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ABSTRACT

Use of high-fat, ketogenic diets (KDs) to support physical performance has grown in popularity over recent years. While these diets enhance fat
and reduce carbohydrate oxidation during exercise, the impact of a KD on physical performance remains controversial. The objective of this work
was to assess the effect of KDs on physical performance compared with mixed macronutrient diets [control (CON)]. A systematic review of the
literature was conducted using PubMed and Cochrane Library databases. Randomized and nonrandomized studies were included if participants
were healthy (free of chronic disease), nonobese [BMI (kg/m2) <30], trained or untrained men or women consuming KD (<50 g carbohydrate/d
or serum or whole-blood β-hydroxybutyrate >0.5 mmol/L) compared with CON (fat, 12–38% of total energy intake) diets for ≥14 d, followed by a
physical performance test. Seventeen studies (10 parallel, 7 crossover) with 29 performance (13 endurance, 16 power or strength) outcomes were
identified. Of the 13 endurance-type performance outcomes, 3 (1 time trial, 2 time-to-exhaustion) reported lower and 10 (4 time trials, 6 time-to-
exhaustion) reported no difference in performance between the KD compared with CON. Of the 16 power or strength performance outcomes, 3 (1
power, 2 strength) reported lower, 11 (4 power, 7 strength) no difference, and 2 (power) enhanced performance in the KD compared with the CON.
Risk of bias identified some concern of bias primarily due to studies allowing participants to self-select diet intervention groups and the inability to
blind participants to the study intervention. Overall, the majority of null results across studies suggest that a KD does not have a positive or negative
impact on physical performance compared with a CON diet. However, discordant results between studies may be due to multiple factors, such as
the duration consuming study diets, training status, performance test, and sex differences, which will be discussed in this systematic review. Adv
Nutr 2021;12:223–233.
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Introduction
Carbohydrate stored in liver and muscle as glycogen is a read-
ily available energy source used to sustain prolonged physical
performance and is the primary fuel for higher-intensity
exercise [>80% maximal oxygen uptake (V̇ O2max)] (1, 2).
To ensure adequate glycogen content, high-carbohydrate
diets (≥6 g · kg−1 · d−1) are typically recommended to
fuel skeletal muscle during training and competition (3,
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4). Even with high carbohydrate intake, glycogen storage
capacity is limited to ∼100 g (∼400 kcal) in the liver
and ∼300–700 g (∼1200–2800 kcal) in skeletal muscle (5).
Glycogen stores can be depleted during a prolonged exercise
bout, resulting in fatigue and reduced physical performance
(5, 6). Limited capacity to store carbohydrate has resulted in
much interest in dietary interventions that spare glycogen use
during exercise (7).

High-fat, ketogenic diets (KDs; <50 g carbohydrate/d,
∼60–80% kcal from fat, ∼1.2 g protein · kg body mass−1

· d−1) have recently re-emerged as a potential intervention
to “spare” glycogen during exercise (8, 9). Consuming a
KD results in reduced total carbohydrate oxidation and a
2–3-fold increase in whole-body fat oxidation and lipolysis
during steady-state aerobic exercise (10, 11). Within even
lean (7–14% body fat) individuals, fat makes up a large
energy reserve (∼30,000 kcal), which, if optimized for
mobilization, would result in boundless fuel to support
physical performance (8). Given the abundance of energy
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stored as fat in muscle and adipose tissue, and the propensity
for a KD to support fat oxidation and slow declines in
glycogen (11, 12), consuming a KD has potential ergogenic
effects.

Despite considerable research showing a clear increase in
fat oxidation and decrease in carbohydrate oxidation follow-
ing a KD (13), its efficacy to enhance physical performance
remains controversial (7, 14). Investigations have yielded
conflicting results, reporting no change (15, 16), decrements
(17), or improvements in physical performance (18) follow-
ing a KD. Potential decrements in performance have been
attributed to severe carbohydrate restriction (14). Although
a KD reduces the rate of decline in glycogen during exercise,
this may be due to lower glycogen content at the onset of
exercise (11, 12). Lower muscle glycogen is associated with
impaired performance of higher intensity (≥80% V̇ O2max)
and potentially long-duration (>3 h) events (1, 2). To
avoid negative effects of lower glycogen content, it has been
proposed that a KD should be followed for longer durations
(>4 wk) to allow for metabolic adaptations supporting
enhanced fat metabolism and oxidation to fully occur (8,
19). Additional factors that may contribute to discordant
results across studies are participant training status, as highly
trained individuals have a higher capacity to oxidize fat
(20–22), and performance test, with higher-intensity events
relying on glycogen stores for fuel (1). Variability in study
design may thus contribute to conflicting results, making it
difficult to provide concrete recommendations on the use
of a KD to enhance physical performance based on results
from any individual study. Therefore, the objective of this
systematic review was to aggregate results from multiple
investigations to characterize the overall effects of a KD
on physical performance and discuss variables that might
contribute discordant results between studies.

