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ABSTRACT Fungal infections are a universal problem and are routinely associated
with high morbidity and mortality rates in immunocompromised patients. Existing thera-
pies comprise five different classes of antifungal agents, four of which target the
synthesis of ergosterol and cell wall glucans. However, the currently available anti-
fungals have many limitations, including poor oral bioavailability, narrow therapeu-
tic indices, and emerging drug resistance resulting from their use, thus making it
essential to investigate the development of novel drugs which can overcome these
limitations and add to the antifungal armamentarium. Advances have been made
in antifungal drug discovery research and development over the past few years as
evidenced by the presence of several new compounds currently in various stages
of development. In the following minireview, we provide a comprehensive sum-
mary of compounds aimed at one or more novel molecular targets. We also briefly
describe potential pathways relevant for fungal pathogenesis that can be consid-
ered for drug development in the near future.
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An estimated 1.7 billion individuals suffer from fungal infections worldwide (1, 2).
Fungal infections that are pathologically relevant can be categorized into two

main types: superficial fungal infections and invasive fungal infections (3). Superficial
infections affect the skin, mucous membranes, and keratinous tissues, causing ailments
such as thrush, oropharyngeal candidiasis, and dermatophyte infections. Invasive fun-
gal infections are more life-threatening and affect sterile areas of the body such as the
bloodstream, organs (lungs, liver, and kidneys), and the central nervous system (3, 4).
Fungal infections can affect immunocompetent and immunocompromised individuals;
however, the severity of invasive fungal infections in persons having an underlying dis-
ease, immunocompromised individuals undergoing organ transplant or chemother-
apy, or patients with HIV/AIDS or autoimmune diseases is concerning (3–5) as such
infections result in approximately 1.7 million deaths per year (1, 6, 7).

Of 5 million known fungal species, 300 are known to cause diseases in humans (8,
9); of these, 20 infect humans frequently (8). Examples include Candida albicans,
Candida auris, Aspergillus fumigatus, Cryptococcus neoformans, Histoplasma capsula-
tum, Coccidioides immitis, Malassezia furfur, Blastomyces dermatitidis, Sporothrix spp.,
Fusarium, and Scedosporium (4, 5, 8, 10).
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Globally, invasive fungal infections of aspergillosis account for 300,000 cases per
year, candidiasis accounts for 750,000 cases, and cryptococcosis (in AIDS patients)
accounts for 223,000 cases. Mortality rates are estimated to be 30% to 90%, 10% to
75%, and 20% to 70% for aspergillosis, candidiasis, and cryptococcosis, respectively
(6, 7, 11, 12).

There are currently 5 structural classes of antifungal drugs being used to treat infec-
tions—polyenes, azoles, allylamines, pyrimidines, and echinocandins (2, 4–6). Polyenes
(e.g., amphotericin B) bind ergosterol on the surface of the fungus, altering the perme-
ability of the cell membrane (13, 14). They have potent fungicidal activity against
Aspergillus spp., Cryptococcus spp., Candida spp., and other fungi. Azoles target lanos-
terol 14a-demethylase enzymatic activity, thus decreasing ergosterol content in fungi.
Most azoles are fungistatic although they can behave as a fungicidal in certain molds,
such as Aspergillus spp. Echinocandins target 1,3-b-glucan synthase activity, thus alter-
ing cell wall organization. Echinocandins are fungicidal against Candida spp. and fungi-
static against Aspergillus, and they have no activity against Cryptococcus spp.
Pyrimidines disrupt DNA and RNA biosynthesis by interfering with pyrimidine metabo-
lism. This class is fungistatic against Cryptococcus spp. and against Candida spp. when
used in conjunction with polyenes and with azoles, respectively (6, 7, 15, 16).
Allylamines act by attenuating an enzyme (squalene epoxidase) of the ergosterol syn-
thesis pathway (17, 18). They are fungicidal against dermatophytes and are fungistatic
against C. albicans (19).

