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ABSTRACT
Not much information is available to substantiate the possible role of γ -aminobutyric acid (GABA) 
signaling in mitigating water-deficit stress in snap bean (Phaseolus vulgaris L.) plants under semiarid 
conditions. Present work aims to investigate the role of exogenous GABA (foliar application; 0.5, 1 and 
2 mM) in amelioration of drought stress and improvement of field performance on snap bean plants raised 
under two drip irrigation regimes (100% and 70% of water requirements). Water stress led to significant 
reduction in plant growth, leaf relative water content (RWC), cell membrane stability index (CMSI), nutrient 
uptake (N, P, K, Ca, Fe and Zn), pod yield and its content from protein and total soluble solids (TSS). 
Meanwhile, lipid peroxidation (malondialdehyde content- MDA), osmolyte content (free amino acids- 
FAA, proline, soluble sugars) antioxidative defense (activity of superoxide dismutase- SOD, catalase- CAT, 
peroxidase- POX and ascorbate peroxidase- APX) and the pod fiber content exhibited significantly 
increase due to water stress. Exogenous GABA application (especially at 2 mM) revealed partial normal-
ization of the effects of drought stress in snap bean plants. GABA-induced mitigation of drought stress was 
manifested by improvement in growth, water status, membrane integrity, osmotic adjustment, antiox-
idant defense and nutrient acquisition. Furthermore, GABA application during water stress in snap bean 
plants resulted in improvement of field performance being manifested by increased pod yield and its 
quality attributes. To sum up, exogenous GABA appears to function as an effective priming molecule to 
alleviate drought stress in snap bean plants under semiarid conditions.
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1. Introduction

The availability of freshwater sources for field irrigation 
appears as the major constraint for sustainable agriculture 
and for maintaining food security worldwide. This constrains 
may, however, be exacerbated in the semiarid regions with low 
annual precipitation (200 to 750 mm/year).1,2 In plants, 
drought stress or water deficit can cause deleterious effects at 
morphological, biochemical and molecular levels.3–6 Among 
the various physiological responses, the excessive release of 
reactive oxygen species (ROS) induced the oxidative damage 
to plant cell components, i.e. protein, lipids and nucleic 
acids7–9 and the development of several efficient non- 
enzymatic and enzymatic antioxidant systems.10–12 Plant resi-
lience to drought stress is mostly attained by the accumulation 
of compatible solutes, ion homeostasis and redox 
management.3,13–15 Furthermore, drought stress interferes 
with hormonal balance, gene expression, signaling pathways, 

photosynthetic efficiency and reduces crop yield.6,16–20 

Drought stress signaling during field irrigation is associated 
with a plethora of physiological changes associated with ROS, 
phytohormone and calcium crosstalk in plants.6,16 Calcium 
sensor proteins and ROS outburst have been reported to be 
the early signaling events associated with drought stress 
signaling.16 Plasma membrane plays a pivotal role in the per-
ception and transmission of drought signaling in plants.16–20 

Both ABA-dependent and ABA-independent signaling path-
ways are operative during drought stress tolerance in plants. 
ABA-dependent signaling events are associated with the acti-
vation of several transcription factors thus regulating gene 
expression during drought tolerance.16 In this context, it is 
important to access the role of priming compounds in ameli-
oration of the effects of drought stress in plants. Various 
physiological and biochemical changes associated with priming 
molecules are likely to decipher the mechanisms of drought 
stress regulation in plants subjected to deficit irrigation.
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Gamma-aminobutyric acid (GABA) is a neurotransmitter 
non-proteinogenic amino acid which widely presented in all 
living organisms like microorganisms, animals, insects, worms 
and plants.21–23 Following its first report in Solanum tubero-
sum, 24 investigations in the last decades have deciphered the 
role of GABA in the signaling process and regulation of plant 
growth, primary metabolism, gene expression, ion homeostasis 
and inducing of antioxidative defense systems during abiotic 
stress.25–27 Moreover, it can act as a temporary nitrogen pool 
and as a regulator to the cytoplasmic pH during stress 
conditions.21,28 Recent investigations have deciphered the 
involvement of GABA signaling in the expression of stress- 
related transcription factors (WRKY, MYB and bZIP), regula-
tion of calcium signaling and redox homeostasis.29,30 Several 
previous studies confirmed that GABA can alleviate the dele-
terious effects of different abiotic stresses including drought, 
29,31 chilling, 32 heat stress, 30 salinity33 and heavy metals.34 

Under water deficiency, GABA can act as a protective agent in 
plants by maintaining the relative water content (RWC)29 and 
cell membrane stability.35

Snap bean (Phaseolus vulgaris L.) is an annual legume crop 
commonly grown in the subtropical and temperate regions of 
the world. The crop is widely consumed for its nutritive value 
of high protein content and minerals.11,36,37 However, several 
previous studies reported that snap bean plants are very sensi-
tive to any oscillation in the soil moisture.38–40 Since water 
deficit can cause a disturbance of fertility and reducing the 
eventual yield of green pods or seeds.41 Furthermore, the 
tolerance of snap bean to water stress depends on the duration 
and severity of the exposure to water shortage and the stage of 
development %. In this respect, it has been found that snap 
bean plants are more susceptible to water stress at the flowering 
and pod-filling stages than the other developmental stages. The 
balance between the rational use of freshwater and the produc-
tivity of snap bean is still an important research question under 
semiarid conditions. Reports by Doğan and Akinci42 revealed 
that water-stress-induced alteration in nutrient acquisition 
(Na, K, Ca, Mg and Mn) in snap bean leaves. To date, insuffi-
cient information exists on the role of GABA in mitigation of 
drought stress in snap bean plants. Moreover, improved field 
performance of snap bean plants during water-deficit irrigation 
shall be a beneficial outcome of their optimum water use 
efficiency in semi-arid cultivable lands. Soil texture, moisture 
content and climatic variations are likely to cause less adverse 
effects in the presence of bio-priming molecules being applied 

