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ABSTRACT We sequenced the metagenome of a biofilm collected near a leachate
stream of the Marsberg copper mine (Germany) and reconstructed eight metagenome-
assembled genomes. These genomes yield copper resistance through Cu(I) oxidation via
multiple copper oxidases and extrusion through copper-exporting P-type ATPases.

The historic Marsberg copper mine (51°27912.60N, 8°51942.10E) offers ambient natu-
ral conditions for the enrichment of heavy metal-resistant consortia under the

influence of copper-rich (acidic) sulfidic mine waters at low temperature (10°C) (1). In
February 2018, a biofilm near copper-rich leachate was aseptically collected from rock
samples by using a sterile scalpel. Microbial DNA was extracted using the DNeasy
PowerSoil kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s protocol.
The purified DNA from the biofilm sample (designated MB1) was used to generate
Illumina paired-end sequencing libraries with the Nextera DNA sample preparation kit
(Illumina, San Diego, CA, USA); the libraries were sequenced by employing the MiSeq
reagent kit v.3 and a MiSeq instrument as stated by the manufacturer (Illumina).
Default parameters were used for all software unless otherwise specified. Quality trim-
ming of reads was performed by employing fastp v.0.20.1 (qualified quality phred
score, 20; minimal read length, 50 bp) (2) and yielded 18,235,972 paired-end reads.
Base correction in overlapping regions (the correction option was selected concerning
fastp-based quality trimming using default parameters; this option allows identification
of overlapping regions of each pair of reads, and mismatched base pairs in these
regions can be corrected if one base shows high quality and the other very low quality)
and removal of the automatically detected adapter sequences were performed. Low-
quality bases at the 59 and 39 ends of reads were trimmed once the mean quality score
within a sliding window of 4 dropped below 20. Sequences were de novo assembled
into 53,638 contigs of $1,000bp via metaSPAdes v.3.14.0 (3). Binning was performed
using MaxBin v.2.2.7 (minimum contig length, 1,000bp; minimum probability for binning,
0.50) (4). Application of CheckM v.1.1.2 revealed eight relatively complete metagenome-
assembled genomes (MAGs) (completeness, $89%; contamination rate, #10%) (5). Each
MAG was annotated using Prokka v.1.14.5 (6). Subsequently, Prokka output was analyzed
by using the Pathway Tools software v.23.5 (7) with the MetaCyc database v.23.5 (8). MAGs
were classified taxonomically using GTDB-Tk v.1.0.2 and the Genome Taxonomy Database
(GTDB) (release 89) (9, 10).

The MAGs were classified as members of Actinobacteria (Mberg 009), “Candidatus
Binatota” (Mberg 010 and 011), Chlorobacteria (Mberg 002, 006, 008, and 019), and
Deinococcus-Thermus (Mberg 015). Functional analysis revealed the presence of genes
for copper-sensing transcriptional repressors CsoR and RicR, copper-exporting P-type
ATPases such as ActP, CptA, and CopA, and oxidation enzymes, multicopper oxidases
(MCOs), involved in copper homeostasis in all MAGs. The detoxification pathways for
reactive oxygen species, toxins, and antibiotic compounds involve superoxide dismutase
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(SOD) and peroxidases, which degrade superoxide anion radicals, and mycothiol-medi-
ated detoxification through the enzyme Mca with thiols (11–13). All MAGs also include
genes encoding aromatic compound degradation enzymes to generate ATP, which
could potentially be used by copper-ATPase transporters.

Data availability. Raw sequencing data are available at the NCBI Sequence Read
Archive (SRA) under accession number SRR12886061. The metagenome assembly is
available at GenBank under accession number JADEYI000000000. The MAGs are avail-
able at GenBank under accession numbers JADMIG000000000, JADMIH000000000,
JADMII000000000, JADMIJ000000000, JADMIK000000000, JADMIL000000000,
JADMIM000000000, and JADMIN000000000. Prokka-based annotations of the eight
MAG contigs are publicly available at the Göttingen Research Online Database
(https://doi.org/10.25625/ODCARY).
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