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ABSTRACT

The influence of diet on the gut microbiota is an emerging research area with significant impact on human health and disease. However, the effects
of beef, the most consumed red meat in the United States, on gut microbial profile are not well studied. Following Preferred Reporting Items for
Systematic Review and Meta-Analysis Protocols, the objective of this systematic review was to conduct a rigorous and thorough review of the current
scientific literature regarding the effects of beef protein and the resulting bioactivity of beef protein and amino acids on the gut microbiota, with
the goal of identifying gaps in the literature and guiding future research priorities. Utilizing MEDLINE Complete, PubMed, ScienceDirect, Scopus, and
Google Scholar databases, we conducted searches including terms and combinations of the following: animal protein, amino acid, beef, bioactive
compounds, diet, health, microbiome, peptide, processed beef, and protein. We identified 131 articles, from which 15 were included in our review.
The effects of beef on mouse and rat models were mostly consistent for the bacterial phylum level. Short-term (1–4-wk) beef intakes had little to
no effect on microbial profiles in humans. Most studies utilized high beef feeding (240–380 g/d), and no study examined recommended amounts
of protein [∼3.71 oz/d (105 g/d) meats, poultry, and eggs, or ∼26 oz/week (737 g/wk) from these food sources] according to US dietary guidelines.
Additionally, the majority of animal and human studies with adverse findings examined the impact of beef in the context of a diet high in fat or
sugar. In conclusion, an extensive gap exists in the literature regarding beef and the microbiota. More studies are necessary to elucidate the role of
the microbiota following the consumption of beef, especially in interaction with other dietary compounds, and how beef preparation, processing,
and cooking methods differentially influence the biological effects of beef on human health. Adv Nutr 2021;12:102–114.
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Introduction
The United States is a leading nation in the consumption
of red meat, with 2017 estimates indicating 49.5 kg (109 lb)
per capita, which is expected to increase to 50.8 kg (112 lb)
by 2027 (1). A recent NHANES evaluation of trends in
meat consumption from 1999 to 2016 reported beef as
the most abundantly consumed type of red meat in the
United States (2). Given the increasing health concerns
about red meat consumption (3), it is crucial to understand
how the biological functions of the nutrients in red meat,
particularly beef, vary and differentially impact health since
the nutritional profile of meat varies by the type of meat, for
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example, white or red meat, processed or unprocessed meat
(see Table 1 for defined terminology) (4).

Protein exerts nutritional, functional, and biological
properties and plays an essential role in human health.
A comprehensive assessment of dietary protein quality
includes amino acid composition, digestibility, rate of protein
digestion, and potential for generation of biologically active
peptides (i.e., bioactive peptides) (5). Upon consumption,
animal protein provides all 9 essential amino acids required
by the human body. Distinctively, red meat is also a
source of heme iron, which has higher bioavailability (i.e.,
meaning it is more absorbable) compared with nonheme
iron found in plants (6), in addition to vitamins, especially B
vitamins, and minerals, such as copper, manganese, zinc, and
iron (7).

Moreover, recent research suggests that sources of dietary
protein (animal compared with plant) and their associated
nutrients can differently influence the gut microbiota (8–
10), which is recognized as an important mediator between
food and host (11) that can instigate or prevent chronic
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TABLE 1 Relevant terms related to beef

Term Definition

Meat The flesh of an animal as food
Processed meat Meat that has been preserved by methods other than freezing, such as salting, smoking, marinating,

air-drying, or heating (e.g., ham, bacon, sausages, hamburgers, salami, corned beef, and tinned
meat)

Red meat All types of mammalian muscle meat, such as beef, veal, pork, and lamb (fresh, minced, and frozen)
Beef The flesh of a cow, bull, or ox, used as food
Protein Any of a class of nitrogenous organic compounds that consist of large molecules composed of ≥1

long chains of amino acids and are an essential part of all living organisms, especially as structural
components of body tissues such as muscle

