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Abstract

In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts
of data on different mosquito species, with various underlying physiological characteristics, and from diverse
geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome
research are lacking. To streamline methods in mosquito microbiome research and optimize data quality,
reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the
Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research.
Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology,
while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the
consortium and invite broader participation. It highlights the issues we view as most pressing to the community
and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece:
(1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample
processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize
current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will
spark discussions around this area of disease vector biology, as well as encourage careful considerations in the
design and implementation of mosquito microbiome research.

Keywords: Mosquito microbiome, Metabarcoding, Metagenomics, Metatranscriptomics, Recommendations for
mosquito microbiome research, Microbiome data curation, Data quality, Reproducibility, Comparability, Microbial
ecology

Background
The mosquito microbiome is critical for mosquito devel-
opment, and it can have significant effects on vector
competence, host immune system signaling, and longev-
ity [1–5]. It has gained attention over the past decade
for its influence on vector-borne pathogen transmission
and as a potential avenue for vector-borne disease

control. With this increasing interest, > 300 scientific
publications on mosquito microbiome research per year
can now be retrieved from scientific literature databases
(Fig. 1). This increase in independent mosquito micro-
biome studies has led to large amounts of data on differ-
ent mosquito species, with various underlying
physiological characteristics, and from diverse geograph-
ical locations. It would be ideal for the data generated
from these studies to be curated in a centralized loca-
tion, as well as collected, analyzed, and stored in a way
that would facilitate quick and easy access for various

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: nsa.dada@nmbu.no; nsadada@yahoo.com
1Faculty of Science and Technology, Norwegian University of Life Sciences,
Ås, Norway
Full list of author information is available at the end of the article

Dada et al. Microbiome            (2021) 9:36 
https://doi.org/10.1186/s40168-020-00987-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-020-00987-7&domain=pdf
http://orcid.org/0000-0002-5276-2328
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:nsa.dada@nmbu.no
mailto:nsadada@yahoo.com


purposes including new hypothesis testing, development
of novel research questions, and/or meta analyses. The
creation of a centralized repository would be feasible if
these data followed a set of guidelines to ensure
optimum quality, reliability and comparability, and ad-
equate records of metadata, as well as appropriate and
rigorous data processing and analysis. These guidelines,
which can be borrowed from existing knowledge and ap-
proaches of microbiome research of other living and
non-living systems [6–8], should be tailored to and de-
signed in collaboration with the international mosquito
microbiome research community.
To facilitate creation of a curated data repository as

well as collaboration and discussion among mosquito
microbiome scientists, we are establishing the Mosquito
Microbiome Consortium (www.mosquito-microbiome.
org), a collaborative initiative for the advancement of
mosquito microbiome research. With an emphasis on
moving mosquito microbiome research from laboratory
to field, our goal as a consortium is to collectively work
on unraveling the role of the mosquito microbiome in
mosquito biology, while critically evaluating its potential

for mosquito-borne disease control. This initial piece
serves to introduce the consortium and invite broader
participation. It highlights the issues we view as most
pressing to the community and suggests basic guidelines
for conducting mosquito microbiome research. We hope
that this will elicit more discussion from the scientific
community that will feed into subsequent and more
comprehensive recommendations for conducting repro-
ducible mosquito microbiome research.

Proposed guidelines for mosquito microbiome
research
There are several comprehensive recommendations on
best practices for microbiome studies [9, 10] that are
very useful but not specific to the mosquito microbiome
community. Gleaning from these recommendations,
here we focus specifically on the mosquito microbiome
and expound on specific components of the system.
While there are many aspects of mosquito microbiome
research that could be optimized and streamlined, we
focus on four broad areas in this piece: (1) sampling/ex-
perimental design for field, semi-field, or laboratory

Fig. 1 Barplot showing yearly number of publications in the Europe PMC archive from 2000 to date, using search query “mosquito microbiome.”
The data show steadily increasing mosquito microbiome research publications over the past decade. Code for visualizing the most up to date
trend is publicly available here: https://mosquito-microbiome.org/media/code-mosquito-microbiome-research-trends
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studies; (2) metadata collection; (3) sample processing,
sequencing, and use of appropriate controls; and (4) data
handling, analysis, and deposition.

Mosquito collections/experimental design for field, semi-
field, or laboratory systems
Field sampling design will be highly variable depending
on research questions, but should be formulated in ad-
vance of sample collection, following similar best prac-
tices as any mosquito ecology field study [11]. Factors to
consider when designing field collections for a mosquito
microbiome study may include number of sites, location
of sites, distance between sites, and uniform sampling
methods (e.g., timing, sample collection and handling
across sites, and target mosquito tissue). Where imma-
ture mosquitoes and their breeding water are desired, it
would be ideal to standardize the location in the water
column across sampling sites from which the latter is
collected. For adult mosquito sampling, methods that
allow for the collection of live mosquitoes such as mech-
anical aspirators [12] or frequently checked adult traps,
e.g., BG-Sentinel (Biogents, Regensburg, Germany) [13]
or Mosquito Magnet® (Woodstream Corporation Lititz
PA), should ideally be used.
While laboratory systems can be useful for investigat-

ing physiological interactions between mosquitoes and
their microbiome, or investigating mosquito microbiome
dynamics in a controlled setting, they are not always
ideal for all research questions, largely because results
obtained using laboratory populations cannot necessarily
be extrapolated to field populations. Indeed, part of the
microbial diversity might be lost or altered due to the in-
fluence of environmental factors in microorganism ac-
quisition and maintenance in laboratory conditions [14,
15]. Approaches to isolate and experimentally re-
introduce microbes from field populations into labora-
tory colonies can improve the applicability of laboratory
studies [16, 17], and several factors that should be con-
sidered for optimizing the relevance of results of mos-
quito microbiome laboratory experiments for field
mosquito populations have been discussed by Romoli
and Gendrin [18]. Regardless, when designing a mos-
quito microbiome study, careful consideration should be
given to whether the research questions can appropri-
ately be addressed in a laboratory system and/or whether
field or semi-field experiments should be conducted.