to snap bean cultivars. In the present work, we hypothesized 
the efficacy of exogenous GABA in improving field perfor-
mance, pod yield, plant growth, osmotic tolerance and redox 
regulation in water-stressed snap bean plants. In the present 
work, water stress-induced snap bean plants were subjected to 
GABA treatment (foliar spray) in three variable concentrations 
(0.5, 1 and 2 mM) and its ameliorative role was analyzed with 
respect to plant biomass, osmotic tolerance, antioxidative 
defense and nutrient acquisition. Furthermore, GABA applica-
tion was found to be effective in improving yield attributes 
(pod yield, protein content, total soluble solids) in snap bean 
plants raised under water-deficit irrigation. The work was 
conducted under monitored conditions of solar radiation, pre-
cipitation, wind speed, air temperature and relative humidity 
(Table 1) in two growing seasons of 2018 and 2019. Two levels 
of irrigation water (70% and 100%) were applied to compare 
the effects of water-deficit irrigation. GABA application was 
provided in regular intervals of pre- and post-irrigational 
stages of snap bean cultivation. Thus, GABA was found to be 
an effective stress-priming molecule to manage to snap bean 
cultivation under water-deficit irrigation in semi-arid regions.

2. Materials and Methods

The field experiment was conducted in a private farm called “De 
Bruin” (Wadi El-Natroun, Beheira Governorate, Egypt) during 
the growing seasons of 2018 and 2019. Table 1 summarizes the 
climatic data which were recorded by a close agrometeorological 
station, Cairo-Alex desert road to know the environmental con-
ditions surrounding the plants in the experimental site while, the 
texture of the experimental soil and its physical and chemical 
properties are shown in Table (2).

2.1 Experimental layout

Snap bean (Phaseolus vulgaris, L.) cv. Pulista seeds were pur-
chased from Royal Sluis Company (Netherlands) and sown in 
March of 2018 and 2019 seasons. The experimental setup was 
prepared in a split-plot layout with three replicates. Drip irri-
gation was applied (100% and 70% of water requirements) in 
the surface of the main plots and GABA treatments (foliar 
applications) were distributed randomly in the sub-plots. The 
experimental unit area measured 45 m2 (15 m length x -
3 m width) and was comprised of 5 rows with a separation of 
0.6 m between each row. The plant distance was kept to 7 cm 

Table 1. Monthly averages of soil temperature, solar radiation, precipitation, wind speed, air temperature and relative humidity during the period of cultivation (May– 
September) in the season 2018 and 2019.

Soil temperature Solar radiation Dgt Wind direction dig Precipitation Wind speed HC Air temperature HC Relative humidity

[°C] [MJ/m2] [deg] [mm] [m/sec] [°C] [%]

Date aver min max aver aver sum aver aver min max aver

03/01/2018 23 17.3 28.9 547.45 99.5 11.2 0.9 17.8 3.6 37.6 60
04/01/2018 23.7 19.7 29.2 407.94 110.05 5.2 0.1 19.2 7.3 37.5 59
05/01/2018 27.2 23.9 30.5 367.02 100 0 0 24.9 11.6 40.9 57
03/01/2019 19.8 15.3 23.7 1007.34 111.26 0 1.2 19.1 7.5 36.9 58
04/01/2019 22.9 18.5 28.1 1318.77 100.07 0.8 1.7 21.7 6.8 38.5 46
05/01/2019 27.5 24.2 31.6 1368.46 97.2 0.2 1.4 26 10.2 45.6 47
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apart on one side. Snap bean plants were irrigated using drip-
pers of 4 L.h−1 capacity and 0.3 m distance between drippers. 
Plants present between the drippers received adequate water 
obtained from lateral wetting of the soil. A flow-meter was used 
to monitor the follow the flow rate for each irrigation level 
treatment. Three rows without irrigation served as a border 
between both irrigation levels.

2.2. Fertilization and agricultural management

Experimental soil was comprised of 25 m3 compost, 100 kg P as 
calcium superphosphate (15.5% P2O5) and 50 kg N as ammo-
nium sulfate (20.5% N) which were dressed in the soil per 
hectare. Chemical fertilizers (125 Kg N and 125 kg K per ha 
as ammonium sulfate and potassium sulfate, respectively) were 
injected regularly within the irrigation system. The application 
of other nutrients and all cultural processes including disease 
and pest management strategies were followed according to the 
guidelines of the Egyptian Ministry of Agriculture.

2.3. Calculation of water requirements

According to the water requirements of snap bean plants, two 
levels of irrigation water (100% and 70%) were applied 20 d after 
sowing (DAS). The plots were irrigated via manual valves for each 
experimental plot. The total amount of irrigation water was mea-
sured according to the Food and Agricultural Organization (FAO) 
Penman–Monteith (PM) procedure, FAO 56.43 The second step 
involved the analysis of the values of crop water consumptive use 
(ETcrop) as described by Doorenbos and Pruitt.44

2.4 Measurement of water usage

The total amount of water applied through the drip irrigation 
system was measured for each water regime treatment and 
appears in Table 3

2.5 Foliar application of GABA

Gamma-aminobutyric acid (GABA) (Sigma) treatment was 
applied twice in the growing phase of the plants and four 
variable concentrations (0, 0.5, 1 or 2 mM). The first set of 
treatment was applied after full emergence and 3 d before the 
start of irrigation (17 DAS). Thus, plants could assimilate 
GABA in their tissues before the exposure to water deficit. 
The second set of treatment was applied at the flowering 
stage (35 DAS). Distilled water was sprayed as a control 
(0 mM GABA) and tween 20 at 0.05 ml L−1 was used as 
a wetting agent for different foliar treatments. Leaf samples 
were collected randomly at 60 DAS from the inner rows to 
determine plant vegetative growth and analyze various bio-
chemical constitutes.