Although agents in these classes are effectively used as treatments today, there are
some drawbacks to their use. Overuse, long treatment courses, and environmental ex-
posure of azoles, polyenes, and echinocandins in the past decade have resulted in
drug resistance (4). There is a high prevalence of Candida resistance to azoles and echi-
nocandins. According to the 2019 Antibiotic Resistance Threats in the United States
report generated by the CDC, there were 34,800 cases of infection and 1,700 deaths
caused by drug-resistant Candida spp. Azole resistance is likely attributable to the drug
being fungistatic in nature, creating a selection pressure leading to resistance, while re-
sistance to echinocandins is relatively recent and has emerged due to the overuse of
the drug in the past decade. Aspergillus and Cryptococcus also display azole resistance
(7). Drug resistance arises from a reduced intracellular accumulation of the drug,
decreased affinity between the drug target and drug, or a counteraction of the effect
of a drug (15, 20). In addition to drug resistance, the polyenes and echinocandins have
been shown to be highly toxic with a narrow therapeutic index which is confounded
by poor (and variable) oral availability (5, 20). The use of extended-spectrum triazoles,
posaconazole, and voriconazole is restricted by considerable drug-drug interactions,
variable bioavailability, acute adverse events, and emergence of resistance (21).

With the large numbers of fungal infections, mortality rates associated with invasive
fungal infections, and shortcomings of currently used antifungals, there is an ever-
increasing need to discover new drugs with an improved range of properties. Only two
antifungal drugs have been approved since the start of the 21st century: (i) caspofun-
gin, the first echinocandin to be approved for use (in 2001) (echinocandins were the
latest class of antifungals to be discovered in 1970 [2]); and (ii) isavuconazole, a triazole
effective against dimorphic fungi, yeast, and molds (approved for use in 2015 (21, 22).

There are a variety of approaches to antifungal drug discovery. Such approaches
can take the form of either a whole-cell-based or growth-based assay, where optical
density as an indication of cell growth is utilized (23). Usually, protocols from the
Clinical and laboratory Standards Institute (CLSI) and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) are used to determine in vitro suscepti-
bility against a variety of fungal pathogens (24). Another approach could be by tar-
geting specific pathways in fungi. Advantages of this approach include minimal risk
of toxicity and also utility in helping to identify unique classes of compounds (23).
Libraries of compounds used to screen utilizing these approaches could include syn-
thetic, semisynthetic, or natural product libraries (24). They could also be compounds
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which have already been approved for other indications, an approach known as drug
repurposing (24). The pursuit of natural or synthetic compounds as antifungal drugs
has its own set of advantages. Natural products are highly complex, and they help us
access chemical space that might be difficult to achieve with synthetic compounds
(25). They also offer a good source for semisynthetic derivatives (26). Advantages of
synthetic compounds include certainty of purity in terms of compounds not being
mixtures of isomers, ease of large-scale synthesis, and availability of a large number
of libraries for initial screening.

Antifungal drug discovery is challenging as fungal pathogens use much the same
eukaryotic machinery as humans, thus reducing the number of pathogen-specific tar-
gets. Therefore, it is essential to identify biochemical mechanisms unique to fungi as
drug discovery targets in order to develop the next generation(s) of antifungal thera-
pies. An antifungal should ideally have the following properties: (i) minimal or manage-
able toxicities/side effects, providing a wide therapeutic index; (ii) pharmaceutical
properties commensurate with multiple routes of delivery; (iii) activity corresponding
to fungus-specific primary pathways and targets; (iv) effects that are preferably fungici-
dal; (v) a broad spectrum of activity against a range of fungi (7, 10). Development of a
drug with all these properties will be arduous. In this minireview, we address the meta-
bolic and signaling pathways that are unique to fungi and/or regulate virulence and
which constitute promising targets for drug development.

AGENTS THAT TARGET FUNGAL CELL WALL SYNTHESIS
Fosmanogepix (APX001). Fosmanogepix (Fig. 1) is a small-molecule antifungal

developed by Amplyx Pharmaceuticals. It is an N-phosphonooxymethyl prodrug of
APX001A, which targets the Gwt1 enzyme that catalyzes one of the early steps in the
glycosylphosphatidylinositol (GPI)-anchored biosynthesis pathway (Fig. 2) (27, 28).
Glycosylphosphatidylinositol (GPI)-anchored proteins are found in eukaryotic organ-
isms, playing a crucial role in fungal adhesion to the host cells. Inhibition of Gwt1 pre-
vents proper localization of mannoproteins, which are essential for cell wall integrity
and fungal growth (27, 29). Fosmanogepix inhibited the growth of yeasts such as