Peptide A compound consisting of ≥2 amino acids linked in a chain
Amino acid A simple organic compound containing both a carboxyl (–COOH) and an amino (–NH2) group
Protein-derived bioactive compounds Intermediates of proteolysis or amino acid sequences which exert a beneficial effect on body

function and/or positively impact human health, beyond its known nutritional value

and metabolic diseases, including cancer and cardiovas-
cular disease (12, 13). The human intestinal tract houses
10 trillion microorganisms, including bacteria, viruses,
fungi, and protozoa. Of these, the intestinal bacterial profile,
known as the “gut microbiota,” is of significant interest, given
its role in human disease (14, 15). Differentiation of the
microbiota—or specific changes in particular microbes or
groups of microbes—alters gut homeostasis. Gut dysbiosis
is characterized by adverse disruptions in microbial profile
(16), which increase systemic inflammation through leaks
of inflammatory substances from the gut (such as bacterial
LPSs). Inflammation further contributes to increased risk of
metabolic and chronic diseases, such as obesity, diabetes, and
cancer (14, 17).

There are 5 major bacterial phyla in the human digestive
tract, including Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, and Verrucomicrobia. Firmicutes (Gram-
positive) and Bacteroidetes (Gram-negative) constitute the
majority, making up ∼65% of total bacteria (18). Resident
microorganisms of the human gut vary among individuals
based on several factors, including mode of birth, sex, age,
health, body weight, diet, physical activity, and medicinal
history, particularly the use of antibiotics (19). Changes in
diet rapidly alter colonic microflora, indicating that diet can
strongly influence microbiota, even more than host genetics
(20, 21). Because these bacteria are primarily responsible
for breaking down indigestible starches, several published
studies have focused on the microbiota’s response to dietary
carbohydrate (22, 23). Additionally, human studies have
also focused on the response of the microbiota to quantity
and quality of dietary fat intake (24, 25). However, less is
known regarding the microbiota’s response to and digestion
of protein.

Protein and the microbiota
Colonic microbes present considerable proteolytic power.
Metabolic activity of the gut microbial community is perhaps
even more efficacious than that which occurs in the small
intestine under enzymatic control of the host (26, 27).
In the gastrointestinal tract, proteins are first hydrolyzed

by peptidases to polypeptides and further to sequences
of amino acids—tripeptides, dipeptides, and single amino
acids. Bacterial proteases can generate small peptides and
single amino acids that can be fermented to produce
SCFAs, including acetate, propionate, and n-butyrate, as well
as derivatives of branched-chain amino acids, branched-
chain fatty acids, which include isobutyrate, isovalerate, and
2-methylbutyrate (28, 29). The amino acids Arg, Asp, Gly,
Phe, Pro, Ser, Thr, and Trp more likely undergo bacterial,
rather than host, digestion (30). Although digestion and
absorption of dietary protein is efficient in healthy humans,
∼10% reaches the large intestine and is available for
bacterial fermentation (31, 32). Early human fecal culture–
based microbiology techniques identified Bacteroides and
Propionibacterium as two dominant proteolytic genera (28).
Other proposed important genera include Bifidobacterium,
Clostridium, and Streptococcus (28, 33).

Many factors can influence the proportion of dietary
protein that reaches and is digested by bacteria in the large
intestine. However, protein modifications during cooking, as
well as interactions with other dietary nutrients, can alter
protein bioavailability (34). Additionally, microbial enzymes
use different cleavage sites than digestive enzymes and thus
produce different peptides with different biological activity
(35).

Interestingly, recent studies indicate that bacterial pres-
ence in the human digestive tract might mediate the
production of toxic compounds from proteins, such as the
production of trimethylamine from l-carnitine via microbial
metabolism (36). Thus, the interactions of colonic microflora
and dietary protein have prompted significant interest in
their implications for human health since the microbial
profile is impacted by diet, and the activity of microbial
enzymes impacts the production of protein-derived bioactive
compounds.