2.6. Analysis of vegetative growth

Followed by sampling (60 DAS), shoot fresh weight (FW) was 
recorded by digital balance. Following by recording of fresh 
weight, the samples were cleaned by washing with tap water 
and completely dried in an air-forced ventilated oven at 105°C. 
Followed by drying the shoot dry weight was recorded. 
Average leaf area.plant−1 was calculated as a function of unit 
area and leaf fresh weight using the following equation.45

Leaf area (cm2) = (Disk area* No. Disks* Leaf f.wt)/Disk f.wt

2.7. Measurement of leaf relative water content (RWC)

Relative water content was determined according to Ünyayar, 
et al. .46 Leaf discs were obtained from 10 leaves and the fresh 
weight was recorded. Followed by measurement the leaf discs 
were placed immediately in distilled water for 2 h at 25 ◦C and 
their turgid weights (TW) were recorded. The samples were 
then dried in an oven at 110 ◦C for 24 h (DW). Relative water 
content (RWC) was calculated by using the following formula: 
RWC = (FW-DW)/(TW-DW)*100

Table 2. Physical and chemical analysis of the experimental soil before cultivation 
in the seasons of 2018 and 2019.

Analyzed fraction 2018 2019

Physical properties
Clay % 5.0 5.8
Silt % 16 14
Sand 79 80.2
Soil type Loamy sand Loamy sand

Chemical properties
pH 8 7.9
Available nitrogen (ppm) 23.4 27.8
Available phosphorus (ppm) 17.5 19.00
Available potassium (ppm) 44.0 41.8
CaCO3 (mg/100 g soil. 3.80 3.40

Table 3. Average amounts of applied water in the seasons of 2018 and 2019.

Date Irrigation (m3. ha−1)
Average of daily requirement 

(m3. ha−1. Day−1)

1–15 Mar (15 d) 142.6 9.6
16–19 (4 d) 53.8 13.2

Starting date of both different irrigation treatments

Date 70% of water requirements Average of daily requirements 100% of water requirements Average of daily requirement

20–31 Mar (12 d) 111.8 9.4 159.8 13.2
1–15 April (15 d) 276.7 18.5 395.5 26.4
16–30 April (15 d) 307.7 20.4 439.4 29.3
1–15 May (15 d) 364.3 24.2 520.6 34.8
16–29 May (14 d) 264.5 19.0 377.8 26.9
Total (m3. ha−1) 1520.9 2089.0
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2.8 Determination of cell membrane stability index 
(CMSI)

Cell membrane stability was measured by the electrolyte leak-
age technique as described by Singh, et al.47 with certain 
modifications. Samples (10 leaf discs −1.8 cm diameter) from 
each treatment were selected randomly from fully expanded 
leaves, cleaned and incubated in 10 ml deionized water for 24 h 
on a shaker. Followed by incubation in water EC1 values were 
measured by EC meters (DOH-SD1, TC-OMEGA, USA/ 
Canada). Followed by these samples were autoclaved at 120°C 
for 20 min to determine the values of EC2. Cell membrane 
stability index was calculated using the following equation: 
CMSI = 1 - (EC1/EC2) X 100.

2.9 Estimation of lipid peroxidation

The extent of lipid peroxidation was measured by estimating 
malondialdehyde (MDA) content according to Heath and 
Packer.48 Frozen tissues (1 gm) were homogenized in 10 ml 
0.1% (w/v) trichloroacetic acid (TCA). Followed by homoge-
nization the samples were centrifuged at 4,500 rpm for 15 min. 
The reaction mixture thus prepared contained 1 ml superna-
tant and 4 ml 0.5% (w/v) thiobarbituric acid (TBA) dissolved in 
20% (w/v) TCA. The mixture was heated in boiling water for 
30 min. Followed by heating the mixture was cooled at room 
temperature and further centrifuged at 4500 rpm for 15 min. 
The absorbance of the supernatant was recorded spectropho-
tometrically (Chrom Tech CT-2200) at 535 nm and rectified 
for nonspecific turbidity at 600 nm The MDA concentration 
(nmol.g−1 FW) was calculated using Δ OD (A532-A600) and 
the extinction coefficient (ε = 155 mM−1cm−1).

2.10 Quantification of osmolytes

Proline concentration was determined with ninhydrin reagent 
as described by Bates, et al. .49 Total soluble sugars (TSS) were 
estimated by phenol-sulfuric acid method as described by 
Chow and Landhäusser.50 Free amino acids were determined 
by ninhydrin reagent as glycine according to the method of 
Hamilton, et al.51

2.11 Elemental analysis

Dry leaves were ground to powder and digested using sulfuric 
acid and hydrogen peroxide. Leaf mineral concentrations of N, 
P, K, Ca, Fe and Zn were determined according to Cottenie, 
et al. .52 Nitrogen (N) was determined by the usual Kjeldahl 
method (Velp Scientifica, Europe). The colorimetric method 
by UV/VIS spectrophotometer was adopted to determine 
phosphorous content. Potassium content was determined by 
the method of flame spectrophotometry. Calcium, iron and 
zinc were determined by atomic absorption spectrophotometry 
(AAS-Hitachi, Tokyo, Japan).

2.12 Estimation of antioxidant enzymes

Total soluble protein content was determined according to 
Bradford.53 Superoxide dismutase (SOD, EC 1.15.1.1) assay 

was based on the method described by Beyer and Fridovich.54 

Catalase (CAT) (EC 1.11.1.6) activity was determined accord-
ing to the method of Cakmak, et al. .55 Ascorbate peroxidase 
(APX) (EC 1.11.1.11) activity was measured according to the 
method of Nakano and Asada56 by monitoring the decrease of 
absorbance at 290 nm following the ascorbate oxidation for 
3 min using a spectrophotometer (Chrom Tech CT-2200). 
Peroxidase (EC1.11.1.7) activity was quantified by the method 
of Hammerschmidt, et al.57

2.13 Analysis of green pod yield and quality

Green pods were collected several times after fruit setting until 
the end of the experiment to determine the total yield. In order 
to analyze pod yield quality; total soluble solids were deter-
mined using the hand refractometer (OPTIKA, HR-190).58 

Fiber percentage in pods was determined according to Rai 
and Mudgal.59 The total protein in pods was estimated using 
the conversion factor of 6.25X nitrogen percentage content.58

Statistical analysis

All experimental data were statistically analyzed using SAS.60 

The standard deviation of the means was calculated and post 
hoc analysis for significant differences was analyzed using LSD 
test (P ≤ 0.05).