Individuals vs pools
An important factor to consider early in the design of
any mosquito microbiome study is whether individual
mosquito samples or pools of mosquito samples should
be processed. This decision should primarily be in-
formed by the overall goals of the study but can also be
influenced by technical and financial constraints. Pooling

samples limits the ability to investigate and account for
variation between individuals and the ability to assess re-
lationships between members of the microbial commu-
nity within individual mosquitoes. There are however
some benefits of pooling samples, such as allowing for a
larger representative sample to be taken from a popula-
tion or treatment, increasing biomass which could
minimize the influence of contamination [19], and a re-
duction in the overall number of samples to be se-
quenced, thereby reducing sequencing costs. When
individual mosquitoes are pooled for processing, bio-
logical replicates of pools should ideally be processed.
Collecting and processing biological replicates can pro-
vide insights into variation within groups or populations,
but analyzing individual samples (an adequate number
to provide enough statistical power) where possible
would be most ideal and informative [20]. This particu-
lar decision is of utmost relevance, as the microbiome
data will have three inherent characteristics that are dir-
ectly affected by the pooling scheme: dimensionality
(pooling creates new groups), compositionality (revealed
patterns and conclusions drawn from pools may not re-
flect individual composition), and zero-inflated counts
(low frequency and/or undetected taxa may not be uni-
formly distributed across pools) [21]. Ultimately, and as
tested by Rodríguez-Ruano et al. [20], the microbial di-
versity indices will significantly be influenced by the de-
cision taken at this methodological crossroad.

Physiological characteristics
The physiological characteristics of mosquito samples
selected for microbiome studies should be properly con-
trolled in order to avoid introducing bias and/or con-
founding study outcomes, as the mosquito microbiome
is known to affect or be affected by host physiological
status [5]. Where possible and appropriate for the study
goals, the use of mosquito samples with uniform physio-
logical characteristics should be prioritized. In laboratory
settings, this can be achieved by utilizing mosquito col-
onies that are reared under identical conditions. In field
and/or semi-field settings however, two approaches can
be considered: (i) rearing progeny from field-collected
mosquitoes (ideally the first filial generation) under iden-
tical laboratory conditions or (ii) rearing field-collected
immature mosquitoes in water from their breeding habi-
tats—the study objectives would determine which of the
two is appropriate. In studies where none of the above
outlined approaches are feasible, for example, in cases
where adult field-collected mosquitoes are required, (i)
an effort should be made to determine the physiological
characteristics of each sample, e.g., blood fed status,
size/weight, and gravid status; (ii) individuals, rather
than pools, should be processed if possible; (iii) if pools
are desired, individuals with similar physiological
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characteristics should be pooled; and (iv) the potential
impact of variable physiological properties on the micro-
biota should be adequately discussed when findings of
such studies are presented.

Modification and manipulation of the mosquito microbiome
Some mosquito microbiome research questions may re-
quire controlled manipulation of the microbiota. Experi-
mentally introducing microbes from field mosquitoes
into laboratory colonies is a common approach for
studying the effects of specific microbes on vector com-
petence and physiology, e.g., [3, 16, 22]. Some research
questions involving microbiota modification may call for
the use of axenic or gnotobiotic mosquitoes. Antibiotics
have been used in such studies until recently, but (i) an-
tibiotics might directly affect the mosquito physiology or
vector competence regardless of their impact on the
microbiota [23], (ii) they do not fully clear the mosquito
microbiota [24], and (iii) mosquitoes have been shown
to harbor antibiotic-resistant microbes [25]. Recent de-
velopments in the creation of axenic and/or gnotobiotic
mosquitoes [17, 26] offer promising solutions to these
challenges and have revealed a critical role of the micro-
biota in larval development.

Metadata
Regardless of whether samples are collected from the
field or laboratory, a comprehensive record of sample
characteristics, collection, handling methods, and experi-
mental conditions should be maintained. This would not
only benefit downstream data analysis and result inter-
pretation, but would facilitate study repeatability and/or
reproducibility, and allow for subsequent data reuse and
reanalysis. Based on the FAIR (Findable, Accessible,
Interoperable, and Reusable) guiding principles for sci-
entific data management and stewardship [27], a mini-
mum information standard for reporting arthropod
abundance data, MIReAD [28], has been developed.
MIReAD’s list and description of specific data fields that
should be included in data collection sheets are relevant
sample collection characteristics for mosquito micro-
biome studies, particularly those involving field collec-
tions. Other useful metadata standards are the Genomic
Standard Consortium’s minimum specifications [29, 30].
Building on these existing standards, below we describe
minimum metadata records to consider for mosquito
microbiome laboratory, semi-field, and field studies. We
also provide a checklist of these metadata records for
quick reference (Table 1), along with a ready-to-use
interactive and customizable template (freely available
for download here: https://mosquito-microbiome.org/
resources/mmc-white-paper/).