Dietary protein from beef
Protein-derived bioactive compounds are usually low-
molecular-weight peptides (<5 kDa), which are either in-
termediate products of proteolysis (protein degradation), or
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amino acid sequences within the protein that, upon isolation,
exert a beneficial effect on body function with potential posi-
tive impacts on human health, beyond any known nutritional
value (37). There are 3 ways in which bioactive peptides
can be generated: 1) during digestion via digestive enzymes;
2) during digestion via microbial enzymes; and 3) during
food processing or ripening using purified or microbial
enzymes (38, 39). Both digestion site and responsible enzyme
result in various peptides, thus altering the bioactivity (35).
Processes that generate peptides, and limitations of and
opportunities within these processes, have been extensively
reviewed (40). Although protein requirements are well
established—the RDA for protein is 0.8 g/kg body weight/d,
with an intake of ≤2.5 g/kg body weight/d being acceptable
(41)—there are no federal/medical recommended values for
protein-derived bioactive compounds, and little information
regarding requirements and relational health benefits.

Protein-derived peptides have various bioactive proper-
ties, including antihypertensive, mineral-binding, antimicro-
bial, immunomodulating, cell-modulating, anticarcinogenic,
anti-inflammatory, and cholesterol-lowering properties (40,
42–45). Widely studied, the role of biologically active
peptides from dietary protein sources, such as milk (46),
fish (47), seaweed (43), and soybeans (48), in human health
is established; however, that of bioactive compounds from
protein-rich foods, including beef, is less known.

Muscle (meat)-derived bioactive peptides and amino
acids include anserine (β-Ala-1-methyl-His), carnosine (β-
Ala-His), l-carnitine (β-hydroxy-γ -trimethylaminobutyric
acid), glutathione (γ -Glu-Cys-Gly), and taurine (49–51).
Of these, the histidine-containing dipeptides, carnosine
(β-Ala-His) and anserine (β-Ala-1-methyl-His), are the
major dipeptides present in mammalian skeletal muscle (49).
A limited number of studies exist on the presence of amino
acids and peptides present in beef, and those that do present
incomplete information and inconsistent findings. Only
one study on beef (52) has sought to determine all (proteino-
genic and nonproteinogenic) amino acids and small peptide
content in beef, and reported glutamine to be the most abun-
dant amino acid, followed by taurine, alanine, glutamate,
and β-alanine (52). Postmortem protein degradation results
in the production of polypeptide fragments, which can be
further hydrolyzed via peptidyl peptidases and aminopepti-
dases to generate smaller peptides and individual amino acids
(53). Concentrations of these bioactive dipeptides are lower
in cooked beef meat compared with fresh muscle (54, 55);
however, cooked beef is still a substantial source of carnosine
and anserine (55).

It is critical to understand how individual strains of the
gut microbiota respond, as well as how they interact with one
another as functional groups when exposed to carbohydrate,
fat, and protein, and how, in turn, these changes impact the
production of their enzymatic products. Therefore, through
this systematic review, we conducted a rigorous and thorough
review of the current scientific literature regarding the
effects of beef consumption on gut microbiota; beef was
chosen because it is the most abundantly consumed red

meat in the United States. We examined the bioactivity
of beef proteins and amino acids on gut microbiota and
identified gaps within the literature to guide future research
priorities.

Methods
This systematic review referred and followed checklists
(Supplemental Table 1) provided by the Preferred Reporting
Items for Systematic Review and Meta-Analysis Protocols
(PRISMA-P) (56). The literature search identified animal and
human studies published from database inception to July 31,
2019. We collected peer-reviewed, English-written articles
from: 1) MEDLINE Complete, 2) PubMed, 3) ScienceDirect,
4) Scopus, and 5) Google Scholar. Search terms included
combinations of the following: animal protein, amino acid,
beef, bioactives, diet, health, microbiome, peptide, processed
beef, and protein. We retrieved and reviewed relevant articles,
and from those we closely analyzed references to identify any
missed articles. Articles containing a “red meat” descriptor,
where the study specified the red meat was composed of
beef as the primary protein source, were included in this
systematic review (Figure 1). Articles that did not include
beef as a food type were excluded. Three independent
reviewers determined article eligibility.

Results
Overall, there has been a minimal number of studies that
have examined the role of beef protein on the microbiota.
Given our criteria, our search yielded a total of 15 eligible
articles and included 10 animal and 5 human studies.