3. Results

According to the data presented in Tables 1&2, the various 
climatic factors at the site of experiment varied in the range of 
monthly averages for soil temperature (19.8–27.5°C), solar 
radiation (367.02–1368.46 MJ/m2), wind direction (97.2°- 
111.26°), precipitation (0–11.8 mm), wind speed (0–1.7 m/ 
sec), leaf wetness (1615–19,545 min), air temperature (3.6–-
11.2) and relative humidity (46–60%) in the months of the two 
growing seasons of 2018 and 2019. Analysis of edaphic factors 
(physicochemical properties) revealed the presence of loamy- 
sandy soil to be present in the experimental site. In both the 
growing seasons, the soil was comprised of the prevalent sandy 
part (79–80.2%), followed by silt (14–16%) and clay (5–5.8%). 
The analysis of chemical properties of soil revealed a higher 
amount of K levels followed by N, P and Ca. Thus, lower 
percentages of organic matter and prevalence of sand followed 
by low annual precipitation reduce the water-holding capacity 
of the soil in this semi-arid cultivation site. Thus, drought 
conditions in the experimental site may cause an additive 
adverse effect with the climate changes, leading eventually to 
poor plant growth, reduced water use efficiency and crop 
productivity.

To analyze the effect of GABA in water-stressed plants, 
findings were compared to the respective control sets (plants 
raised in well-watered conditions and in the absence of 
GABA). The mean comparison of all parameters in response 
to the two variables and their interaction (well-watered condi-
tion, water deficit and GABA treatment) are summarized in 
Table 4. ANOVA followed by post hoc LSD analysis revealed 
that both variables- irrigation (70% and 100%) and GABA 
treatments (0.5 mM, 1 mM and 2 mM) imposed significant 
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effects to most of the analyzed parameters in snap bean plants. 
Water-deficit irrigation (70%) had significant negative effects 
on all parameters at P ≤ 0.001 level and changes in K+ (%) were 
significant at P ≤ 0.05. GABA treatment led to the mitigation of 
water stress by positively upregulating the value of most of the 
parameters. GABA-treatment exhibited significant differences 
for almost all parameters except for MDA and Zn content. All 
other parameters were significant at P ≤ 0.001 level, while 
changes in fiber content and Fe content were significant at 
P ≤ 0.01 and P ≤ 0.05 levels, respectively. The interactions 
between irrigation and GABA treatment were significant for 
MDA content (P ≤ 0.001), proline content (P ≤ 0.001), free 
amino acid content (P ≤ 0.05), catalase activity (P ≤ 0.01), 
ascorbate peroxidase activity (P ≤ 0.05) and total soluble solid 
(P ≤ 0.05). Thus, irrigation and GABA treatments imposed 
significant effects to most of the biochemical and physiological 
attributes in snap bean plants.

3.1 GABA application improves plant biomass and reduces 
osmotic stress in water-deficient snap bean plants

In order to investigate the role of exogenous GABA in 
mitigation of water stress foliar spray was applied in variable 
concentrations (0.5, 1 and 2 mM). Plant biomass (shoot DW 
and FW), leaf area, relative water content and lipid peroxida-
tion (MDA content) were analyzed as plant growth factors and 
osmotic parameters in the absence and presence of water stress 
and GABA treatment. Furthermore, the cellular membrane 
stability index (CMSI) was also estimated to analyze the extent 
of drought or water stress (Figure 1).

Water deficit in snap bean plants results in significant 
(p ≤ 0.05) reduction in shoot biomass (dry weight and fresh 

weight) and leaf area in comparison with plants raised in well- 
watered conditions. GABA application in variable concentra-
tions (0.5, 1 and 2 mM) results in partial recovery of biomass 
and leaf area in well-watered state which is all the higher at 
a concentration of 2 mM. However, all three concentrations of 
GABA application in water-stressed plants exhibit similar 
effects for recovery of shoot biomass and leaf area in compar-
ison with plants raised in the absence of GABA treatment. 
Water-stressed snap bean plants exhibit a significant decrease 
in relative water content which, interestingly, shows higher 
recovery in the presence of 2 mM exogenous GABA. Water 
stress-induced membrane lipid peroxidation in snap bean 
plants is evident by an increase in malondialdehyde (MDA) 
content in comparison with that in well-watered plants. GABA 
application (0.5, 1 and 2 mM) results in decreased MDA con-
tent in water-stressed plants in comparison to control (plants 
raised in absence of GABA). Cellular membrane stability index 
(CMSI) analysis exhibits marked effects of water deficit 
(drought stress) which is evident in the form of a decrease in 
CMSI % in water-stressed plants. GABA-induced increase in 
CMSI (%) exhibits a positive correlation with increasing GABA 
concentrations both in well-watered and water-stressed plants. 
Thus, exogenous GABA application (in variable concentra-
tions) in water-stressed plants results in increased shoot bio-
mass, higher leaf area and alleviates osmotic stress. Relative 
water content (%) and CMSI% exhibit higher recovery in the 
presence of 2 mM GABA in water-stressed plants. 
Furthermore, exogenous GABA reduces the extent of lipid 
peroxidation (MDS content) in water-stressed plants. Present 
findings reveal significant differences being observed for the 

Table 4. Mean comparison shows the main effects of the irrigation levels (Well-watered and water-deficit) and the foliar applications of gamma-aminobutyric acid 
(GABA) at 0, 0.5, 1 and 2 mM on the vegetative growth, lipid peroxidation, water status, cell membrane stability index, osmolytes, antioxidant enzymes, mineral 
nutrients, pod yield and some pod quality attributes of snap bean plants.