Methods
Literature search strategy
Abstracts of publications identified in PubMed (http://www.
ncbi.nlm.nih.gov/pubmed) and the Cochrane Library (https:
//www.cochranelibrary.com/) were reviewed for relevance
using the Abstrackr citation program [http://abstrackr.cebm.
brown.edu (23)] by 2 researchers (NEM and CTC). A
search of all identified terms took place on 15 March 2019
and was not restricted by publication date. Exact search
terms are recorded in Supplemental Table 1. The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) search strategy and further reference narrowing
is described in Figure 1 (24). Reference lists from these
publications were hand-searched for relevant reports missed
in the database search. Additional relevant manuscripts were
also identified in subsequent searches (17 April 2020) outside
of the initial search. Relevant studies that were published
after the initial searches were assessed for inclusion in
the current analysis. There were no language restrictions,
although English search terms were used. Full-text publica-
tions were reviewed independently by 2 researchers (NEM

and CTC) for physical performance outcomes and KD use.
Discrepancies between researchers were assessed by a third
investigator (LMM). The final 17 publications were reviewed
by all involved researchers. Search strategy details can be
found at the University of York Centre for Reviews and
Dissemination (PROSPERO) website (https://www.crd.york.
ac.uk/prospero/display_record.php?ID=CRD42019137926).

Inclusion criteria
Randomized and nonrandomized crossover/longitudinal or
parallel-controlled trials assessing the impact of consuming
high-fat, KDs and/or mixed macronutrient control diets
(CON) in healthy (without chronic disease), nonobese
[BMI (kg/m2) <30], trained or untrained men or women
aged >18 y were included in the current analysis. Dietary
carbohydrate must have been <50 g/d or ketosis confirmed
by circulating β-hydroxybutyrate (βHB) ≥0.5 mmol/L. Diet
must have been consumed for ≥14 d.

Exclusion criteria
Studies examining effects of a high-fat diet on obese (BMI
>30) or infirm populations (diabetics, epileptics, etc.), chil-
dren/adolescents (<18 y), and animal models were excluded.
Cross-sectional studies were excluded. Studies were excluded
if the KD intervention was >50 g carbohydrate/d or ketosis
was not confirmed using circulating βHB >0.5 mmol/L,
administered for <14 d, replenished with carbohydrate
prior to exercise, or had no corresponding control. Studies
were excluded if dietary intake was not reported or ketosis
was not confirmed. Studies comparing KD with CON for
outcomes other than physical performance were excluded
from the current review. If a confounding variable, such as
a dietary supplement, was provided to 1 treatment but not
the other, the study was excluded. If study interventions
involved supplements or meal replacements and not focused
on whole-diet modifications, they were excluded. If data were
missing from a manuscript, the corresponding authors were
contacted.

Bias and limitations
A bias analysis was performed by LMM in accordance with
PRISMA guidelines recommended by Sterne et al. (25).
Ratings including low, unclear, or high risk of selection,
performance, attrition, and reporting bias were assigned to
each study.