Beef protein and gut microbiota: animal studies
The effects of beef on mouse and rat models are consistent
for bacterial phylum level (Table 2), with increases in the
relative abundance of Proteobacteria (10, 57), and Firmicutes
(10, 57, 58) and decreases in Bacteroidetes (10, 57). The
lactic acid–producing genus, Lactobacillus, increased when
just beef extract was fed (10, 58). Our literature search also
indicates that beef feeding increases Proteobacteria both in
mice and pig models (59). See Table 3 for findings from
pig studies. Beef consumption showed a mixed impact on
some of the SCFA-producing bacterial genera. For example,
beef increased the genera Clostridium (57, 60) and Blautia
(58, 61), whereas Bifidobacterium (62) and Akkermansia (61,
62) decreased. All mouse and rat studies were conducted on
males, emphasizing the need for further studies on female
animal models.

Beef protein and gut microbiota: human studies
Of the 5 human studies that were relevant to our topic of
beef protein and gut microbiota in humans, a considerable
variation existed on the influence that beef has on the
gut microbiota (Table 4); most likely this is a result of
differences in objectives, study design, intervention duration,
subject characteristics, beef portion, and diet composition.
For example, subjects ranged from breastfed infants (63)
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FIGURE 1 PRISMA flow diagram representing overview of literature selection process for inclusion in systematic review. PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

to endurance athletes (64). Consistently, short-term (1–
4-wk) beef intakes had little to no effect on microbial
profile (65–67). Most studies utilized high beef feeding (240–
380 g/d) (65–67), and no study examined recommended
amounts of protein according to Dietary Guidelines for
Americans (68).

Discussion
Animal meat is a complete source of dietary protein,
composed of all essential amino acids, and is also a source of
fatty acids, vitamins, and minerals (69). Furthermore, animal
protein promotes satiety and enhances energy expenditure
and fat loss compared with plant proteins (70). Observational
studies have reported red meat consumption as a risk factor
for cardiovascular disease and other metabolic diseases, such
as type 2 diabetes mellitus, although recent studies indicate
that this link might only exist with the consumption of
processed red meat (3). Respective of the controversial health
findings, the majority of studies included in this review
examined the impact of excessive intakes of beef in the
context of a diet high in fat or sugar. This type of diet,
sometimes identified as the Western diet or standard Ameri-
can diet, is independently associated with increased chronic
noncommunicable disease risk (71), and is often associated
with a high intake of refined and processed foods, including
processed meats and simple (added) sugars and fat and low
intake of fruits, vegetables, and whole grains. Furthermore,
a recent clinical investigation reported that ultraprocessed
foods increase weight gain independent of energy intake (72),
highlighting the need to better understand the association

of unprocessed and processed red meat with chronic disease
risk (73, 74), particularly regarding the role of gut microbiota
and related metabolites in mediating effects of lean beef or
beef proteins.

In conjunction with a diet high in fat or sugar, beef
protein can adversely affect health, microbial composition,
and the gut barrier when compared with casein or white
meat protein (61, 75), for example, by increasing numbers of
the Proteobacteria (75), which are associated with dysbiosis
(76). However, changes in bacterial composition in response
to high-fat + beef and high-sucrose + beef feedings are
comparable with those reported in Westernized diet feedings
in animal studies, with increases in Desulfovibrionaceae and
decreases in Lactobacillaceae (77, 78). Interestingly, high-fat
diet–related decreases in Bacteroidetes and increases in both
Firmicutes and Proteobacteria are independent of obesity
(78), implying the influence of diet composition, particularly
fat, in the microbial response. Moreover, there were no
significant differences in serum indicators of health or
microbial profile when various protein sources (beef, casein,
soy) were consumed in conjunction with a low-fat diet (61).

Gram-negative bacteria, such as Bacteroidetes, produce
LPS, (79, 80), an endotoxin that drives systemic inflammation
and metabolic endotoxemia by upregulating proinflamma-
tory cytokines if leaked into circulation from the intestine
(81, 82). Few animal studies reported decreased relative
abundance of Bacteroidetes in response to beef feeding
compared with a nonpurified diet (57) or casein diet (10, 58).
Additionally, LPS-binding protein, an indicator of gut barrier
damage, was highest in the casein group when compared with
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other low-fat groups (61). Therefore, high-fat diets could be
of greater concern than dietary protein sources for adversely
impacting microbial profile.

