation for the promotion 
of tumour development.102-104 Among MMPs, MMP-2 and MMP-9 
have been indicated as having an upregulated expression in glioma. 
The upregulation and activation of MMP-2 in association with HIF-1α 
expression enhance tumour cell infiltration and blood-brain barrier 
permeability.105 MMP-1 and MMP-3 levels also increase as the tu-
mour grade increases.106,107 It is also to be noted that the NF-κB 
binding sites in the MMPs promoter regions are closely related to 
tumour cell invasion and angiogenesis.108 Therefore, effective MMP 
inhibitors may show promise for use in therapeutic strategies for 
glioma angiogenesis (Table 1).

The use of tumour treating field (TTF) therapy, entailing an alter-
nating electric field with an intermediate-frequency (100-300 kHz) 
for tumour treatment, led to glioma suppression.109 It has been 
found that TTF suppresses the metastatic ability of glioma by the 
downregulation of the NF-κB, MAPK and PI3K/Akt signalling path-
ways. Second, TTF application decreases the levels of VEGF, HIF1α, 
MMP-2 and MMP-9 via the suppression of NF-κB, thus suppress-
ing glioma angiogenesis. These results suggest that TTF is an ef-
fective MMP and NF-κB-related treatment for glioma invasion and 
angiogenesis.110

Glycitein, a bacterial metabolite of the isoflavone glycitein, in-
hibits the expression of MMP-3 and MMP-9 in phorbol myristate 
acetate (PMA)-stimulated U87MG glioma cells. Furthermore, gly-
citein suppresses the transcriptional activity of NF-κB and AP-1 for 
MMP-3 and MMP-9.111 A previous study focused on mangiferin, a 
natural polyphenol compound isolated from Anemarrhena aspho-
deloides, which could be widely found in several higher plants includ-
ing Mangifera indica L.112 Mangiferin specifically suppresses MMP-9 
mRNA and protein expression in PMA-stimulated U87MG, U373MG 
and CRT-MG glioma cells. Further mechanistic studies indicated 
that mangiferin inhibits MMP-9 by the inhibition of the binding of 
NF-κB and AP-1 to MMP-9 promoters to block glioma invasion and 
angiogenesis.113

MMPs have a vital role in the invasion and angiogenesis of ma-
lignant glioma. The inhibition of NF-κB DNA-binding activity and 
the interference of NF-κB-activated signal cascade leading to the 
inhibition of MMPs gene expression may be a promising therapeutic 
strategy for the blocking of glioma angiogenesis.

2.6.2 | Vascular endothelial growth factor

ECs are stimulated by VEGF or adhere to ECM molecules, leading 
to the augmentation of anti-apoptotic genes via the PI3K/Akt or 
NF-κB signalling pathways.18,19 Therefore, anti-angiogenesis ther-
apy, that is, the inhibition of tumour-associated ECs, has become a 
major strategy for tumour treatment.88 VEGF blocking and VEGF re-
ceptor inhibition have been used as anti-angiogenesis therapies for 
glioma; however, their effects are weak.114,115 B cell–specific molo-
ney murine leukemia virus integration site 1 (Bmi-1) is expressed in 



8 of 13  |     TU et al.

numerous cancers types, such as breast, lung and ovarian cancers, 
and could serve as an oncogene.116-118 Jiang et al found that the up-
regulation of Bmi-1 induced the expression of NF-κB target genes by 
the activation of NF-κB-induced VEGF-C, which plays a major role 
in angiogenesis, thus promoting glioma angiogenesis in vitro and in 
vivo. It is worth noting that the angiogenesis and VEGF-C stimulated 
by the upregulation of Bmi-1 were significantly blocked after the 
inhibition of NF-κB activity.119 VEGF-C plays an important role in 
angiogenesis and EC growth and survival. It is upregulated in glioma 
and involved in tumour progression and prognoses120 (Table  1). 
These findings indicate that Bmi-1 could promote angiogenesis in 
glioma via NF-κB/VEGF-C, further suggesting that NF-κB/VEGF-C-
dependent Bmi-1 may represent a novel therapeutic target for an-
tiangiogenic strategies aimed at glioma.

2.6.3 | Platelet-derived growth factor (PDGF)

PDGF, a proangiogenic factor, is the major mitogen for many mes-
enchymal-derived cell types, such as fibroblasts and pericytes.121 
PDGF-mediated endothelial-mesenchymal transformation (EMT) re-
duced the expression of VEGFR-2 in ECs. With the loss of VEGFR-2 
expression, ECs convert to a VEGF-independent state for the main-
tenance of their growth and survival in glioma, leading to the resist-
ance of ECs to anti-VEGF treatment.122 The expression of snail, a 
pivotal downstream regulator of EMT in the glioma environment, is 

regulated by NF-κB.123 In addition, PDGF induces NF-κB-dependent 
snail expression, resulting in resistance to anti-VEGF treatment with 
the downregulation of VEGFR-2. The inhibition of PDGF receptor 
sensitized VEGF/VEGFR-2 targeted therapy in glioma-bearing mice 
model (Table  1). Collectively, targeting NF-κB/snail-dependent 
PDGFs may serve as a promising strategy for cases with resistance 
to anti-VEGF in glioma.

