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ABSTRACT A2059G mutation in the 23S rRNA gene is the only reported mecha-
nism conferring high-level azithromycin resistance (HL-AZMR) in Neisseria gonor-
rhoeae. Through U.S. gonococcal antimicrobial resistance surveillance projects, we
identified four HL-AZMR gonococcal isolates lacking this mutational genotype. Ge-
netic analysis revealed an A2058G mutation of 23S rRNA alleles in all four isolates. In
vitro selected gonococcal strains with homozygous A2058G recapitulated the HL-
AZMR phenotype. Taken together, we postulate that the A2058G mutation confers
HL-AZMR in N. gonorrhoeae.
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Antibiotics play an essential role in the management of gonorrhea, a sexually
transmitted disease (STD) caused by Neisseria gonorrhoeae. The dwindling number

of effective antibiotics to treat this pervasive disease and an increase in the number of
antimicrobial-resistant cases globally are of major public health concern. Currently, the
U.S. Centers for Disease Control and Prevention (CDC) as well as several other countries
are recommending a combination regimen that includes ceftriaxone (CRO) and azi-
thromycin (AZM) for uncomplicated gonococcal infection (1, 2). In the United States,
CRO remains fully effective against N. gonorrhoeae, while the percentage of isolates
displaying reduced susceptibility to AZM has steadily increased since 2012 (3). Approx-
imately 4.6% of gonococcal isolates collected through the U.S. Gonococcal Isolate
Surveillance Project (GISP) in 2018 are considered nonsusceptible to AZM (3).

AZM is a widely used anti-infective macrolide (4). It binds to the bacterial 50S
ribosomal subunit at the peptidyl transferase moiety (formed by 23S rRNA and ribo-
somal proteins) and abolishes protein synthesis (5–8). Genetic aberrations in the 23S
rRNA gene such as single nucleotide polymorphism at positions 2058 and 2059
(Escherichia coli nomenclature) are known to significantly reduce the efficacy of AZM in
various bacteria (9–12). Site-directed mutagenesis experiments substituting the ade-
nine with a guanine at either of these positions (hereafter A2058G or A2059G) increased
Mycobacterium smegmatis MIC more than 64-fold for AZM (11). In N. gonorrhoeae, in
vitro studies have shown that the A2059G mutation conferred high-level azithromycin
resistance (HL-AZMR; MIC � 256 �g/ml) (12). Moreover, HL-AZMR gonococcal strains
have been cultured from clinical samples worldwide (2, 13–22). CDC’s GISP and the
Strengthening the U.S. Response to Resistant Gonorrhea (SURRG) project each reported
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a cluster of HL-AZMR isolates in 2016 and 2018, respectively (20, 22). In the United
Kingdom, Fifer et al. identified a sustained outbreak of HL-AZMR isolates from 2014 to
2017 (21). Last, Wan et al. reported 40 isolates collected in China between 2013 and
2014 that were HL-AZMR (9). All previously reported HL-AZMR gonococcal isolates
harbored the A2059G genotype. Here, we report four HL-AZMR gonococcal isolates
lacking the A2059G genotype identified through CDC’s GISP and SURRG projects.

GISP monitors resistance patterns based on urethral isolates collected from men
presenting at STD clinics with symptomatic gonococcal urethritis (23). In recent years,
CDC has expanded antibiotic resistance response efforts, and a subset of projects
participating in GISP also participate in the SURRG project. SURRG collects urogenital
and extragenital (i.e., pharyngeal and rectal) isolates from men and women attending
STD and community health clinics. Between 2016 and 2019, four different patients
attending clinics participating in GISP and SURRG yielded four gonococcal isolates with
atypical HL-AZMR genotype: two isolates were cultured from urethral samples in 2016
(AZMR-16) and 2018 (AZMR-18), while one isolate each was cultured from pharyngeal
(AZMR-19A) and rectal (AZMR-19B) samples in 2019. Initial Etest (bioMérieux, Durham,
NC, USA) (24) antimicrobial susceptibility testing (AST) performed at local SURRG
laboratories suggested that AZMR-16, AZMR-19A, and AZMR-19B were HL-AZMR. An
agar dilution AST method was also used to assess the susceptibility levels of the isolates
(Table 1) against AZM, cefixime (CFM), ciprofloxacin (CIP), gentamicin (GEN), penicillin
(PEN), tetracycline (TET), and CRO at the Antibiotic Resistance Laboratory Network
regional laboratories using antibiotic powders purchased from Sigma-Aldrich (St. Louis,
MO, USA) (25). Agar dilution was performed and antibiotic susceptibility was inter-
preted as described by the Clinical and Laboratory Standards Institute (CLSI) (26, 27). All
four isolates displayed an MIC of �16 �g/ml (highest concentration tested with agar
dilution) to AZM. The HL-AZMR phenotype was confirmed at CDC for all four isolates
using Etest. Resistance to TET alone or to TET and CIP was also observed in AZMR-16
and AZMR-18, respectively.