FIG 1 Structures of the antifungal agents in development.
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Candida spp. and C. neoformans, as well as filamentous fungi such as A. fumigatus,
Fusarium solani, Scedosporium prolificans, and Pseudallescheria boydii (30). In addition,
fosmanogepix prevented the inositol acylation of GPI in C. albicans and A. fumigatus,
but not in human cells, suggesting that the compound is selective toward fungal cells
(29). In mouse models, data from experiments performed with APX001 and APX001A
displayed high rates of survival and reduced CFU levels of fungi in lung, kidney, and
brain (27). Fosmanogepix was well tolerated when administered orally or intravenously
in clinical phase 1 studies and was given fast-track status by the US FDA in September
2019 for seven invasive fungal infections, including candidiasis, aspergillosis, scedo-
sporiosis, fusariosis, mucormycosis, cryptococcosis, and coccidioidomycosis (31). It is
currently in phase 2 clinical trial for invasive candidiasis (31).

Nikkomycin Z. Nikkomycin is a pyrimidine nucleoside isolated from Streptomyces
tendae (32). It inhibits the synthesis of chitin, an essential component of fungal cell
wall, by competitively inhibiting chitin synthase and thus septation and causing os-
motic stress to the fungal cell (32, 33). Since chitin is absent in mammalian cells, it
makes an excellent antifungal target and in turn renders nikkomycin devoid of

FIG 2 New antifungal drugs and targets. Acylhydrazones impair the production of glucosylceramide. T-2307 and ilicicolin H act by
inhibiting the mitochondrial respiratory chain complexes. AR-12, olorofilm, and mohangamides target metabolism-related enzymes.
Tacrolimus and cyclosporine inhibit the fungal calcineurin (Crz1) pathway. ACS, acetyl-CoA synthetase.

Minireview

February 2021 Volume 65 Issue 2 e01719-20 aac.asm.org 4

https://aac.asm.org


cytotoxic effects (33). Coccidiomycosis, also known as valley fever, is caused by
Coccidioides posadasii or Coccidioides immitis (34). Investigators at the University of
Arizona who were involved in the development of nikkomycin Z for treatment of pul-
monary coccidiomycosis reported in 2014 that preparations were being made for a
phase 2 clinical trial (35), although there have been no updates since.

INHIBITORS OF THE FUNCTION OF MITOCHONDRIA

Mitochondria represent the powerhouse of eukaryotic cells, producing most of the
cellular ATP pool through the tricarboxylic acid (TCA) cycle and oxidative phosphoryla-
tion. The roles of mitochondria in energy metabolism include the synthesis of amino
acids and phospholipids, which, in addition to respiration, govern processes such as se-
nescence, virulence, and antifungal drug resistance (36, 37). Although the mitochon-
drial genomes of fungi and humans share high similarity, fungus-specific proteins
(such as yeast Nuo1 and Nuo2) constitute promising targets for the development of
selective antifungals (38). To our knowledge, the following two inhibitors of the fungal
mitochondria have been described so far.

T-2307. The arylamidine T-2307 exhibits fungicidal activity in vitro against Candida,
Aspergillus, and Cryptococcus spp., preventing disseminated infection in mice (39, 40).
This compound is efficiently internalized by C. albicans cells through polyamine trans-
porters, which does not seem to occur in rat hepatocytes (41, 42). Once internalized
into the fungal cell, T-2307 inhibits mainly complexes III and IV of the respiratory chain,
disrupting the mitochondrial membrane potential (Fig. 2) (43, 44). Interestingly, only a
minimal effect on rat mitochondria was observed, highlighting this compound’s poten-
tial to act as a selective inhibitor (44). Initially studied by the Fujifilm Toyama Chemical
Co., T-2307 was licensed to Appili Therapeutics in November 2019, where it was
renamed ATI-2307. The compound was well tolerated in human phase 1 studies and is
currently under preclinical analysis prior phase 2, expected for 2021 (https://www
.appilitherapeutics.com/ati-2307).

Ilicicolin H. Ilicicolin H is a polyketide that was isolated from the fungus Cylindrocladium
ilicicola and shows activity against Cryptococcus, Candida, and Aspergillus spp. (45). The
mechanism of action of this compound involves the inhibition of the mitochondrial
cytochrome bc1 reductase (50% inhibitory concentration [IC50], 2 to 3 ng/ml) (Fig. 2)
(45–47). In the animal model, ilicicolin H reduced the fungal burden in mice infected
with C. albicans and C. neoformans (45), exhibiting a low affinity toward rat mitochon-
dria (48). Together, these observations highlight the potential of ilicicolin as an effica-
cious and selective antifungal.