2.6.4 | Epidermal growth factor receptor (EGFR)

The amplification of the EGFR gene occurs in almost half of all 
glioblastoma cases and is related to gene rearrangement.124 The 
rearrangement is often related to activating mutations such as the 
loss of exons 2-7 (EGFRvIII or EGFRde2-7). EGFRvIII overexpres-
sion in human glioma cells or primary mouse astrocytes can lead 
to the significantly faster formation of tumours in animal models 
by intracranial or subcutaneous injection than in the control group, 
demonstrating that EGFRvIII enhances the carcinogenic capac-
ity.125 Bonavia et al suggested that EGFRvIII facilitated high levels 
of IL-8 expression in glioma clinical samples and cell lines medi-
ated by NF-κB, AP-1 and C/EBP. Additionally, the knocking down 
of NF-κB suppressed the EGFRvIII overexpressing glioma cell 
bearing-tumour growth in vivo with the inhibition of angiogenesis, 
indicating the crucial role of NF-κB in EGFRvIII enhancing the car-
cinogenic capacity126 (Table  1). In conclusion, EGFRvIII facilitates 

F I G U R E  4   Crosstalk of the NF-κB pathway involved in glioma angiogenesis with other signalling processes. (A) Target genes of NF-κB 
associated with glioma angiogenesis include cytokines such as IL-6, IL8, VEGF, GROα and SCF; antiapoptotic genes such as Bcl-2, Bcl-XL and 
XIAP; and other genes such as MMP, gal-3 and TNFSF15. (B) MiR-124-3p and miR-129-5p block the NF-κB activation pathways. (C) Numerus 
transcription factors such as AP-1, HIF-1α, p53, snail and C/EBP affect the NF-κB activation pathways or directly activate the target genes 
of NF-κB. (D) Caspase-3 and caspase-8 enhance the transcriptional activity of NF-κB. (E) Positive feedback target genes of NF-κB such 
as VEGF, TNF-α and XIAP further activate the NF-κB pathway. A significant negative feedback molecule is IκBα. GRO: growth-regulated 
oncogene; SCF: stem cell factor; IL: interleukin; TNF: tumour necrosis factor; NF-κB: nuclear factor-κB; VEGF: vascular endothelial growth 
factor; XIAP: X-chromosome-linked inhibitor of apoptosis protein; HIF: hypoxia-inducible factor, MMP: matrix metalloproteinase; TNFSF: 
tumour necrosis factor super family; Gal-3: galectin-3; AP: activator protein; EBP: enhancer-binding protein
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glioma angiogenesis and growth by the NF-κB pathway. Thus, the 
inhibition of EGFR gene amplification and kinase activating mutants 
or the targeting of a unique EGFR epitope such as EGFRvIII with 
monoclonal antibodies for the inhibition of NF-κB as well as tumour 
angiogenesis and growth may be rational strategies for the develop-
ment of glioma therapy.

2.6.5 | Other NF-κB -targeted therapeutic 
strategies for glioma angiogenesis

Parthenolide reportedly has the potential to cross the blood-brain 
barrier and alleviate brain inflammation.127 Nakabayashi et al found 
that parthenolide inhibited U87MG glioma cell proliferation and 
invasion and induced angiogenesis in a dose-dependent manner in 
vitro. Mechanically, parthenolide attenuates NF-κB transcriptional 
activity and the expression of NF-κB targets, VEGF and MMP-9, in 
glioma cells. Moreover, parthenolide suppresses Akt phosphoryla-
tion and activated mitochondrial signalling, demonstrating that it 
inhibits angiogenesis by the inhibition of NF-κB, and further sup-
presses glioma growth by the inhibition of the Akt signal and activa-
tion of the apoptosis signal.128

The transcriptional activity of NF-κB can be induced by IκB cyto-
plasmic segregation and RelA/p65 phosphorylation.129,130 Using the 
phage display technique to frame a single-chain fragment of anti-p65 
antibody variable region (scFv), investigators cloned the scFv-encod-
ing sequence into the mammalian nuclear-targeting vector, pCMV/
myc/nuc, to fabricate an anti-p65 intrabody construct (pFv/nu). 
U251 and U87 glioma cells transfected with pFv/nu dramatically 
suppressed the expression of p65, and NF-κB-dependent genes 
such as MMP-9, VEGF, urokinase-type plasminogen activator recep-
tor and urokinase-type plasminogen activator. Additionally, U251 
and U87 glioma cells transfected with pFv/nu-bearing intracranial 
tumours were almost restrained.131 Thus, inhibition of the transcrip-
tional activity of NF-κB by nuclear-targeting intrabody could serve 
as a promising antiangiogenic strategy for glioma.