Data extraction
Data were extracted from 17 articles determined to meet
the inclusion and exclusion criteria of the current analysis.
Studies were identified as being crossover/longitudinal (12,
26–31) or parallel (15–18, 32–37) designs. Sex, training
status, age, weight, and V̇ O2max were extracted to provide
volunteer descriptive characteristics. Physical performance
outcomes were extracted. Performance data were not in-
cluded if multiple outcome variables were derived from
a single performance test. Dietary fat, carbohydrate, and
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Records identified through database 
searching:
(n = 902)

Additional hand-selected records:
(n = 24)

Records screened
(n = 926)

Excluded by title/abstract
(n = 842)

Records reviewed 
(n = 84)

Excluded by full text
(n = 6)

Assessed for eligibility
(n = 78)

Included in meta-analysis
(n = 17)

Excluded full-text records and 
rationale:
• Inconsistent diet strategy (n = 20)
• Not a ketogenic diet (n = 29)
• Incomplete data (n = 5)
• BMI >30 (n = 3)
• Diet consumed < 14 days (n =3)
• Age < 18 (n =1)

Crossover/Longitudinal 
Design (n = 7)

Parallel Design
(n = 10)

FIGURE 1 PRISMA search strategy diagram. Full-text exclusions listed as having an inconsistent diet strategy contained confounding
supplementation, nonketogenic diet (carbohydrate intake >50 g/d), or ketosis unconfirmed with βHB measurement, no mixed
macronutrient control group, test diet lasting <14 d, or carbohydrate restoration. βHB, β-hydroxybuterate; PRISMA, Preferred Reporting
Items for Systematic Reviews and Meta-Analyses.

protein intake data were extracted and presented as per-
centage energy intake and grams consumed per day in the
current analysis. Data that were not reported numerically
were generated from provided figures by digitally measuring
the height of histogram bars and calculating relative to
measured y-axis units (38). Aggregated data are presented as
means ± SDs.

Results
Study characteristics
From our literature searches, 926 studies were identified to
be screened for inclusion (Figure 1). Of these studies, 17 (10
parallel and 7 crossover/longitudinal) met the inclusion
criteria for the current review. Within these 17 studies, 327
individuals participated in the parallel (209; 181 men, 28
women) and crossover (69; 40 men, 29 women) studies
(Table 1). Mean dietary intervention duration was 58 ± 27 d
(range: 21–84 d) for parallel studies and 43 ± 24 d (range:
21–84 d) for crossover and longitudinal studies. Mean
macronutrient intake during parallel studies for the KD was
204 ± 79 g fat/d (72%), 36 ± 9 g carbohydrate/d (6%), and
131 ± 28 g protein/d (22%), and for CON was 69 ± 15
g fat/d (26%), 357 ± 131 g carbohydrate/d (56%), and
105 ± 24 g protein/d (18%) (Table 2). Mean macronutrient
intake during crossover/longitudinal studies for the KD was

217 ± 64 g fat/d (73%), 32 ± 10 g carbohydrate/d (5%), and
126 ± 34 g protein/d (22%), and for CON was 100 ± 21 g
fat/d (33%), 327 ± 79 g carbohydrate/d (49%), and 124 ± 16 g
protein/d (18%).

Performance outcomes
In 11 studies assessing endurance-type performance, 13 per-
formance outcomes were included in this systematic review
(Table 3). Endurance-type performance outcomes were split
into high or low V̇ O2max, dichotomized by the median
(53 mL · kg−1 · min−1) value across studies. There were 7
performance outcomes in high-V̇ O2max (≥53 mL · kg−1

· min−1) studies: 6 (3 time trials, 3 time-to-exhaustion)
reported no difference and 1 (time trial) reported lower
physical performance when consuming a KD compared
with CON. There were 6 performance outcomes in low-
V̇ O2max (<53 mL · kg−1 · min−1) studies: 4 (1 time trials,
3 time-to-exhaustion) reported no difference and 2 (time-
to-exhaustion) reported lower physical performance when
consuming the KD compared with CON.

In 7 studies assessing power or strength performance,
16 performance outcomes were included in this systematic
review (Table 4). There were 7 assessments of lower-
body power, with 4 reporting no difference, 2 reporting
enhanced, and 1 reporting lower physical performance when
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TABLE 1 Characteristics of healthy participants and duration of studies included in the systematic review of performance following
consumption of ketogenic versus mixed macronutrient control diets by parallel and crossover/longitudinal study designs1