OTHER/UNKNOWN
AR-12. The celecoxib derivative AR-12 (Arno Therapeutics Inc.) was developed as a

protein kinase inhibitor (PKI) and was initially used as an anticancer agent in phase I
trial (ClinicalTrials registration no. NCT00978523). As protein kinases share structural
and functional similarities across distinct organisms, PKI compounds were also
screened for antibacterial and antifungal activity (49, 50). AR-12 inhibits the growth
of several fungi, including yeasts such as Candida and C. neoformans and filamentous
species such as A. fumigatus (51). The most interesting features of AR-12 involve its
potent activity against dimorphic fungi and molds that are notoriously challenging in
clinical settings, such as Scedosporium and Rhizopus oryzae (51). In addition, combina-
tion therapy using AR-12 and fluconazole reduced the fungal burden in brain in a
mouse model of cryptococcosis (51). Although initially characterized as a PDK1 inhib-
itor, AR-12 does not inhibit the kinase ortholog in C. neoformans (52). Apparently, the
antifungal activity of AR-12 involves dual mechanisms of action: (i) targeting of fun-
gal acetyl coenzyme A (acetyl-CoA) synthetase, which catalyzes the production of
acetyl-CoA from acetate and CoA (Fig. 2), regulating the histone acetylation and car-
bon metabolism (52), and (ii) downregulation of the host chaperones, modulating
the immune response (8, 53). The future progress of AR-12 in clinical trials for antifun-
gal therapy remains uncertain, as Arno Therapeutics declared bankruptcy in 2017 (2).
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Acylhydrazones. Aromatic acylhydrazones BHBM and D2 were identified as inhibi-
tors of fungal sphingolipid synthesis through screening of a commercially available
library (54, 55). Further analysis of BHBM and D2 derivatives led to the identification of
a more potent compound, D13, that was highly active in vitro and performed better
than BHBM in in vivo models of cryptococcosis, candidiasis, and pulmonary aspergillo-
sis (56). Based on the structures of BHBM, D2, and D13, a novel library of ;300 aro-
matic acylhydrazones was designed and synthesized. Further study resulted in the
identification of 5 compounds which are potent, fungicidal, and highly selective to-
ward fungi, with selectivity index values of .500 (57). Among the 5 lead compounds,
SB-AF-1002 was tested in mouse models of a variety of invasive fungal infections and
was found to outperform the current standard of care (58).

VL-2397. VL-2397 (formerly termed ASP2397) is a cyclic hexapeptide isolated from
the fungus Acremonium persicinum (59), potentially representing a novel class of antifun-
gals with a unique mode of action. This compound chelates aluminum and is structurally
related to ferrichrome, a low-molecular-weight siderophore (2, 59). Supplementation of
the culture media with 0.03mM iron increased the VL-2397 MIC for A. fumigatus from
1mg/liter to 2mg/liter (60). Similarly, the addition of bathophenanthroline disulfonate
(BPS), an iron chelator, reduced the VL-2397 MIC from 1mg/liter to 0.06mg/liter.
Together, these observations suggest that the compounds’ activity is affected by iron
availability (60). In addition, the replacement of the Al in VL-2397 structure for Fe, gener-
ating the compound AS2488053, impaired antifungal activity (59). It was recently
reported that iron abundance regulates expression of Sit1, the siderophore transporter
that promotes VL-2397 internalization in the fungal cell (60). In fact, A. fumigatus cells
lacking Sit1 were resistant to VL-2397 (63). Furthermore, expression of A. fumigatus Sit1
renders the intrinsically resistant species Saccharomyces cerevisiae susceptible to VL-2397
(63). Despite the requirement of Sit1 for VL-2397 uptake by the fungal cell, the intracellu-
lar target of the compound remains to be elucidated (Fig. 2).

VL-2397 inhibits the in vitro growth of Aspergillus spp., Fusarium solani, Candida
glabrata, and C. neoformans (61). The compound also kills A. fumigatus conidia and pre-
vents hyphal elongation in germlings (61). Potent and fungicidal activity of VL-2397,
especially against Aspergillus, was also observed in vivo, as the drug increased survival
rates in mouse and silkworm larva models of aspergillosis (61, 62). VL-2397 was well
tolerated by healthy volunteers, successfully passing the phase I trials as a treatment
for invasive aspergillosis (2, 60). Unfortunately, phase II studies using VL-2397 were dis-
continued for financial reasons.