Irrigation GABA Significance

Variables Well-watered Water-deficit LSD≤0.05 0 mM 0.5 mM 1 mM 2 mM LSD≤0.05 Irrigation GABA Interaction

Shoot fresh weight (g. plant −1) 156.3 A 117.9 B 3.95 124.3 B 141.0 A 140.2 A 142.8 A 5.59 *** *** ns
Shoot dry weight (g. plant −1) 29.2 A 21.9 B 0.64 23.7 C 26.3 AB 25.5 B 26.6 A 0.91 *** *** ns
Leaf area (cm2.plant−1) 1639 A 1310 B 39.3 1382 B 1504 A 1507 A 1503 A 55.6 *** *** ns
RWC (%) 85.7 A 71.5 B 0.77 76.7 B 78.9 A 78.8 A 79.9 A 1.09 *** *** ns
CMSI (%) 81.9 A 72.8 B 0.83 74.9 C 76.9 B 78.3 A 79.1 A 1.17 *** *** ns
MDA (nmol.g−1 FW) 7.38 B 8.58 A 0.30 8.26 A 7.96 AB 7.87 AB 7.83 B 0.42 *** ns ***
Proline (µg.g−1 FW) 193.8 B 600.1 A 22.8 335.5 C 388.6 B 428.7 A 435.1 A 32.2 *** *** ***
FAA (µg.g−1 FW) 552 B 932 A 46.3 622.4 C 737.7 B 818.7 A 790.1 AB 65.5 *** *** *
Soluble sugars (mg.g−1 FW) 2.80 B 3.51 A 0.08 2.88 B 3.21 A 3.24 A 3.30 A 0.11 *** *** ns
SOD (∆ O.Dmin −1. mg −1 protein) 6.59 B 8.74 A 0.37 6.80 C 7.45 B 8.09 A 8.32 A 0.52 *** *** ns
CAT (∆ O.Dmin −1. mg −1 protein) 1.89 B 3.63 A 0.20 2.49 C 2.58 BC 2.83 AB 3.12 A 0.29 *** *** **
POX (∆ O.Dmin −1. mg −1 protein) 26.07 B 42.39 A 1.59 31.29 C 33.87 B 35.45 AB 36.31 A 2.26 *** *** ns
APX (∆ O.Dmin −1. mg −1 protein) 1.32 B 2.28 A 0.07 1.67 C 1.77 BC 1.85 AB 1.89 A 0.107 *** *** *
N (%) 3.38 A 2.99 B 0.12 3.05 B 3.01 B 3.18 B 3.48 A 0.18 *** *** ns
P (%) 0.537 A 0.493 B 0.017 0.504 B 0.491 B 0.514 B 0.553 A 0.024 *** *** ns
K (%) 3.09 A 2.94 B 0.125 2.90 BC 2.84 C 3.03 B 3.29 A 0.176 * *** ns
Ca (%) 1.71 A 1.32 B 0.07 1.26 B 1.61 A 1.58 A 1.59 A 0.104 *** *** ns
Fe (ppm) 185.2 A 135.3 B 10.7 155.3 B 150.4 B 162.3 AB 173.1 A 15.09 *** * ns
Zn (ppm) 64.9 A 53.4 B 5.1 58.3 AB 55.3 B 60.1 AB 62.9 A 7.23 *** ns ns
Pod yield (ton.ha−1) 11.98 A 7.68 B 0.28 8.74 C 9.52 B 10.39 A 10.65 A 0.40 *** *** ns
Protein (g. 100 g−1 DW) 18.96 A 17.19 B 0.81 16.26 C 17.53 B 19.08 A 19.43 A 1.15 *** *** ns
Fibers (g. 100 g−1 DW) 3.42 B 4.18 A 0.11 3.97 A 3.81 B 3.75 B 3.67 B 0.157 *** ** ns
TSS 4.41 A 3.43 B 0.14 3.61 C 3.65 C 4.09 B 4.35 A 0.20 *** *** *

Data of the two seasons of 2018 and 2019 were subjected to combined analysis with 3 replicates in each season. The different capital letters within a row indicate 
significantly different values according to LSD’s multiple range tests (P ≤ 0.05).; RWC, leaf relative water content; MDA, malondialdehyde; CMSI, cell membrane 
stability index; FAA, free amino acids; SOD, superoxide dismutase; APX, ascorbate peroxidase; POX, peroxidase; CAT, catalase; TSS, total soluble solids. ns, not 
significant, * P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001.
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effect of irrigation and GABA application on plant biomass, 
MDA content and CMSI% (Table 4)

3.2 Foliar application of GABA promotes FAA, proline and 
soluble sugar content in water-stressed plants

Plants that were exposed to water stress exhibited 
a significant (p ≤ 0.05) increase in FAA, proline and soluble 
sugar content (Figure 2). Furthermore, the foliar applica-
tion of GABA exhibited a significant (concentration- 
dependent) increase in all the three parameters (FAA, pro-
line and soluble sugar). Treatment with 2 mM GABA was 
most efficient in all three cases, while the more conspicuous 
increase was observed for FAA and proline content. Plants 
raised in well-watered conditions, however, exhibited mar-
ginal changes in FAA, proline and soluble sugar content 
upon GABA application. Present findings reveal significant 
differences being observed for the effect of irrigation and 

GABA application on FAA, proline and soluble sugar con-
tent. Furthermore, the interaction of irrigation and GABA 
was observed to impart significant differences to proline 
and FAA content (Table 4).

3.3 GABA application upregulates antioxidant enzyme 
activity in water-stressed plants

In the present investigation water deficit in snap bean 
plants lead to significant (p ≤ 0.05) upregulation in the 
activity of SOD, POX, CAT and APX (Figure 3) in com-
parison with plants raised in well-watered conditions. The 
upregulation of enzyme activity was further prominent in 
the presence of GABA application which was all the more 
efficient in the presence of 2 mM GABA concentration. 
Contrastingly, GABA treatment in plants of well-watered 

Figure 1. Shoot fresh weight (a), shoot dry weight (b), leaf area (c), leaf relative water content “RWC” (d), cell membrane stability index “CMSI’ (e) and lipid peroxidation 
as indicated by malondialdehyde ”MDA” (f) of the snap bean plants at 60 DAS as influenced by the foliar application of GABA (0, 0.5, 1 and 2 mM) under two irrigation 
regime. Means were presented ± SD. Different letters are significant differences, according to LSD’s multiple range tests (P < .05).
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condition exhibited a marginal increase in the activity of 
SOD, POX, CAT and APX. Unlike the water-stressed 
plants, treatment with 2 mM GABA did not bring about 
any significant change in the activity of CAT, POX and 
APX in plants raised in well-watered condition. Present 

findings reveal significant differences being observed for 
the effect of irrigation and GABA application on SOD, 
POD and CAT activity (Table 4). The interaction of irriga-
tion and GABA application was significant for CAT activity 
(Table 4).