Metadata recommendations for both field and laboratory
studies

Mosquito species Ideally, records of mosquito species
should not be limited to morphological identification be-
cause some species of medical importance are nested
within complexes of cryptic species that cannot be dis-
tinguished from each other, e.g., Aedes albopictus,
Anopheles gambiae, and Culex pipiens [33–35]. Thus, a
molecular marker should be employed to adequately
identify samples—the mitochondrial cytochrome c oxi-
dase subunit 1 (COI) gene is the most referenced mo-
lecular marker for distinguishing between eukaryotic
taxa, and the Malaria Research and Reference Reagent
Resource Center (MR4) provides detailed protocols for
distinguishing mosquito species using the COI gene
[36]. Alternatively, the internal transcribed spacer (ITS)
can also be used for species identification [37].

Mosquito developmental stage/age and sex Mosqui-
toes develop through four stages—egg, larva, pupa, and
adult, and the pupal and adult stages are sexually di-
morphic and distinguishable. Records should include (a)
mosquito developmental stage, as well as age for adults
where possible and relevant, and (b) sex of pupae/adults.
This is particularly important because the mosquito
microbiome is known to be affected by these physio-
logical characteristics or vice versa [38, 39]. It may be
difficult to determine the age of field-collected adult
mosquitoes, but with new technological applications
such as machine learning and infrared spectrophotom-
etry, their age can be estimated [40]. Also, with im-
proved annotation of sex loci in genomes of some
mosquito genera [41, 42], it may be possible to distin-
guish between male and female eggs and larvae in the
future via molecular techniques. Mosquito larvae de-
velop through four larval instar stages (L1–L4). If larvae
are used, the instar stage should be recorded where it is
possible to distinguish instars. In species or cases (e.g.,
following preservation) where this is not possible, larval
instars can be grouped as early (small, light colored, typ-
ically L1–L2) or late (larger, darker, and typically L3–
L4).

Mating, parity, feeding, and gonotrophic status Mos-
quito adult life history characteristics including mating,
parity, feeding, and gonotrophic status may influence or
be affected by host microbiome [43, 44]. It is thus im-
portant to record these physiological characteristics for
samples when possible. These factors can easily be con-
trolled and subsequently recorded for laboratory strains
and/or progenies of field-collected mosquitoes that are
reared under laboratory/controlled conditions. For ex-
ample, male and female mosquitoes can be separated at
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Table 1 Checklist of minimum metadata to be collected for mosquito microbiome samples and all controls (positive and negative)
processed, along with examples following existing standards of recording and reporting arthropod and genomics data. A ready-to-
use interactive and customizable template of these metadata records is freely available here: https://mosquito-microbiome.org/
resources/mmc-white-paper/

Metadata fields Example

General

Study type Field, semi-field, or laboratory

Sample name Anopheles gambiae midgut, no template extraction/PCR control (negative control), ZymoBIOMICS
microbial community standard or other known mock community (positive control), etc.

Sample ID An_Gambiae_MG_01

Number per sample Individual, pool of 3 individuals, etc.

Sample taxonomy Anopheles albimanus

Developmental stage Egg, larval instar, pupa, or adult

Sex Male, female, or both pooled

Agea 3 days post adult eclosion, 2–5 days post eclosion etc.

Mating status Virgin or mated/non-virgin

Gonotrophic status Non-gravid, fully gravid, or half-gravid

Blood fed Non-blood fed or blood fed

Type of food providedb 10% sucrose, human blood, 1:3 yeast and TetraMin, etc.

Tissue processed Whole mosquito, midgut, ovaries, cuticle surface, etc.

Sample phenotype Virus/parasite infection status, insecticide resistance status, etc.

Collection date YYYY, YYYY-MM, or YYYY-MM-DD

Collection time hh, hh:mm, or hh:mm:ss

Biomolecule processed DNA, RNA, protein, metabolites, etc.

Biomolecule isolation method QIAGEN blood and tissue, phenol-chloroform, etc.

Sequencing method 16S rRNA amplicon, whole (meta)genome, metatranscriptomic, etc.

Sequencing platform Illumina, Oxford Nanopore, etc.

Sequencing platform model MiSeq (Illumina), MinIon (Oxford Nanopore), etc.

Sample storage preservative None, Ethanol, RNALater®, etc.

Sample storage temperature − 20 °C, − 80 °C, etc.

Sample storage duration None, 6 months, 3 years, etc.

Specific to field studies

Collection country Nigeria

Collection village or city Iko Esai village

Location coordinates 00.000000, 00 00.0000, or 00° 00′ 00.0″ N 0° 00′ 00.0″ E

Climatic/environmental data 27 °C, 82% RH

Land cover Savanna, urban and built up, tundra, etc. See Loveland et al. [31] for more examples

Collection method Human landing catch, mechanical aspirator, gravid trap, or larval dipping

Collection bait CO2, cattle

Specific to laboratory studies

Name and location of laboratory (and/or
facility)

The Short Lab, College of Food, Agricultural, and Environmental Sciences, The Ohio State University,
Columbus, OH, USA

Strain STECLA, KISUMU, ROCKEFELLER

Generation F1, F6, F59, etc.