Olorofilm. Another promising class of antifungals includes the orotomide F901318
(olorofilm; F2G Ltd.), which targets the dihydroorotate dehydrogenase (DHODH) enzyme,
involved in de novo pyrimidine biosynthesis (Fig. 2) (63). Pyrimidines act as structural pre-
cursors of molecules required for the synthesis of DNA/RNA, cell wall, and phospholipids
(64), playing a crucial role in fungal virulence (65, 66). Although the DHODH enzyme is
also found in mammals, F901318 affinity toward the human enzyme was 2,000-fold
lower, suggesting that the drug inhibits specifically the fungal protein (63). F901318
showed potent activity against molds, such as Aspergillus species, and dimorphic fungi,
such as H. capsulatum, B. dermatitidis, C. immitis, and Paracoccidioides brasiliensis (63, 67).
Potential limitations in the clinical use of orotomides include the lack of activity against
yeasts (such as Candida and Cryptococcus) (63). F901318 improved the rate of survival in
a murine model of invasive aspergilosis, possibly through preventing A. fumigatus germi-
nation and hyphal extension (63, 68). Pharmacokinetic (PK) studies of F901318 showed
good tissue distribution in mice, and the drug is being studied in phase IIb trials for the
treatment of invasive infections caused by Aspergillus, Scedosporium, and other resistant
species (ClinicalTrials registration no.03583164).

FUNGAL PATHWAYS AS PROMISING TARGETS FOR DRUG DEVELOPMENT
The glyoxylate cycle. The glyoxylate cycle corresponds to an anaplerotic route of

the tricarboxylic acid (TCA) cycle, bypassing the reactions that generate CO2 and allow-
ing the use of two-carbon compounds as carbon sources for gluconeogenesis (69, 70).

Minireview

February 2021 Volume 65 Issue 2 e01719-20 aac.asm.org 6

https://aac.asm.org


This metabolic pathway includes five enzymatic reactions; two of them, catalyzed by
isocitrate lyase (ICL) and malate synthase (MS), are unique to this cycle, while the
remaining three (citrate synthase, aconitase, and malate dehydrogenase) are shared
with the TCA cycle (71). Interestingly, C. albicans cells lacking ICL1, the isocitrate lyase-
encoding gene, were avirulent in mice (70). In addition, phagocytosis of C. albicans and
P. brasiliensis induced glyoxylate cycle-related genes, suggesting that this pathway
plays an important role in fungal survival inside the macrophages (72, 73). Besides its
relevance to fungal pathogenesis, the glyoxylate cycle is not observed in the mamma-
lian host and therefore constitutes a promising target for selective antifungals (74).

Mohangamides A and B were isolated from Streptomyces sp. and shown to inhibit C.
albicans ICL (75). Additionally, mohangamide A impaired the growth of C. albicans in
vitro when acetate but not glucose was used as a carbon source (75). The efficacy of
these compounds in the treatment of a murine model of candidiasis and their pharma-
cokinetics properties remain to be further elucidated.

The calcineurin pathway. Calcineurin is a Ca21/calmodulin-activated protein phos-
phatase, conserved from fungi to mammals (76). The calcineurin pathway is the target
of tacrolimus (FK506) and cyclosporine (CsA), which are widely used as immunosup-
pressive agents that prevent graft rejection. These drugs bind to the corresponding
immunophilins (FK506-FKBP12 and CsA-CypA) and impair the access of phosphatase
substrates to calcineurin, ultimately inhibiting T-cell proliferation. In pathogenic fungi,
the calcineurin pathway plays a pivotal role in growth and virulence (77–79). Targeting
of calcineurin for antifungal drug development has been restricted by the immunomo-
dulatory effects that the drugs exert in the host. An attempt to circumvent this limita-
tion included the synthesis of FK506 antagonists, permeative with respect to mamma-
lian cells but not fungal cells, which likely minimize the immunosuppression while
retaining their antifungal properties (80). The structural characterization of the FK506-
FKBP12 complex in fungi also shed light on regions that differ from their mammalian
counterparts, allowing the development of the APX879 compound (81). APX879 effi-
ciently reduced fungal burden in a murine model of cryptococcosis, improving survival
(81). In addition, this compound showed reduced immunosuppressive activity in com-
parison to the parental drug, FK506 (81). These new findings pave the way for the
design of selective and efficacious inhibitors of the fungal calcineurin.