In animal studies, beef feeding increased the relative
abundance of Firmicutes (10, 57, 58), while decreasing
Bacteroidetes (10, 57). In other words, red meat can increase
the Firmicutes/Bacteroidetes ratio, which is often associated
with increased BMI in human subjects (84, 85). Related
findings were variable in the few human studies we identified
in our literature search, with contradictory changes in the
relative abundance of Firmicutes being reported (63, 64). Ad-
ditionally, bacterial cultures following high-beef feeding (380
g/d) in humans indicated significant increases in Bacteroides
(65), a genus of the Bacteroidetes phylum. According to the
2015–2020 Dietary Guidelines for Americans, 26 oz/wk (737
g/wk), or ∼3.71 oz/d (105 g/d), from protein foods, including
meats, poultry, and eggs, is recommended. Assuming that 1
oz (28.35 g) of meat contains ∼7 g protein, this equates to
∼26 g protein/d from this food type (68); however, protein
recommendations can vary according to need, and thus
more protein could be consumed from this food group to
meet upper protein recommendations (2.5 g/kg/d) based
on body weight, for example (41). Gaps between protein
recommendations and amounts used in human studies
denote a need for evaluating the impact of protein quality
and quantity on human microbiota, especially in populations
with elevated protein intakes, such as athletes (86).

Food processing, preparation, and storage affect the
nutritional, functional, and biological properties and di-
gestibility of protein. In vitro studies of human fecal batch
cultures indicate that meat type and cooking method both
impact microbial profile (87). Additionally, adverse findings
associated with excessive beef intake include those related
directly to cooking at high temperatures, which can result
in the production of polycyclic aromatic hydrocarbons and
heterocyclic amines (88), N-nitroso compounds generated as
microbial byproducts, or the presence of the nonhuman sialic
acid N-glycolylneuraminic acid (89).

Moreover, mechanisms linking beef and the development
of chronic noncommunicable diseases are not fully
understood but could be related to micronutrients because
iron and zinc have reportedly influenced microbial profile
(63). For example, several studies have examined the effect
of heme iron on health and microbial composition; however,
these cannot be translated directly to beef feeding (90).
Additionally, even though iron content can be standardized
when comparing protein diets, animal and plant proteins
comprise different types of iron (heme and nonheme,
respectively), which can differentially impact microbial
profile. Accordingly, heme studies and animal protein
studies have conflicting results—elevated heme intake results
in decreased Lactobacillus and increased Proteobacteria (91),
whereas proteins extracted from beef have the opposite effect
on Lactobacillus (10, 58). Lactobacillus is considered a key
player in host energy metabolism (92, 93) and in reducing
inflammation by positively shifting the gut microbial profile
and protecting the gut barrier (82, 94, 95). These findings TA
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emphasize the impact of individual components of beef
(i.e., heme compared with proteins extracted from beef)
compared with beef as a whole on microbial profiles. Animal
studies indicate significant decreases in Lactobacillus with
high-fat beef feeding compared with casein (61), and beef
feeding compared with chicken (75). A systematic review
of adverse compounds associated with red meat suggests
that better designed and controlled studies that use relevant
concentrations of meat or meat-derived compounds in
conjunction with diets representative of human diets are
needed (97). Furthermore, approaches to prevent the toxicity
associated with red meat consumption have been explored,
for example, by increasing calcium in the diet, altering meat
processing, or adding vitamin E (98). As these studies evolve,
future microbiome and microbiota studies need to include
the effects of these combinations, processing methods, and
additives in regard to beef consumption.

Future Perspectives
More studies are necessary to elucidate the role of the gut
microbiota following the consumption of beef, especially in
interaction with other food compounds, particularly fat and
carbohydrate (Figure 2). Studies are needed in both animals
and humans to understand how different beef preparation,
processing, and cooking methods differentially influence the
biological effects of beef. Further, animal protein sources
vary in composition, for example, by fatty acid profile, which
is largely influenced by the diet of the animals (99) and is
an important consideration for studies comparing microbial
changes and chronic disease risk in response to diet (100).
These diets must be standardized in fatty acid profile and
micronutrients, for example. Moreover, several techniques
have been utilized to understand microbial digestion of
dietary protein and the resulting bioactive compounds;
however, there is a need to develop more cost-effective and
appropriate techniques because there are many factors that
influence this process, including the presence of other macro-
and micronutrients (40).