Maintenance temperature 27 ± 2 °C

Maintenance relative humidity 80 ± 10%

Light-dark cycle 10-h light; 14-h dark
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the pupal stage to obtain virgin adults if mating and par-
ity need to be controlled, type of food and length of time
post feeding can be controlled, and gonotrophic cycle
can be observed post blood-feeding. For field-collected
mosquitoes, while the gonotrophic status can be deter-
mined by examining the abdomens of collected female
mosquitoes, other physiological characteristics may be
challenging to obtain. Determining these other physio-
logical characteristics may require the removal and
microscopic examination of specific tissues, e.g., female
spermatheca and ovaries for mating and parity status
[45, 46] or a newer non-invasive procedure as described
for Ae. aegypti [47], and the use of metabolomic or
metabarcoding approaches to determine food sources
[48–51]. The former may be feasible where these specific
tissues are targeted for the microbiome study, and the
latter, where it is possible to extend laboratory processes
to incorporate metabarcoding/metabolomics.

Tissue/organ studied To date, mosquito microbiome
studies have focused on entire individuals [52, 53], the
alimentary canal [15, 54–59], salivary glands [56, 60],
and/or reproductive tissues [24, 56], with a recent study
extending microbially characterized mosquito tissues to
the cuticle surface [61, 62]. Since many members of the
mosquito microbiome show tissue tropism [39, 61], it is
important to report what specific tissues are being ana-
lyzed, where applicable, or that whole samples where
processed.

Storage and handling conditions Sample storage con-
ditions have been shown to introduce variability in
microbiome studies [63]. Thus, the preservation method
used (e.g., buffer, preservative, temperature) along with
storage duration, including any freeze-thaw cycles and/
or transportation chains (e.g., transportation on ice/dry
ice/ambient temperature), should be recorded for each
study. Study objectives and available resources would in-
fluence the choice of sample storage and handling, and
previous research on how different methods affect insect
microbiomes, e.g., [20, 64, 65], could inform these

decisions. Irrespective of chosen methods, each study
should ideally use a single storage method to prevent the
introduction of batch effects. Where this is not possible,
for example when working with historical samples, batch
effect should be accounted for during data analysis and
its effect subsequently discussed.

Sample processing, sequencing, and controls Each
sample processing step, the type of sequencing approach
employed, along with the type of controls included in
each step should be recorded. The Genomic Standard
Consortium’s minimum specifications [29, 30] can be
used as a baseline.

Metadata recommendations that are specific to field studies

Location It is essential to record the origin and/or col-
lection site of mosquito samples, as the mosquito micro-
biome is known to vary spatially [53, 66, 67]. These
records would facilitate study replication, reproducibility,
and/or spatiotemporal analysis. In addition to the loca-
tion name, the GPS coordinates of mosquito collection
sites should be recorded with the most precise geodetic
system. The best choice is often the local system which
can subsequently be converted into international stan-
dards for example using the World Geodetic System. It
should be noted that while the collection or breeding
sites of immature mosquitoes represent sample origin,
this might not be the case for adult mosquitoes, as some
species can fly up to 50 km from their breeding sites
[68]. Thus, for field-collected adults, sampling location,
rather than sample origin, should be indicated in the
metadata records.

Climatic and environmental data As with location, the
mosquito microbiome shows seasonal [69, 70] and envir-
onmental [71] variation. Thus, where possible and ap-
plicable, climatic and environmental data such as
temperature, humidity, atmospheric pressure, land cover,
and proximity to human dwellings should be recorded.
The environmental type (e.g., breeding water or

Table 1 Checklist of minimum metadata to be collected for mosquito microbiome samples and all controls (positive and negative)
processed, along with examples following existing standards of recording and reporting arthropod and genomics data. A ready-to-
use interactive and customizable template of these metadata records is freely available here: https://mosquito-microbiome.org/
resources/mmc-white-paper/ (Continued)

Metadata fields Example

Specific to semi-field studies

Name and location of semi-field facility (if
widely used/known)

MalariaSphere, Mbita Point Research & Training Center, International Centre of Insect Physiology and
Ecology, Mbita, Kenya [32]

Type of semi-field structure Glass house, mesh house, mesh cage, etc.

Dimensions of semi-field structure 00.00 × 00.00 m
aMay not apply to field-derived mosquitoes
bNot applicable to field-derived mosquitoes
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atmospheric) and geographic scale (e.g., microscale data
collected with a data logger or macroscale data collected
from a meteorological station) to which the data applies
should also be indicated, along with the time scale over
which the data apply. For larval breeding sites, water
quality indicators can also be recorded, including pH,
total dissolved solids, and salinity, in addition to land
cover information of the surrounding area. Where cli-
matic data or land cover data are collected from national
or international databases [72], these should be
indicated.

Collection method The type of collection method or
tool used for sample collection can influence the type
and characteristics of mosquitoes collected [73, 74].
Thus, methods that are appropriate for the target spe-
cies, life stage, and physiological characteristics should
be employed and recorded. Each study should ideally
employ a single sample collection method to avoid intro-
ducing bias. Some points to consider when collecting
samples are described in the “Mosquito collections/ex-
perimental design for field, semi-field, or laboratory sys-
tems” section above.

Metadata recommendations that are specific to laboratory
studies

Mosquito strains Although environmental factors ap-
pear to be a major driver of mosquito microbiome com-
position, some studies also show the contribution of
host genetic characteristics [57, 67, 75–77]. Different
mosquito genotypes may have different microbial com-
positions due to genetic variation in host physiological
or immunological traits, or the vertical transmission of
symbionts [44, 77–79]. Thus, the mosquito strains used
should be reported, particularly if they are well docu-
mented and broadly used. If the strains are more specific
to the laboratory or the experiment, their origin and the
process used to generate and maintain them should be
reported.