Hsp90. Hsp90 is a conserved chaperone which regulates the function and stability
of several client proteins, including its downstream effector calcineurin (82). In patho-
genic fungi, Hsp90 mediates stress responses, virulence, and drug resistance (83–85).
Hsp90 inhibitors improved fluconazole efficacy and prevented a lethal C. albicans infec-
tion (86), highlighting the therapeutic potential of molecules which target Hsp90. In
fact, patients with invasive candidiasis who received an antibody against Hsp90 (efun-
gumab [Mycograb; NeuTec Pharma/Novartis]) along with amphotericin B showed a
better clinical response than those who were on amphotericin B monotherapy (87).
Marketing authorization for Mycograb was denied in November 2006 due to quality
concerns. A modified version of Mycograb, named Mycograb C28Y, was further
developed but unfortunately was not as efficacious as the original formulation (88).
Geldamycin and its derivatives, which target Hsp90, have been used for anticancer
therapy; however, their use was restricted as they show host toxicity (86, 89). Novel
inhibitors with reduced toxicity toward mammalian cells, enabling the development
of Hsp90 inhibitors which retain antifungal activity and display increased selectivity,
were previously described (90).

The trehalose pathway. The disaccharide trehalose is an energy storage molecule
and serves as a source of carbon (91). This sugar also functions as a stress protectant,
preventing protein degradation and preserving the cell membrane structure under
stress conditions (92, 93). Trehalose synthesis is linked to the glycolytic pathway, as the
first step of trehalose production involves the conversion of glucose-6-phosphate to
trehalose-6-phosphate by trehalose 6-phosphate synthase 1 (Tps1) (94). Next, trehalose
6-phosphate phosphatase (Tps2) generates trehalose from trehalose-6-phosphate. In
Cryptococcus, deletion of TPS1 or TPS2 genes impaired growth at 37°C and rendered
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cells avirulent (95, 96). Interestingly, disruption of TPS2 was followed by the accumula-
tion of the toxic intermediate trehalose 6-phosphate, causing fungal cell death (96).
These observations suggest that targeting of the trehalose pathway, especially Tps2,
might compromise fungal viability and virulence. In addition, mammalian cells lack tre-
halose synthesis, indicating that Tps2 inhibitors might act as selective antifungals.

Sphingolipid pathway. Along with sterols, sphingolipids such as glucosylceramide
(GlcCer), inositol phosphorylceramide (IPC), and mannosylinositol phosphorylceramide
(MIPC) are major constituents of fungal lipid rafts (97). These molecules play crucial
roles in fungal growth, differentiation, and virulence (98). Sphingolipid synthesis starts
in the endoplasmic reticulum, with the condensation of serine and palmitoyl-CoA. This
reaction produces 3-keto dihydrosphingosine and is catalyzed by the enzyme serine
palmitoyltransferase (SPT), targeted by myriocin and serine (99, 100). The use of myrio-
cin in antifungal therapy depends on the development of selective derivatives, as the
compound also targets mammalian SPT (101). Another promising step in sphingolipid
production to be targeted by novel compounds includes the synthesis of ceramide.
Deletion of the ceramide synthase (CerS)-encoding gene renders C. neoformans cells
avirulent (102), indicating that CerS is an important regulator of fungal pathogenesis.
Fumonisin and australifungin were previously described to inhibit CerS (103) but
showed a limited spectrum of activity and poor selectivity (104). Inhibitors of CerS
might exhibit a dual mechanism of action, by depleting the pool of complex sphingoli-
pids and leading to the accumulation of toxic intermediates. Therefore, the develop-
ment of compounds which target the fungal but not the mammalian CerS might give
rise to a novel class of potent antifungals.

Once produced, ceramides are transported to the Golgi apparatus, where synthesis
of complex sphingolipids occurs. The transfer of a phosphoinositol from phosphatidyl-
inositol to phytoceramide leads to the production of IPC, through the activity of IPC
synthase (105). Aureobasidin and khafrefungin inhibit IPC synthase at nanomolar con-
centrations (106), showing activity against C. neoformans and C. albicans (107–109).
Aureobasidin is also well tolerated in animals, efficiently treating invasive candidiasis
(107). Aureogen Biosciences developed 58 novel derivatives from aureobasidin with
improved potency against A. fumigatus, which were licensed to Merck in 2015.