Additionally, microbiome-related metabolomics studies
are needed to determine the impact of beef consumption
on changes in gut microbiota and how these correlate
with host physiology and health. Moreover, how these
diets affect metabolism in a tissue-specific manner is
not well studied in animal models. Further mechanistic
studies investigating the role of beef-associated bioactive
compounds, in the context of various diets, are needed.
For example, l-carnitine has been shown to ameliorate the
negative influence of high-fat diets on the lipid profile in rats
(101) but has also been shown to increase the production
of toxic byproducts (36). However, the metabolism of
these protein-related compounds largely depends on the
colonic microbiota composition and its metabolic influ-
ence; therefore, paired analyses of protein-derived bioactive
compounds and microbially related metabolites should be
considered.

SCFAs are the end-products of carbohydrate and pro-
tein microbial digestion in the large intestine, which can
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FIGURE 2 Extensive gaps exist in the literature regarding beef, its related bioactive compounds, and effects on gut microbiota. Various
preparations, processing and cooking methods, and temperatures are utilized in the examined literature, which likely impact the
bioactivity of beef. Research subjects varied in age and models used from rodents to human subjects. The effects of beef on the male
mice and rats were mostly consistent, indicating increased Proteobacteria and Firmicutes and decreased Bacteroidetes. Findings regarding
effects on SCFA-producing bacterial genera were discrepant, with increases in Clostridium and Blautia and decreases in Akkermansia.
Short-term (1–4-wk) beef intakes had little to no effect on microbial profiles in humans. Most studies with adverse findings (animal and
human studies) examined the impact of red meat or excessive intakes of red meat in the context of a diet high in fat or sugar.

positively impact health (102). Production of SCFAs varies
by microbiota profile—bacteria produce different SCFAs
based on substrate preference—and also by the undigested
substrate that enters into the large intestine (103–105). To
our knowledge, only 2 animal studies (by the same research
group) have compared different protein extracts from differ-
ent sources on SCFA production in conjunction with changes
in microbial composition (58, 83). Each reported higher
SCFA production following consumption of soy protein
compared with protein extracted from chicken and beef (58,
83); however, this could be due to the limited bioavailability
of soy compared with meat protein (70). Several animal
studies have demonstrated that resistant starch, in addition
to red meat, decreased the risk of colon cancer (106–108). A
similar human study by the same group reported increased
SCFA production and changes in microbial profile following
a high-beef (300 g/d) + butyrylated high-amylose maize
starch diet for 4 wk (66). Interestingly, pureed beef as a
complementary food in otherwise breastfed infants increased
fecal SCFA-producing bacteria (63), which could have impli-
cations in the healthy development of the infant microbiota,
nutrient metabolism, and immune system development
(109). Future studies are needed to investigate the long-term
combined effects of starch and beef proteins in recommended
amounts on microbial composition and respective SCFA
production, and, further, to investigate the impact of this
combination in overweight individuals or in the context of
a high-fat/high-sucrose diet.

Conclusions
In conclusion, when consumed at higher than recommended
levels as part of a diet high in sugar or fat, beef has adverse
consequences for the gut microbiota. Human studies indicate
minimal changes in the gut microbial profile in response
to short-term (1–4-wk) beef feeding. Future research is
needed to: 1) elucidate changes in the microbiota in response
to the consumption of beef, itself, in recommended and
excessive amounts according to dietary guidelines, and in
combination with other nutrients; 2) conduct microbiome-
related metabolomics studies to understand how changes in
microbiota correlate with host physiology; 3) investigate the
role of beef-derived bioactive compounds in the context of
various diets; 4) determine if other nutrients, such as complex
carbohydrates, can ameliorate some negative effects of
increased beef consumption as part of high-fat and/or high-
sucrose diets; 5) identify alterations in SCFA production with
beef consumption; and 6) develop more cost-effective and
appropriate techniques to understand microbial digestion of
dietary protein, including food types such as beef.
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