Filial generation and maintenance of mosquito
strains During laboratory experiments, mosquito strains
are often maintained over several generations. Vertically
transmitted symbionts could be maintained over mul-
tiple generations, but environmentally or horizontally ac-
quired symbionts are likely to be lost [62]. Reporting the
filial generation of mosquito strains used would inform
any variation that occurs in the mosquito microbiome.
In addition to the number of generations, it would be
valuable to report conditions and methods used in main-
taining the mosquito strains. Examples of such condi-
tions include: egg dessication between generations,
synchronized egg hatching (using a vacuum for

example), egg disinfection (for example with bleach solu-
tion), type of water used for breeding, larval diet recipe,
and source of blood for adult feeding. These factors
would inform any shifts in microbial community com-
position across generations.

Metadata recommendations that are specific to semi-field
studies
Semi-field characteristics play an important role in mos-
quito physiology and behavior [80, 81], both of which
are known to affect or be affected by the mosquito
microbiome [2, 4]. Thus, in addition to metadata col-
lected for field or laboratory studies (depending on the
mosquito source), semi-field characteristics should be
recorded. These should include the description and di-
mensions of the semi-field structure or the name, along
with a reference of the facility if it is widely known and
used (e.g., the semi-field system at Ifakara Health Insti-
tute, Kilombero, Tanzania [81], or MalariaSphere at the
International Centre of Insect Physiology and Ecology,
Mbita, Kenya [32]).

Sample processing, sequencing, and use of appropriate
controls
Isolating and processing the microbiome from biological
samples involve several steps including sample handling,
nucleic acid/peptide/metabolite isolation, purification,
amplification (where necessary), identification, and se-
quencing. All these steps can be accomplished in-house
using commercially available kits, in-house generated
methods, or a combination of the two. Alternatively, all
or some of the steps (commonly the sequencing step as
the machines are usually expensive to own) can be out-
sourced to commercially available facilities. While the
method of choice would depend on research questions
and available resources, each study should ideally em-
ploy the same methods for all samples to avoid the
introduction of batch effects. Samples should also be
handled and processed to avoid the introduction of ex-
traneous microbes. Below, we describe sample process-
ing steps in detail, highlighting points to consider for
optimal quality and comparability.

Sample handling and preservation
After collection, samples should be handled to minimize
alterations to the microbial communities, and/or nucleic
acid degradation prior to isolation. This requires some
planning ahead. In some cases, immediate freezing of
samples at − 20 °C or lower using a freezer, dry ice, or li-
quid nitrogen may be possible. Alternatively, whole sam-
ples or dissected target tissues can immediately be
homogenized and stored in lysis buffer or commercial
nucleic acid preservative. In the field where immediate
storage may not be possible, live samples can be
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collected and transported to the laboratory or field sta-
tion for proper storage—immature mosquitoes should
ideally be transported in their breeding water. Sample
handling and preservation methods may differ depend-
ing on target biological macromolecule. For example,
methods that are adequate for preserving the DNA and
amino acid contents of biological samples may not be
adequate to preserve RNA. Thus, sample handling and
preservation should be carefully considered, and decided
upon prior to sample collection.

Isolation and purification of microbial genetic material
The methods used for isolating and purifying genetic
material would largely be determined by the study ob-
jective, genetic material of interest, and intended se-
quencing approach. These factors thus need to be
carefully considered in selecting appropriate methods.
Nucleic acids and proteins are largely targeted for
microbiome studies, and currently, three main sequen-
cing methods are widely employed: metabarcoding (tar-
geting 16S rRNA/18S rRNA/ITS genes), metagenomic,
and metatranscriptomic sequencing. The isolation and
purification methods would differ by type of nucleic
acid, as well as targeted genetic material. For instance, in
metabarcoding where the universal bacterial and ar-
chaeal 16S rRNA gene or eukaryotic 18S rRNA gene and
ITS region are selectively targeted with specific primers,
contamination of mosquito genetic material may not be
an issue. However, for metagenomic as well as metatran-
scriptomic sequencing, the outputs could be dominated
by the genetic material of the mosquito host whose ge-
nomes—ranging from 0.098 to 1.8 GB [82]—can be lar-
ger by several orders of magnitude compared to that of
mosquito-associated microbes. In this case, the nucleic
acid isolation and purification step could be (depending
on study objectives) approached such that the mosquito
cells/tissues are selectively digested, and/or microbial
cells/DNA are enriched prior to nucleic acid isolation
and purification [83–87]. The selective digestion of
eukaryotic host cells/tissues is especially possible for
studies where prokaryotic microbial communities are
the focus, as it may have minimal impact on the pro-
karyotic cells. A similar approach of selectively targeting
prokaryotic RNA [88] can be employed for metatran-
scriptomic studies.
Both in-house protocols and commercially available

nucleic acid isolation kits have been used in microbiome
studies [89]. However, to reduce contamination and
allow for reproducibility, commercially available kits are
preferable. Irrespective of preference, the protocol se-
lected should be appropriate for isolating the genetic
material of targeted microbial components, as nucleic
acid isolation and purification protocols vary in their ef-
ficiency depending on template biological material [90].

In addition, one nucleic acid isolation and purification
method should ideally be employed for processing all
samples within a study, as results of microbiome com-
position analyses have been shown to vary by nucleic
acid isolation methods [91–93].