Other pathways. To efficiently colonize the host, fungal cells must sense and adapt
to the challenges imposed by the physiological conditions. Stress-responsive pathways
in fungi include the cyclic AMP signaling pathway, protein kinase C (PKC)/Mpk1 mito-
gen-activated protein kinase pathway and the high-osmolarity glycerol (HOG) pathway
(110). In C. albicans and C. neoformans, the disturbance of the HOG pathway attenu-
ated virulence in mice, highlighting the relevance of this cascade for fungal pathoge-
nesis and its potential as an antifungal target (111–113). A variety of antifungal com-
pounds, including ambutricins and phenylpyrroles (as fludioxonil), targeted the HOG
pathway, leading to the accumulation of glycerol and fatty acids (114). The disbalance
in the osmoregulation led to the leakage of intracellular content and, ultimately, cell
death (115). Conversely, the antifungal cercosporamide inhibited selectively fungal
Pkc1 (116), which has a central role in cell wall biosynthesis and remodeling (117). The
loss of Pkc1 function was accompanied by cell lysis (118), indicating that pharmacolog-
ical targeting of the Pkc1 might lead to the synthesis of fungicidal drugs.

REPURPOSING OF EXISTING DRUGS

Recently, in a continued effort to find new antifungal agents, drug repurposing was
widely undertaken. This involves identifying new uses for drugs that had previously
been approved by the U.S. FDA for different conditions (119). The advantages of this
strategy over conventional drug discovery include lower risk of failure, especially in
terms of safety, and shorter time frame for the development of the drug (120). Some of
the drugs that were previously identified/used for other indications were repurposed
to treat fungal infections.

Sertraline. X. Lin and coworkers at Texas A&M University screened the Johns
Hopkins clinical compound library and found that sertraline displayed modest inhibitory
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activity against Aspergillus nidulans (121). Further analysis of sertraline against Aspergillus
and Candida species showed that its MIC against these fungi was much higher than the
serum concentration of sertraline that can be achieved therapeutically (121). However,
sertraline was found to be fungicidal against Cryptococcus at concentrations of ,10mg/
ml and previous PK data in rats and dogs showed that its concentration in cerebrospinal
fluid was 20-to-40-fold higher than its serum concentration. In an in vivo model of cryp-
tococcosis, sertraline was found to reduce the fungal burden in the brain (121). In order
to understand the antifungal mechanism of sertraline, X. Lin and coworkers screened a
whole-genome deletion collection of Saccharomyces cerevisiae isolates and found that
sertraline perturbs translation and, in turn, protein synthesis (121).

Tamoxifen. Tamoxifen is a drug that is generally used to treat breast cancer and
also as a protective adjuvant in women who have high risk of developing breast cancer
(122). Its anticancer properties are known to be mediated by estrogen receptor antago-
nism and also by oxidative stress on breast cancer cells (123, 124). In 1989, Wiseman,
Cannon, and Arnstein reported inhibitory effect of tamoxifen against Saccharomyces
cerevisiae (125). Tamoxifen was found to be fungicidal against C. albicans at 15 to
20mM concentration, whereas its MIC against C. neoformans and other Candida species
was 8 to 64 g/ml (122). Tamoxifen was also effective in a murine model of candidiasis
at 200mg/kg of body weight. Although the exact mechanism by which tamoxifen
exerts antifungal activity is not well known, inhibition of some components of the cal-
cium-calcineurin pathway and inhibition of the calmodulin site are two methods pro-
posed by researchers (122).

SUMMARY

Despite the increased mortality caused by fungal infections in the past decade, only
minor advances in antifungal therapy have been reported during this decade. In fact,
most of the drugs that were recently approved or that are currently in development
consist of derivatives of azoles and echinocandins. Several compounds highlighted
here inhibited fungus-specific proteins/pathways, exhibiting low toxicity toward mam-
malian cells and good pharmacological properties with a broader spectrum of activity
than current antifungals. As only a small fraction of compounds undergoing clinical
studies will be approved and released into the market, it is imperative that more anti-
fungal compounds are identified and thoroughly explored in the coming years.
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