First author (ref)
Study

duration, d n Sex Training status
Age,

y
Weight,

kg
V̇ O2max, mL ·
kg−1 · min−1

Parallel study design
Burke et al. (16) 21 KD: 8

CON: 10
M Elite race walkers 28

25
67
64

66
62

Burke et al. (37) 25 KD: 10
CON: 8

9 M,1 F
5 M, 3 F

Elite race walkers 29
26

67
63

61
58

Cipryan et al. (15) 28 KD: 8
CON: 9

M Moderately trained 24
24

83
84

52
52

Dostal et al. (33) 84 KD: 12
CON: 12

3 M, 9 F
4 M, 8 F

Recreationally active 25
24

67
73

46
44

Fleming et al. (17) 42 KD: 12
CON: 8

M Recreationally active 36
35

79
85

44
45

Kephart et al. (35) 84 KD: 7
CON: 5

5 M, 2 F
4 M, 1 F

CrossFit trainees 32
29

83
77

NR
NR

LaFountain et al. (36) 84 KD: 15
CON: 14

13 M, 2 F
12 M, 2 F

Army ROTC, reservist,
Air Force enlisted,
National Guard,
military veterans

27
25

86
80

NR
NR

McSwiney et al. (18) 84 KD: 9
CON: 11

M Endurance trained 34
32

86
77

54
53

Vargas-Molina et al. (34) 56 KD: 10
CON: 11

F Resistance trained 27
28

62
63

NR

Wilson et al. (32) 70 KD: 15
CON: 15

M Resistance trained 24
21

80
78

NR

Crossover and longitudinal
study design
Greene et al. (26) 84 12 7 M, 5 F Olympic weight lifters 35 78 NR
Heatherly et al. (27) 21 8 M Runners 40 NR 49
Phinney et al. (12) 28 5 M Cyclists 22 73 65
Prins et al. (28) 42 7 M Trained runners 36 69 61
Shaw et al., (29) 31 8 M Endurance trained 30 73 59
Sjodin et al. (30) 28 24 F Untrained 24 62 44
Zinn et al. (31) 70 5 1 M, 4 F Endurance trained 51 65 47

1Values are means. CON, mixed macronutrient control diet; KD, ketogenic diet; NR, not reported; ref, reference; V̇ O2max, maximal oxygen uptake.

consuming a KD compared with CON. There were 9 as-
sessments of 1-repetition-maximum, with 7 reporting no
difference and 2 reporting lower physical performance when
consuming a KD compared with CON.

Risk of bias
A risk-of-bias assessment for the individual studies included
in this systemic review is reported in Supplemental Table 2.
Overall, risk of bias identified some concern of bias primarily
due to studies allowing for participants to self-select diet
intervention group, use of longitudinal study design, and
inability to blind participants to the study intervention.
Self-selection of diets was stated to improve compliance
with diet and mimic how individuals would choose dietary
intake under “real world” conditions. Although allowing
participants to self-select diets might improve compliance,
this also introduces selection bias, which may influence
physical performance outcomes. Participant blinding when
feeding intervention diets of varying macronutrient content,
particularly one as restrictive as a KD, is difficult. This
results in participants and study staff being unblinded.
Inability to blind participants to the diet intervention may

impact physical performance outcomes. Although there is
overall some concern of bias, these concerns were present
regardless of whether a study reported positive, negative,
or null effects of a KD on performance compared with
CON.

Discussion
Duration consuming KDs
There is much debate regarding whether a KD needs to
be consumed for a specific length of time before effects on
physical performance could be expected (39, 40). Sherrier
and Li (39) recently noted that assessing the impact of a KD
on physical performance from short-term (1–7 d) crossover
studies has resulted in confusion and misinterpretation due
to insufficient time for metabolic adaptations to translate
to performance improvements. Thorough descriptions of
metabolic adaptions to a KD have been reported elsewhere
(39, 41, 42). In brief, restricted carbohydrate intake (<50 g/d)
with a KD increases mobilization and availability of free
fatty acids to be oxidized for energy. Alterations in fatty
acid oxidation are likely the result of an upregulation
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TABLE 2 Mean daily macronutrient consumption on a KD versus CON diet and βHB concentration in healthy subjects included in the
systematic review by parallel and crossover/longitudinal study designs1