Figure 2. Free amino acids ”FAA” (a), Proline (b) and total soluble sugars (c) in the leaves of the snap bean plants at 60 DAS as influenced by the foliar application of 
GABA (0, 0.5, 1 and 2 mM) under two irrigation regimes Means were presented ± SD. Different letters are significant differences, according to LSD’s multiple range tests 
(P < .05).
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3.4 GABA application improves nutrient acquisition in 
plants subjected to water stress
In order to observe the nutritional status of the plants subjected 
to water deficit, N, P, K, Ca, Fe and Zn content (Figure 4) were 
analyzed in the absence and presence of water stress and GABA 
treatment. Water stress adversely affected the nutritional level 
of plants which was evident by a significant decrease in N, P, K, 
Ca, Fe and Zn content. GABA application specifically at 2 mM 
significantly increased N, P, K, Fe and Zn content in water- 
stressed plants. Contrastingly, 0.5 mM GABA was effective to 
bring about a higher increase in Ca content in water stressed- 
plants. GABA treatment exerted a marginal increase in nutri-
ent content in plants raised in well-watered condition (con-
trol). The effect of irrigation and GABA application resulted in 
significant differences in the content of most of the nutrients 
analyzed in the present work (Table 4).

3.5 GABA application modulates yield parameters in 
water-stressed plants

Yield parameters including pod yield, protein, fiber and TSS 
content (Figure 5) were assessed to observe the effect of 
water stress and GABA application on crop productivity. 
Water stress led to a significant reduction in pod yield, 
protein and TSS content, while fiber content exhibited 

a marked increase in water-stressed plants. GABA applica-
tion (specifically 2 mM) tends to partially normalize the 
effects of water stress on yield parameters. GABA treatment 
significantly increases pod yield, protein content and TSS 
content while it tends to decrease fiber content in water- 
stressed plants. Interestingly, a similar trend was also 
observed for GABA-mediated improvement of yield para-
meters in plants raised in well-watered conditions. The 
yield attributes exhibited significant differences in the pre-
sence of deficit irrigation and GABA application (Table 4).

4. Discussion

Water-stress in the semi-arid cultivation soils imposes serious 
hurdles to crop sustainability and fruit yield.61,62 Furthermore, 
solar radiation, temperature and soil composition appear to 
play pivotal roles in regulating plant growth (shoot–root ratio), 
crop moisture stress index (CMSI) and various other physio-
logical parameters in plant organs.62 Earlier investigations sub-
stantiate the fact that water-stressed Phaseolus vulgaris plants 
undergo alteration in osmotic status, plant growth, bean yield 
and proline content.40,63,64 In line with the earlier known 
evidence, the present work aims to investigate the role of 
gamma-aminobutyric acid (GABA) in mitigation of water- 
stress in snap bean plants. In this study, the drip irrigation 
method was applied in two sets of plants raised in well-watered 

Figure 3. Superoxide dismutase ”SOD” (a), catalase “CAT” (b) peroxidase “POX” (c) and ascorbate peroxidase ”APX” (d) in the leaves of the snap bean plants at 60 DAS as 
influenced by the foliar application of GABA (0, 0.5, 1 and 2 mM) under two irrigation regimes. Means were presented ± SD. Different letters are significant differences, 
according to LSD’s multiple range tests (P < .05).
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and water-deficit conditions and grown over two seasons of 
2018 and 2019. Followed by sowing, plants were subjected to 
water deficit for 40 d in each growing season. Following water- 
stress investigations were performed in leaves and pods 
obtained from 60 d old plants.

GABA has been known to function as an effective stress- 
priming molecule in plants. Recent investigations suggest the 
involvement of GABA in water-stress response, osmotic reg-
ulation and antioxidative defense.25,27,30,65 Earlier known 
evidences reveal the role of GABA in inducing tolerance to 
drought stress in Perennial ryegrass (Lolium perenne), bent-
grass (Agrostis stolonifera) and bread wheat (Triticum 
aestivum).29–31 GABA application results in the modulation 
of antioxidative defense, relative water content, plant growth 
and field performance during drought stress.29–31 

Furthermore, GABA application has been observed to 

upregulate the expression of CDPK26, MAPK1, ABF3, 
WRKY75, MYB13, HSP70, MT1, 14-3-3 and genes (SOD, 
CAT, POD, APX, MDHAR, DHAR and GR) in drought- 
stressed Agrostis stolonifera.30 Our current understandings 
of the mechanisms of GABA-induced drought tolerance in 
snap bean plants, however, require further investigations at 
the molecular level.

In the present work, GABA treatment (foliar application) 
was applied in variable concentrations (0.5, 1 and 2 mM). 
A total of 2 Mm GABA was observed to be most efficient in 
regulating shoot biomass (dry and fresh weight), leaf area, 
RWC, osmolyte accumulation and antioxidant enzyme activ-
ity. Furthermore, GABA treatment resulted in improved nutri-
ent acquisition (N, P, K, Ca, Fe and Zn) in water-stressed 
plants. A comparison of the mean values obtained by statistical 
analysis revealed a significant interaction between the variables 

Figure 4. Leaf mineral content including N (a), P (b), K (c) Ca (d), Fe (e) and Zn (f)in the leaves of the snap bean plants at 60 DAS as influenced by the foliar application of 
GABA (0, 0.5, 1 and 2 mM) under two irrigation regimes. means were presented ± SD. Different letters are significant differences, according to LSD’s multiple range tests 
(P < .05).
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(well-watered condition, water deficit and GABA treatment). 
The detailed analysis of the mean values and their significant 
differences in comparison with control has been summarized 
in Table 4.