Sequencing (‘omics) approaches
As earlier mentioned, metabarcoding, metagenomic, and
metatranscriptomic sequencing, in addition to metapro-
teomics, are employed in microbiome studies. While
metabarcoding involves sequencing of amplified gene
targets to describe the composition of microbial commu-
nities, the other approaches provide the same insights,
along with functional characterization of the microbial
communities, but without the biases of targeted gene
amplification. Well-curated and regularly updated refer-
ence databases based on commonly targeted microbial
genetic markers (e.g., the SILVA ribosomal RNA gene
database project [94]) allow for high taxonomic reso-
lution with metabarcoding. In contrast, it can be challen-
ging to accurately infer taxonomic origin using other
‘omics approaches, such as shotgun metagenomics and
metatranscriptomics due to limited well-curated data-
bases. However, these ‘omics approaches provide
broader and more informative outcomes including func-
tional catalogs, and expression profiles, in addition to
taxonomic annotation of the community members. The
choice of sequencing approach for mosquito micro-
biome studies should thus be carefully selected based on
research objectives as well as the strengths and weak-
nesses of the different approaches [9, 95]. As with other
microbiome studies, mosquito microbiome studies have
predominantly focused on 16S rRNA amplicon gene se-
quencing. This approach and its associated data analysis
tools are thus widespread and easily accessible [96–102].
In other disciplines, there have been increasing shifts
from descriptions of microbial community composition
to using other ‘omics tools to infer and understand the
functions of microbial communities [103–105]. How-
ever, the mosquito microbiome research community is
only just beginning to utilize these other ‘omics ap-
proaches to understand the functions of the mosquito
microbiome and its role in vectorial capacity [83, 106–
108].

Appropriate controls
In conducting any microbiome study, care must be taken
to avoid the introduction of any extraneous microbes, as
this can invalidate study outcomes. This can be accom-
plished by working under sterile conditions, and pro-
cessing blank controls (no sample or template) along
with samples at each sample processing step, to capture
potential contamination by extraneous microbes [19,
109–111]. Each mosquito microbiome study should
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include blank controls at each of the following steps
where applicable: sample collection (including surface
sterilization and dissection where applicable), nucleic
acid isolation and purification, PCR amplification, and li-
brary preparation. Controls from a previous step should
be processed as a sample in subsequent steps in addition
to new controls for that step, and ideally controls should
be used for each batch of samples processed where they
are not all processed at the same time/by the same per-
son (batch processing should be avoided as much as
possible, unless processing and/or sequencing samples
in multiple batches are necessary to account for or esti-
mate a specific parameter identified in advance). Where
feasible, and especially important for high-throughput
sample processing, positive controls (i.e., mock microbial
community or template) should be included to optimize
and validate each of these steps, as well as to capture
any extraneous and cross-contamination. It is important
to note that the blanks may not pass pre-sequencing
quality control procedures due to absence of or low mi-
crobial load; however, they should be sequenced irre-
spective of whether they pass the pre-sequencing quality
control or not. Several studies have shown that blanks
that do not present bands following PCR and/or fail the
pre-sequencing quality control step result in sequences
[83, 112] that can subsequently be excluded from sam-
ples in downstream analysis [57, 113]. All steps taken to
minimize contamination, along with any contamination
captured, should be reported in published studies.

Biological and technical replicates
The use of biological replicates has been highlighted in
the “Mosquito collections/experimental design for field,
semi-field, or laboratory systems” section (Individuals vs
pools), but bears repeating as results without biological
replicates are inconclusive due to failure to account for
heterogeneity and/or variability in the samples or popu-
lation. While technical replicates may be optional, de-
pending on the research question [114], biological
replicates are not [115]. The number of replicates would
depend on the research questions, approach used, and,
in some cases, available resources. If in doubt, a statisti-
cian or bioinformatician (specializing in microbiome
studies) should be consulted during the study design.

Data processing, analysis, and deposition
Irrespective of system, the same overarching principles
of processing, analyzing, and depositing microbiome
data apply. Several review articles, including those by
Knight et al. [9], Hongzhe [116], and Morgan and Hut-
tenhower [117], discuss available methods for analyzing
microbiome data. These reviews categorize analysis by
‘omics approach and provide strengths and limitations
of the methods discussed. There is a plethora of tools

available for analyzing microbiome data for example
phyloseq [102], mothur [101], QIIME2 [118], Anvi’o
[119], and MEGAN6 [120, 121], most of which require
some knowledge of programming, and this could pose a
challenge for mosquito microbiome research (see below).
Web-based and/or graphical user interface (GUI) ver-
sions of some of these tools, which require little or no
programming knowledge, are available or are in different
stages of development. For example, the Galaxy platform
[122] offers a variety of tools for analyzing microbiome
data. For an example guide to statistical analysis in mi-
crobial ecology, see Buttigieg and Ramette [123]. Like
metadata, a good record of each data processing and
analysis step, along with any codes/scripts used, should
be kept. These along with the metadata and sequences
(including those of controls) should be made publicly
available upon study publication. Different public reposi-
tories, along with instructions for data deposition, are
available; the most popular ones include the NCBI Se-
quence Read Archive [124], EMBL-EBI European Nu-
cleotide Archive [125], and the NIG DNA Data Bank of
Japan [126]. If studies are properly conducted, “negative”
or “unexpected” results should not preclude publication
of the data, as several journals now specialize in publish-
ing genomic data.