KD CON

βHB,
mmol/L

Fat CHO PRO Fat CHO PRO

First author (ref) g/d %E g/d %E g/d %E g/d %E g/d %E g/d %E

Parallel studies
Burke et al. (16) 1.922 312 78 33 4 144 18 77 20 549 63 138 17
Burke et al. (37) 0.802 326 78 35 4 144 16 69 18 534 65 127 15
Cipryan et al. (15) 0.402 120 62 35 8 128 30 92 36 270 47 90 17
Dostal et al. (33) 0.442 149 69 40 8 113 23 67 45 201 34 82 21
Fleming et al. (17) 0.293 158 61 47 8 181 31 50 25 268 59 73 16
Kephart et al. (35) 1.562 170 79 15 3 89 18 NR NR NR NR NR NR
LaFountain et al. (36) 1.002 NR NR NR NR NR NR NR NR NR NR NR NR
McSwiney et al. (18) 0.503 259 77 45 6 128 17 59 20 430 65 99 15
Vargas-Molina et al. (34) NR 122 64 39 9 115 27 51 23 282 57 97 20
Wilson et al. (32) 1.402 217 75 31 5 134 20 83 25 318 55 132 20

Crossover studies
Greene et al. (26) 0.402 159 69 42 8 118 23 76 33 230 45 113 12
Heatherly et al. (27) 0.702 134 64 33 7 90 29 119 38 303 43 134 19
Phinney et al. (12) 1.282 290 84 17 2 107 14 96 28 432 56 128 16
Prins et al. (28) 0.552 226 69 43 6 184 25 89 28 402 56 106 15
Shaw et al. (29) 0.942 284 78 33 4 147 18 132 38 336 43 149 19
Sjodin et al. (30) 1.323 206 76 24 4 111 19 88 33 259 44 115 20
Zinn et al. (31) 0.5 – 4.22,4 NR NR NR NR NR NR NR NR NR NR NR NR

1Values are means in grams per day or % of total calorie intake. CHO, carbohydrate; CON, mixed macronutrient control diet; KD, ketogenic diet; NR, not reported; PRO, protein; ref,
reference; βHB, β-hydroxybutyrate; %E, percentage of energy.
2βHB measured in whole blood.
3βHB measured in serum, presented for KD only.
4Data presented as range.

in transcription factors peroxisome proliferator activated
receptors (PPARs), which increase the expression of fatty acid
translocase (CD36/FAT), carnitine palmitoyl transferase 1a
(CPT1a), and hydroxyacyl-CoA dehydrogenase (HADHA)
to facilitate increases in fat oxidation (43–49). Increased oxi-
dation of fatty acids results in increased production of ketone

bodies acetoacetate (AcAc), acetone, and βHB. Ketone bod-
ies are converted by ketolytic enzymes [β-hydroxybutyrate
dehydrogenase (BDH), acetoacetyl-CoA thiolase (ACAT),
and succinyl-CoA/3-ketoacid CoA transferase] to enter the
tricarboxylic acid (TCA) cycle where they can be used as an
alternative fuel source (39, 41, 42). Indeed, previous studies

TABLE 3 Study design, duration, and endurance-type performance measurement outcome in healthy subjects in systematic reviews split
by training status1

First author (ref) Study design Duration, d Performance measure
Performance

outcome2

V̇ O2max ≥53 mL · kg−1 · min−1

Burke et al. (16) Parallel NRCT 21 TT, race walk (10 km) ↔
Burke et al. (37) Parallel NRCT 25 TT, race walk (10 km) ↓
McSwiney et al. (18) Parallel NRCT 84 TT, cycle ergometer (100 km) ↔
Phinney et al. (12) Longitudinal 28 TTE, cycle ergometer (60–65% V̇ O2max) ↔
Prins et al. (28) Crossover RCT 42 TT, treadmill (5 km) ↔

TTE, cycle ergometer (graded intensity) ↔
Shaw et al. (29) Crossover RCT 31 TTE, treadmill (70% V̇ O2max) ↔

V̇ O2max <53 mL · kg−1 · min−1

Cipryan et al. (15) Parallel BRCT 28 TTE, treadmill (100% V̇ O2max) ↔
Dostal et al. (33) Parallel NRCT 84 TTE, treadmill (graded test) ↔

TTE, shuttle run (30–15 intermittent fitness test) ↔
Heatherly et al. (27) Longitudinal 21 TT, treadmill (5 km) ↔
Sjodin et al. (30) Crossover RCT 28 TTE, cycle ergometer (graded intensity) ↓
Zinn et al. (31) Longitudinal 70 TTE, cycle ergometer (graded intensity) ↓