Of the four isolates, two showed a homogenous HL-AZMR phenotype, while two
displayed heterogenous resistance phenotypes. Both AZMR-18 and AZMR-19A dis-
played homogenous and confluent growth (MIC �256 �g/ml) throughout the AZM
Etest strip (Fig. 1B). In contrast, AZMR-16 and AZMR-19B ellipses intersected the AZM
Etest strip between the 4 and 8 �g/ml marks, and macrocolonies were visible inside the
ellipses exceeding �256 �g/ml (Fig. 1C). Such phenotypic display is referred to as
heteroresistance hereafter. Unlike AZMR-16 and AZMR-19B, susceptible and nonhet-
eroresistant isolates failed to produce a macrocolony inside the ellipse (Fig. 1A).
Colonies derived from AZMR-16 and AZMR-19B after five serial passages of a single
colony on antibiotic-free, nutrient-enriched medium all displayed heteroresistance
phenotype (data not shown). In contrast, macrocolonies (MC) isolated from within
the ellipses of AZMR-16 (AZMR-16-MC) or AZMR-19B (AZMR-19B-MC) all displayed
HL-AZMR.

Molecular analysis of HL-AZMR and heteroresistant gonococcal isolates revealed

TABLE 1 Antibiogram of the novel HL-AZMR isolatesa

N. gonorrhoeae
isolate

MIC (�g/ml)b

�-Lactamase Sample typeAZM CFM CRO CIP GEN PEN TET

AZMR-16 4 & �256 0.06 0.03 0.015 8 1 1 Negative Urethral
AZMR-16-MCc �256 0.06 0.03 ND ND ND ND Negative
AZMR-18 �256 0.06 0.06 16 4 1 4 Negative Urethral
AZMR-19A �256 0.03 0.015 0.015 8 0.25 1 Negative Pharyngeal
AZMR-19B 4 & �256 0.03 0.015 0.03 8 0.25 2 Negative Rectal
AZMR-19B-MCd �256 0.03 0.015 ND ND ND ND Negative
aAntimicrobial susceptibility profile of N. gonorrhoeae isolates harboring the A2058G mutation in the 23S rRNA. Isolates with the A2058G mutation were HL-AZMR.
These isolates displayed varying levels of susceptibility to other antibiotics.

bND, not determined.
cLaboratory N. gonorrhoeae strain derived from clinical strain AZMR-16.
dLaboratory N. gonorrhoeae strain derived from clinical strain AZMR-19B.
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differing mutation profiles of the 23S rRNA gene. These isolates lacked the A2059G
mutation typically associated with HL-AZMR in N. gonorrhoeae (Table 2). Whole-
genome sequencing (WGS) (22) showed that these isolates also lacked mutations that
confer AZM resistance, e.g., C2611T mutation in the 23S rRNA, mosaic mtr, and
sequence aberrations in RplD and RplV ribosomal proteins (Table 2). Only AZMR-18 was
found to have an adenine deletion in the mtr promoter (ΔAmtrR-p) and an amino acid
substitution at position 105 (H105Y) in MtrR. However, these aberrations are unlikely
the cause of HL-AZMR in this isolate because such mutations were associated with an
AZM MIC of �8 �g/ml (28).