The ketogenic diet (KD) is a novel high-fat, low-carbohydrate, 
protein-rich diet that targets tumour metabolism and has been used 
in non-drug therapy for intractable epilepsy. Of note, first, mouse 
glioma models fed a KD showed higher survival values than those on 
a normal diet.132 Glioma models fed a KD at will demonstrated ob-
servable reductions in NF-κB activation and reductions in the levels 
of NF-κB-mediated regulators in the hypoxic context, such as car-
bonic anhydrase IX (CA IX) and HIF-1α.36 Second, the KD inhibits the 
levels of ROS, which boosts angiogenesis by the activation of NF-κB 
transcription in tumours.25 Third, the KD blocks the expression of 
VEGFR2, the major receptor involved in tumour angiogenesis reg-
ulation133,134 (Table 1). KD therapy that targets tumour metabolism 
and represses the NF-κB-mediated hypoxic response may provide a 
low-toxic, easy-to-implement method for glioma aimed at angiogen-
esis inhibition.

3  | CLINIC AL RELE VANCE AND FUTURE 
PERSPEC TIVES

Bevacizumab, a recombinant humanized anti-VEGF monoclonal 
antibody, is the only FDA-approved anti-glioblastoma angiogen-
esis drug.135 Although it has been used in clinical treatment, it 
usually causes serious adverse reactions, and its clinical efficacy 
remains controversial.136 Bevacizumab increases the hypoxic area 
and boosts the rate of MMP-2 activation, resulting in a more inva-
sive, treatment-resistant glioma state.137 Whereas the inhibition 
of NF-κB transcriptional activation reduces hypoxia-induced an-
giogenesis and the levels of NF-κB-mediated regulators in hypoxic 
context. In this regard, if the beneficial effects of bevacizumab 
can be mimicked by the inhibition of the transcriptional activity 
of NF-κB in vivo, it could provide a low-toxic method for glioma 
to block angiogenesis even with the inhibition of the invasive 
potential.

Structurally and functionally altered glioma blood vessels 
may impede the delivery of therapeutic agents, promote the out-
ward leakage of tumour cells, and aid in the rapid infiltration of 
numerous inflammatory cells.138 Chronic inflammation leads to 
oedema development around the tumour, which aggravates the 
pathological progression of glioma. Although dexamethasone 
is used to treat glioma peripheral inflammation and oedema, its 
severe side effects, such as electrolyte disorders, osteoporosis, 
mental excitement, elevated blood pressure, menstrual disorders 
and weight gain, distinctly lower the quality of life and even in-
terfere with the effectiveness of adjuvant chemoradiotherapy in 
glioma settings.139,140 Based on the current literature, it is clear 
that the key role of NF-κB is the interaction and mutual promo-
tion between inflammation and angiogenesis that it offers. Thus, 
the inhibition of the transcriptional activity of NF-κB may restrain 
the continuous recruitment and permeation of inflammatory cells, 
which may inhibit angiogenesis as well as peripheral inflammation 
and oedema development. NF-κB is associated with angiogene-
tic signal transduction pathways that regulate hypoxia, oxidative 
stress and the production of pro-inflammatory cytokines, proan-
giogenic cytokines and MMPs. Therefore, targeting NF-κB could 
be a potential method for the simultaneous targeting of multiple 
glioma features.

Considering the wide range of the regulatory responses covered 
by NF-κB, which also mediates tumour cells infiltration, prolifera-
tion and migration besides angiogenesis, the more reasonable dis-
posal of specific subsets of NF-κB responses could show greater 
efficacy in glioma treatment, in terms of angiogenesis inhibition. In 
addition, accumulating evidence indicates that NF-κB participates in 
numerous targeted therapies, including those with MMPs, VEGF and 
PDGF. Further clinical study of the molecular mechanisms between 
angiogenesis and NF-κB in glioma is warranted to broaden the op-
tions of targeted therapies for the prevention of NF-κB-dependent 
angiogenesis.
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4  | CONCLUSIONS

Angiogenesis in glioma accelerates tumour growth and increases the 
degree of malignancy. NF-κB plays a pivotal role in the growth and 
progression of glioma angiogenesis. Interference with the transcrip-
tional activity of NF-κB that leads to alterations in the proangiogenic 
context and the inhibition of proangiogenic gene expression may 
be promising therapeutic strategies aimed at glioma angiogenesis 
blocking.
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