Future directions and challenges in mosquito
microbiome research
Studies showing how the mosquito microbiome influ-
ences mosquito physiological characteristics, including
vectorial capacity [3, 18], life history traits [16, 17], blood
meal digestion, fecundity [127], and insecticide resist-
ance [61, 83], highlight different perspectives of
mosquito-microbe interactions that are being further ex-
plored as new avenues for mosquito and mosquito-
borne disease control. Standardized methods for con-
ducting mosquito microbiome research, along with a
well-curated repository of mosquito microbiome data,
would expand the application of mosquito microbiome
studies even further. Below are some future directions,
along with some of the challenges of mosquito micro-
biome research:

i. Mosquito microbiota as indicators of host life
history. As indicated by studies on habitat/location
[53, 128–130], food source [43], age [131], infection
status [18], and insecticide resistance [61, 83], more
comprehensive research on the mosquito
microbiome, particularly covering wider
geographical locations and more mosquito species,
could potentially be used to determine the
ecological and physiological life histories of field-
collected mosquitoes. It is relevant to highlight
current research on how environmental change and
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human activities are influencing epidemiologically
relevant mosquito behaviors [132–134]. So far, one
published study on the links between the larval
ecology of malaria vectors and malaria transmission
has incorporated larval microbiota [71]. The extent
to which the mosquito microbiome reflects or is in-
volved in these ecological and epidemiological dy-
namics requires more attention.

ii. Microbiome immune priming of mosquitoes against
pathogens. Although studies have demonstrated
that the mosquito microbiome influences vector
competence for malaria parasites and dengue
viruses [22, 135–138], the direct impact of
collective microbiome-induced immune activation
(microbiome immune priming) on vector compe-
tence is much less described. Immune priming,
driven by specific microbes, has however been dem-
onstrated in mosquitoes [137, 139–146]. With this
existing knowledge, and those of specific mosquito
immune responses that control pathogen infection,
particularly against malaria parasites [137], future
research could extend to collective microbiome im-
mune priming and its effect on vector competence.
This knowledge could be further exploited for dis-
rupting pathogen infections in mosquito popula-
tions, as recently shown in dengue control using
Wolbachia strain wAlbB [138].

iii. Mosquito microbiome as vehicles of pathogen
transmission disruption. Natural mosquito
symbionts are readily able to colonize and inhabit
the mosquito host. They can colonize specific host
tissues [56], and can be vertically transmitted,
including those that affect the fate of pathogens
within mosquitoes, e.g., Serratia marcescens [147],
making them suitable candidates for
paratransgenesis [148]. Rapid advances in genetic
engineering technologies [149, 150] make
paratransgenesis a promising tool for disrupting the
development of pathogens within the mosquito
host, and significant advances have already been
made for malaria parasite infections [151, 152].
More work targeting additional pathogens and
particularly concentrating on field mosquito
populations is required in this area.

iv. Microbiome-derived metabolites for mosquito-borne
disease control. The diverse mosquito microbiome
provides a microbial repertoire that can be explored
for metabolites or enzymes with anti-pathogen and/
or mosquitocidal activity [153], with recent studies
identifying antimalarial [154], antibiotic [155], and
insecticidal [156, 157] compounds from the mos-
quito microbiota. As seen in microbiome research
in other systems such as plants [158] and humans
[159], an advancement in this area would include

connecting mosquito microbe-derived metabolites
to their biosynthetic gene clusters as exemplified by
Ganley et al. [160]. Expanding research efforts to-
wards harnessing the strengths of bioinformatics in
combination with functional ‘omics tools such as
metatranscriptomics, metaproteomics, and metabo-
lomics would drive this area of mosquito micro-
biome research forward. In addition, this area of
research would also benefit from a well-curated
mosquito microbiome data repository that also in-
cludes data on biosynthetic gene clusters from
mosquito-associated microbes.

v. Mosquito microbiome for mosquito population
suppression. Mosquito-derived microbes have long
been considered for mosquito population suppres-
sion [161, 162], and advances in this area of re-
search have resulted in field applications of
mosquito endosymbionts for mosquito population
suppression. So far, Wolbachia spp. have been
employed [163–165] with varying outcomes. Briefly,
the introduction of exogenous (from other mos-
quito/insect species) Wolbachia endosymbionts into
mosquitoes decreases male mosquitoes’ ability to re-
produce with natural females, a method called “In-
compatible Insect Technique” (see Lees et al. [166]
for a review). Another widely used mosquitocidal
microorganism is the entomopathogenic bacteria
Bacillus thuringiensis subspecies israelensis. When
sporulating, this gram-positive bacterium produces
both deltaendotoxins (cry) and hemolytic factors
(cyt) with high larvicidal activity against Aedes,
Culex, and Anopheles mosquito species [167]. Fur-
ther work to dissect interactions between mosquito
microbiome and mosquito life history traits could
uncover new natural mosquito symbiont candidates
for mosquito population suppression.

vi. Updated ‘omics approaches and expansion beyond
the prokaryotic component of the microbiome.
Mosquito microbiome research would benefit from
expansion to non-prokaryotic components, includ-
ing non-pathogenic and insect specific viruses,
phages, fungi, and other eukaryotic microbes, that
have largely been neglected. Growing evidence
demonstrates that these non-prokaryotic microbes
may play important roles in mosquito biology and
vector competence [168–170]. Mosquito micro-
biome studies using different ‘omics approaches and
those focusing on neglected microbes are still evolv-
ing, with currently limited available reference ge-
nomes for mosquito-associated microbes [160].
Future efforts should be directed towards augment-
ing the number of available reference genomes for
mosquito-associated microbes and/or identifying
currently available orthologs from other systems.
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This would subsequently facilitate the use of ‘omics
tools other than metabarcoding for deeper insights
into the role of the mosquito microbiome, and bet-
ter resolution of taxonomic annotation—as the ac-
curacy of taxonomic delineation using currently
available metabarcoding tools (e.g., 16S rRNA gene)
is limited [171]. There also needs to be a shift from
our current practice of merely describing mosquito
microbiome composition to incorporating how this
composition affects different host characteristics;
this is slowly changing with increasing access to
molecular tools.