In the present work, GABA treatment improves shoot dry 
weight and fresh weight, relative water content and decreases 
the extent of lipid peroxidation (MDA content) in water- 
stressed bean plants (Figure 1). Earlier reports on the role of 
GABA in modulating water content and lipid peroxidation 
during heavy metal stress have been reported in Brassica and 
Zea sp.34,66 Leaf area has also been observed to be increased 
during GABA supplementation during water stress. Thus, 
GABA application (specifically 2 mM) is likely to improve 
shoot biomass and osmotic balance (osmolyte accumulation) 
in water-stressed snap bean plants (Figures 1 & 2). GABA- 
induced alleviation of membrane lipid peroxidation has earlier 
been reported in salinity and alkalinity-stressed musk melon 
plants.67,68 Earlier investigations in white clover plants reveal 
the drought-ameliorating role of exogenous GABA which nor-
malizes the effects of PEG-induced drought stress.69 GABA 
application brought about an increase in tissue water content 
reduced electrolytic leakage, lipid peroxidation and leaf wilt in 
white clover plants.

In the present work, GABA application seems to exert 
marginal influence on these plant growth parameters in well- 

watered conditions (Figure 1 and Figure 2). Water stress in 
snap bean triggers the accumulation of the three osmolytes 
(free amino acids, proline and soluble sugars) (Figure 2). 
Present evidence is in congruence with earlier reports on the 
role of GABA in the regulation of osmolytes, namely, proline 
and soluble sugars.34,66,70 Moreover, GABA application further 
enhances the accumulation of osmolytes thus suggesting its 
role osmotic tolerance in water-stressed plants (present 
work). In the control set of plants (well-watered) GABA exerts 
marginal changes in osmolyte levels. Thus, GABA application 
(especially 2 mM) is effective in imparting osmotic tolerance in 
water-stressed plants. GABA application in drought-stressed 
white clover plants resulted in higher accumulation of endo-
genous GABA which was accompanied by a positive upregula-
tion in proline metabolism and enzymes of GABA-shunt 
pathway.69 Thus, earlier findings on GABA-induced positive 
regulation of proline metabolism provide supporting evidence 
to our present findings. GABA application (0.5, 1 and 2 mM) 
results in a surge in proline accumulation in water-stressed 
snap bean plants (present work). GABA is also known to be an 
effective regulator of carbon metabolism and modulates the 
activity of NADP-dependent isocitrate dehydrogenase 
(NADP-ICDH) and phosphoenolpyruvate carboxylase 
(PEPCase).25 Upregulation of GABA shunt has been attributed 
to GABA-induced accumulation of TCA cycle intermediates.71 

Figure 5. Pod yield (a) and its content from protein (b), fibers (c) and total soluble solids “TSS” (d) of the snap bean plants as influenced by the foliar application of GABA 
(0, 0.5, 1 and 2 mM) under two irrigation regimes. Means were presented ± SD. Different letters are significant differences, according to LSD’s multiple range tests 
(P < .05).
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The present findings reveal a marginal increase in the accumu-
lation of soluble sugars during GABA supplementation in 
water-stressed snap bean plants. Thus, in the present work, 
GABA signaling during water-stress is expected to regulate 
carbohydrate metabolism.

Water deficit during drought stress is known to trigger both 
enzymatic and non-enzymatic antioxidative defense thus lead-
ing to redox homeostasis.72 In the present study, our results 
depict that water-stress resulted in a marked increase in the 
activity of SOD, CAT. POX and APX (Figure 3). A similar 
trend was observed for all the four enzymes thus suggesting 
their integrative role in regulating water stress tolerance in 
snap bean. Exogenous application of GABA positively upregu-
lates the activity of all the four antioxidant enzymes. Previous 
reports have established the role of GABA in the modulation of 
antioxidative defense in Brassica and Zea sp. .34,66 GABA- 
mediated surge in the activity of superoxide dismutase 
(SOD), ascorbate peroxidase (APX) and dehydroascorbate 
reductase (DHAR) is accompanied by reduced lipid peroxida-
tion in salinity and alkalinity-stressed musk-melon plants.67 In 
support to earlier findings, present investigation in snap bean 
plants reveals GABA-induced upregulation of antioxidative 
enzymes to be accompanied by reduced lipid peroxidation.

Phaseolus vulgaris is sensitive to water-stress and is known 
to suffer in shoot growth and yield attributes.73–77 The reduc-
tion in leaf area in water-stressed snap bean has been reported 
to cause a reduction in photosynthesis rate and dry matter 
yield.75 Our observation of water-stress-induced reduction in 
leaf area and dip in dry matter yield in snap bean plants 
(present work) are in congruence with the earlier observations. 
Although various aspects of water-stress-induced changes in 
yield attributes of Phaseolus vulgaris have been documented, 
73–77 GABA-mediated priming of water stress does not have 
sufficient reports.

Drought stress is known to adversely affect nutrient uptake 
and restricts nutrient translocation in plant organs.78 Water 
use–efficiency during drought stress has been known to be 
intimately associated with N uptake (N, ammonium and 
nitrate) in plants.79,80 The activity of high-affinity nitrate trans-
porters is in turn known to regulate aquaporin activity thus 
modulating water transport. In the present work, water stress 
resulted in a significant decrease in N, P, K, Ca, Fe and Zn 
content in snap bean leaves. In congruence to the present 
findings, earlier reports suggest water stress associated- 
decrease in the activity of N-uptake proteins (NRT1 and 
NRT2).81 GABA application improves N uptake in the leaves 
of water-stressed snap bean plants (present work) (Figure 4). 
Endogenous GABA levels are known to trigger nitrate uptake 
and nitrogen metabolism in Arabidopsis roots subjected to 
nutrient stress.25 Furthermore, Sulieman82 discusses the role 
of GABA in enhancing the nitrogen-fixing efficiency in 
legumes. According to investigations by Barbosa, Singh, 
Cherry and Locy, 25 GABA functions as an important modu-
lator of nitrate uptake in roots of Arabidopsis. Additionally, 
GABA application results in upregulation of enzymes asso-
ciated with N-metabolism, namely – nitrate reductase (NR), 
glutamine synthetase (GS), glutamate synthase (NADH- 
GOGAT). GABA appears to function as an important sensor 
of N-deficiency, which in turn triggers nitrate uptake through 

plant roots. Similar to the findings in Arabidopsis, GABA 
application has been known to upregulate nitrate reductase 
and glutamine synthetase activity in cultivars of maize.83 In 
our study during water stress, N levels in leaves exhibit 
a significant decrease which in turn is partially recovered by 
GABA application. Thus, GABA-induced increase in 
N content in leaves is possibly operated through increased 
nitrate uptake through roots and remobilization of N from 
other plant organs. Although persuasive at this moment, 
further investigations are necessary to reveal the routes of 
N uptake and its mobilization induced by GABA treatments. 
Similar to earlier reports, in the present work water-stress 
induced a decrease in P, K, content is likely attributed to 
their reduced absorption by roots and impairment of nutrient 
transport through xylem.84 During drought stress, P is likely to 
be converted from the immobile to insoluble form84 and 
a reduction is observed for P-uptake proteins (PHT1).81 