Interestingly, all HL-AZMR isolates in this study harbored an A2058G mutation in the
23S rRNA gene. AZMR-18 and AZMR-19 were A2058G homozygous (mutation occurs in
all four 23S rRNA alleles) while the heteroresistant strains, AZMR-16 and AZMR-19B,
were A2058G heterozygous based on Sanger sequencing (29). A2058G mutation oc-
curred in only three of the four alleles with allele 1 and allele 3 being wild type in
AZMR-19B and AZMR-16, respectively. In vitro conversion of the wild-type allele to
A2058G in the heteroresistant strains led to the HL-AZMR phenotype. All 11 macro-
colonies (AZMR-16-MC and AZMR-19B-MC) isolated from the Etest ellipses have an
A2058G mutation in all four 23S rRNA alleles and displayed HL-AZMR phenotype.
AZMR-16-MC and AZMR-19B-MC shared identical MLST (multilocus sequence type),

FIG 1 HL-AZMR phenotype displayed by N. gonorrhoeae harboring the A2058G mutation in the 23S rRNA. These
are representative images of N. gonorrhoeae Etest assays depicting isolates with differing levels of susceptibility to
AZM caused by the A2058G mutation; wild type (A), homozygous A2058G (B), and heterozygous A2058G (C). The
heterozygous A2058G strains also displayed heteroresistance phenotype to AZM with macrocolonies growing
inside the ellipse and along the Etest strip (arrows in panel C).

TABLE 2 Genetic profiles of the novel HL-AZMR isolatesa

N. gonorrhoeae strain 23S rRNA mtr locus
Ribosomal
protein Molecular sequence type

Isolate ID WGS ID
2058
A/G

2059
A/G

2611
C/T

Mosaic
mtr �AmtrR-p

mtr
120 G45D H105Y RpID RpIV MLST NG-STAR NG-MAST

AZMR-16 GCWGS_1720 1/3 4/0 4/0 No No C No No WT WT 9363 NA 298
AZMR-16-MC LRRBGS_0776 0/4 4/0 4/0 No No C No No WT WT 9363 NA 298
AZMR-18 GCWGS_2473 0/4 4/0 4/0 No Yes C No Yes WT WT 7363 NA 16982
AZMR-19A GCWGS_6721 0/4 4/0 4/0 No No C No No WT WT 11982 NA NA
AZMR-19B LRRBGS_0777 1/3 4/0 4/0 No No C No No WT WT 11982 NA NA
AZMR-19B-MC LRRBGS_0778 0/4 4/0 4/0 No No C No No WT WT 11982 NA NA
aMolecular profiles of AZM mutation-mediated resistance markers in N. gonorrhoeae isolates harboring the A2058G mutations in the 23S rRNA. The 23S rRNA
sequences were analyzed for mutations at nucleotide positions 2058, 2059, and 2611. The ratio of wild-type/mutant nucleotides at the three positions is shown. This
table also lists the molecular profiles for ribosomal proteins RplD and RplV and for a limited number of mutations in the mtrR locus. The MLST, NG-MAST, and NG-
STAR (N. gonorrhoeae sequence typing for antimicrobial resistance) profiles were included when available. Whole-genome sequencing (WGS) data are available in the
Sequence Read Archive (SRA) NCBI under BioProject numbers PRJNA317462 and PRJNA329501. Abbreviations: ID, identifier; WT, wild type; NA, not assigned.
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NG-MAST (N. gonorrhoeae multiantigen sequence type), and AZMR markers as their
respective clinical parent strains (Table 2).

A2058G-mediated HL-AZMR has also been documented in clinical isolates of Legio-
nella pneumophila, Moraxella catarrhalis, Mycoplasma genitalium, and Treponema palli-
dum (11, 30–32). An L. pneumophila isolate with the A2058G mutation in all three copies
of its 23S rRNA alleles displayed an AZM MIC of �1,024 �g/ml (10). Together, the data
imply that the A2058G resistance determinant confers HL-AZMR across diverse types of
bacteria, in this case N. gonorrhoeae. However, additional studies (e.g., site-directed
mutagenesis and transformation) are necessary to definitively establish the cause and
effect of the A2058G mutation and HL-AZMR phenotype in N. gonorrhoeae.

In conclusion, genetic mutations continue to develop in N. gonorrhoeae, and in this
case, it allowed this pathogen to become resistant to AZM. Therefore, robust and
vigilant gonococcal surveillance programs such as GISP and SURRG are integral in the
detection of novel resistance mechanisms. These programs successfully detected a
novel mutation that confers HL-AZMR in N. gonorrhoeae. The identification of A2058G
alteration in the 23S rRNA of N. gonorrhoeae will help inform and enhance antimicrobial
resistance molecular surveillance and detection activities against this pervasive patho-
gen.
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