vii. Better understanding of the complex mosquito
microbiota interactions and networks. Mosquito
microbiome research is limited by our scant
understanding of the complexity of the mosquito
microbiome [57, 172–174], the complex
interactions between the microbes, as well as
interactions between the microbial network [175],
the mosquito host and the pathogens which may
infect them. Microbes reside in mosquito tissues as
a community [56], and may need to be present as a
community to affect mosquito physiology. Studies
that have investigated the relationship between the
mosquito microbiome and some aspects of host
physiology uncover relationships that are
challenging to parse, as it is unclear whether the
microbiome influences a physiological outcome,
vice versa or both [2, 83]. This offers opportunities
for future work to unravel these complex
interactions.

viii.Unraveling the determinants of mosquito
microbiome composition. Some studies suggest that
the environment may be a major determinant of
mosquito microbiome composition [176, 177],
while others suggest a highly dynamic composition
that is controlled by several factors [66, 178]
including host species [52, 71, 76]. In addition,
multiple studies have documented inter-individual
variations among field-collected mosquitoes [52, 57,
172, 174]. And while some studies have also dem-
onstrated this variation in laboratory-reared mos-
quitoes [75, 77, 179], others have shown little to no
variation [54]. Taken together, this presents several
hypotheses pointing towards either a niche-, func-
tion-, evolutionary-, or stochastically determined
microbiome [70, 180–183]. A large role for stochas-
ticity could pose problems for mosquito micro-
biome manipulations in the field or the use of the
microbiome as a predictive variable for modeling
vector-borne disease transmission. High priority
should therefore be placed on improving our under-
standing of the determinants of mosquito micro-
biome composition.

ix. Biological validation of mosquito microbiome
findings. Another challenge in mosquito
microbiome research is limited biological validation
of results and inferences. This largely requires
culturable bacteria, and large portions of the
mosquito microbiome are non-culturable [83, 172,
184, 185]. Employing synthetic biology to transfer
genes from non-culturable microbes into culturable
symbionts could be one way to address this limita-
tion. While synthetic biology may offer a way
around this limitation, data on the role of the
microbiome in host physiology—particularly patho-
gen infection—is lacking for field mosquito popula-
tions (but see [186]). This could be in part due to
the challenge of finding infected mosquitoes in the
field, but with a concerted effort, along with stream-
lined methods, this could be rectified. Going for-
ward as a community, especially as our focus shifts
towards harnessing the mosquito microbiome for
mosquito and mosquito-borne disease control, we
need to better establish and validate, in field popula-
tions, the role of the microbiome in mosquito
physiology and vectorial capacity.

x. Access to improved infrastructure and capacity.
While rapid advances in, and increasing access to,
molecular technologies have led to an increase in
mosquito microbiome studies, analysis of the
resulting data remains a major challenge, as
specialized bioinformatics skills along with
expensive computing resources are required. This is
particularly true in parts of the world where
mosquito-borne diseases are endemic. In these
areas, access to advanced molecular technologies is
also limited. More funding to support mosquito
microbiome research, particularly for improved la-
boratory facilities, long-term establishment of com-
puting resources, and bioinformatics training (in
endemic countries especially), would be practical
for addressing this challenge. Challenges that are in-
herent to microbiome sample processing and data
analysis have extensively been discussed [9, 187];
these also apply to mosquito microbiome research.

Summary and conclusions
Guidelines and standardized methods are needed for re-
producibility, replicability, and comparability in mos-
quito microbiome research. In this perspective, we
address issues that we find most pressing in mosquito
microbiome research and propose some guidelines to
allow for more streamlined research.
Some good practices to consider for mosquito micro-

biome studies include adequate design, appropriate sam-
ple collection and processing methods, inclusion of
appropriate controls and replicates, and the use of up-
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to-date data analysis tools. Open data sharing principles
must be adhered to. This would include appropriate de-
position of collected data, including raw files, data matri-
ces, metadata, and analysis scripts. This would
particularly be useful for creating curated repositories
that could be incorporated into existing microbiome or
mosquito/insect genome repositories such as Microbio-
meDB [188], VectorBase [189], FlyBase [190], InsectBase
[191], or i5kworkspace@NAL [192].
As a community, we would benefit from more sample/

data sharing and collaborations, and with streamlined
methods, our work would be more reproducible, replic-
able, and comparable. This perspective serves as a start-
ing point for streamlining mosquito microbiome
research methods, and a call for researchers with inter-
ests in any aspect of this evolving vector biology niche to
share their thoughts on appropriate methods for con-
ducting mosquito microbiome research. Harmonizing
research methods and creating a well-curated repository
of mosquito microbiome data will provide a valuable re-
source that can be mined for new microbes/microbial
agents for mosquito and mosquito-borne disease con-
trol. Our near-term goal is to make this mosquito
microbiome data repository available and accessible to
all.
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