Interesting reports by Su, et al.85 reveal GABA-induced upre-
gulation of H+-ATPase activity, followed by improved mem-
brane potential and decrease in stress-induced K+ leakage from 
salinity-stressed Arabidopsis roots. In support with these 
investigations, our study reveals improved K+ content in leaves 
of water-stressed snap bean plants subjected to GABA 
treatment.

Calcium is an immobile element and requires sufficient 
water supply for its optimum uptake.86 GABA application is 
known to exert positive effects in increasing Ca2+ and calmo-
dulin content in NaCl-stressed barley plants.87 The increase in 
calcium content resulted due to higher calcium uptake through 
roots accompanied by altered distribution of calcium in tissues. 
The present findings reveal increased calcium content in leaves 
of water-stressed snap bean plants subjected to GABA 
(0.5 mM) application. Increased endogenous calcium levels 
have been reported to trigger glutamate decarboxylase (GAD) 
activity thus causing higher accumulation of GABA in heat- 
stressed Arabidopsis.88 Thus, GABA-Ca2+ crosstalk appears to 
be a crucial route of stress tolerance in plants. GABA signaling 
is essentially mediated by negative regulation of aluminum- 
activated malate transporter (ALMT) activity which in turn 
regulates anion flux in the cell.89 The authors state the role of 
GABA as a legitimate signaling molecule in plants. Thus, 
improvement in nutrient acquisition and uptake of essential 
elements (N, Ca, P, K, Fe and Zn) in water-stressed snap bean 
plants (present work) is likely to be regulated by the control of 
ion influx in plant organs. GABA application has been known 
to down-regulate the expression of 14-3-3 gene family proteins 
in Arabidopsis.90 While 14-3-3 proteins are considered as 
important players in the regulation of enzymes of carbon and 
nitrogen metabolism, GABA-induced regulation of these 
enzymes might be mediated by the changes in the expression 
of 14-3-3 proteins.

In the present work, GABA treatment improves the uptake 
of all the nutrients which also correlate with improved relative 
water content (RWC), increased cellular membrane stability 
index in leaves of snap bean plants. Fe and Zn are the major 
micronutrients transported through xylem stream. Thus, 
GABA application collectively improves nutrient acquisition 
in leaves of water-stressed snap beans. Improvement in mem-
brane stability is also reflected by a lower extent of lipid 
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peroxidation (decreased MDA content) which is accompanied 
by an elevation in antioxidant enzyme activity.

Water stress is known to affect crop yield in snap bean.73–77 

According to Manjeru, Madonzi, Makeredza, Nciizah and 
Sithole, 40 water stress adversely affects flower size and grain 
yield. Furthermore, water stress largely affects the flowering 
and seed filling stage of the plant thus affecting pod size and 
seeds per pod. Irrigation with an 80% reduction in water 
availability causes 70% bud abortion and results in 53% 
decrease in pod number in Phaseolus vulgaris plants.91 The 
shallow root system of Phaseolus vulgaris has been attributed 
to its sensitivity to water stress.92 Seed quality and dry matter 
yield have been reported to be affected by water stress.73,77,93 In 
our present study pod yield, total protein content and total 
soluble solids (TSS) were observed to be decreased due to water 
stress. However, the reverse effect was observed for fiber con-
tent which increased significantly. GABA treatment (up to 
2 mM) was effective in alleviating the effect of water stress on 
the yield attributes. Investigations have priorly reported the 
role of GABA in drought stress alleviation and improvement of 
various physiological and agronomic attributes.29,30,70

In the present study, snap bean plants responded to the 
exposure of water-deficit irrigation in two growing seasons. 
The three variables in the experiment, well-watered condition, 
water deficit and GABA treatment exhibit interactions, where 
GABA treatment mitigates water stress and tends to normalize 
its effects. Importantly, GABA exerts prospective role as 
a stress-priming molecule in snap bean plants exposed to semi- 
arid irrigation system. A total of 2 mM GABA concentration 
appears to be more efficient to bring about ameliorative 
changes.

5. Conclusions

Present findings reveal the role of GABA as an effective stress- 
priming neurotransmitter which exerts beneficial effects in 
water-stressed bean plants. Among the various neurotransmit-
ters associated with abiotic stress tolerance in plants, fewer 
reports are available to substantiate the role of GABA in miti-
gation of drought stress in snap bean crop. GABA- 
supplementation is effective in bringing about improvement 
in yield attributes and osmotic tolerance in bean plants. GABA 
application during irrigation in arid zone is likely to possess 
agronomic importance for crop improvement. Future investi-
gations are necessary to elucidate the mechanistic role of 
GABA in the regulation of various other biomolecules during 
water stress. Investigations on leaf area index, stomatal con-
ductivity and root architecture regulation by GABA are likely 
to provide promising agronomic benefits in near future. 
Furthermore, GABA application to roots and foliage are 
expected to provide stress-priming responses during drought 
stress in crops raised under deficit irrigation. Reconstruction of 
bio-engineered plants for GABA metabolic pathway shall serve 
as a better approach toward crop sustainability in arid zones. 
Further investigations are necessary to decipher the molecular 
mechanisms of GABA signaling in drought-stressed snap bean 
plants which are likely to be associated with gene expression, 

regulation of transcription factors and hormonal metabolism.
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