1BRCT, block randomized controlled trial; CON, mixed macronutrient control diet; KD, ketogenic diet; NRCT, nonrandomized controlled trial; RCT, randomized controlled trial; ref,
reference; TT, time trial; TTE, time-to-exhaustion; V̇ O2max, maximal oxygen uptake.
2Physical performance significantly lower (↓), higher (↑), or not different (↔) following a KD compared with CON.
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TABLE 4 Study design, duration, and lower-body power or strength performance measurement in healthy subjects in systematic reviews1

First author (ref) Study design Duration, d Performance measure
Performance

outcome2

Fleming et al. (17) Parallel NRCT 42 Power, Wingate (30 s) ↓
Greene et al. (26) Crossover RCT 84 Olympic lift (1 RM) ↔
Kephart et al. (35) Parallel NRCT 84 Back squat (1 RM) ↔

Power clean (1 RM) ↔
LaFountain et al. (36) Parallel NRCT 84 Squat (1 RM) ↔

Vertical jump (W/body mass) ↔
Sprint intervals (W) ↔
Bench press (1 RM) ↔

McSwiney et al. (18) Parallel NRCT 84 Power, cycle ergometer, SS sprint ↑
Power, cycle ergometer, CPT ↑

Vargas-Molina et al. (34) Parallel RCT 56 Vertical jump (cm) ↔
Back squat (1 RM) ↓
Bench press (1 RM) ↓

Wilson et al. (32) Parallel RCT 70 Back squat (1 RM) ↔
Wingate (W) ↔
Bench press (1 RM) ↔

1CON, mixed macronutrient control diet; CPT, critical power test; KD, ketogenic diet; NRCT, nonrandomized controlled trial; RCT, randomized controlled trial; ref, reference; RM,
repetition maximum; SS, 6 second; W, Watts.
2Physical performance significantly lower (↓), higher (↑), or not different (↔) following a KD compared with CON.

assessing the impact of short-term (<7 d) consumption of a
KD have observed decrements in time trial (50) and time-
to-exhaustion (51) performance compared with CON. Prins
et al. (28) highlighted the need for prolonged consumption
of a KD to avoid potential negative effects on physical per-
formance at initiation of the diet. This study assessed time-
course changes in performance, with recreational distance
runners completing a 5-km time trial on day 4, 14, 28, and
42 of consuming a KD or CON (28). On study day 4, time-
to-completion was slower in the KD compared with the
CON group. However, by day 14, there was no difference
in 5-km time trial performance when consuming a KD
or CON. Similarly, McSwiney et al. (18) noted a drop in
perceived energy level and performance during the first 7–
10 d of endurance-trained athletes consuming a KD. Time-
course change in physical performance may reflect metabolic
adaptations that occur when consuming a KD.

Although an adequate adaptation time may be required
when starting a KD (40), extended consumption does
not appear to independently result in enhanced physical
performance. Duration of diet consumption in the studies
included in the current systematic review ranged from 21
to 84 d. Separating studies into tertiles, KD consumption
of 21–31 d resulted in lower (30, 37) or no difference (12,
15, 16, 27) in physical performance compared with CON.
Studies feeding KDs for 42–70 d resulted in lower (17, 31, 34)
or no difference (28, 32) in physical performance compared
with CON. When KD consumption was 84 d, physical
performance was either not different (26, 33, 35, 36) or
enhanced (18) compared with CON. Although only 1 study
reported performance enhancement, these latter data may
suggest that 84 d of consuming a KD is required for metabolic
adaptations to abate negative effects on physical perfor-
mance. In agreement with these observations, McSwiney

et al. (18) reported a “lag” in performance with the KD
during the first 28–42 d of their 84-d study. However, there
remains a need to better understand time-course changes in
performance when consuming a KD. Future investigations
should use the approach by Prins et al. (28), assessing
change in physical performance over time. Additionally,
discordant null or negative results across more moderate-
duration (21–70 d) studies suggest other variables beyond
diet duration influence performance impacts of a KD. There
are several factors, such as training status, performance test
type and intensity, and sex differences, that likely contribute
to discrepancies across studies.

Training status
Without diet modification, exercise training alone enhances
fat oxidation (52, 53). Exercise training increases maximal
oxygen uptake and whole-body lipolysis, increasing the
ability and availability to oxidize free fatty acid for fuel
(22). Within skeletal muscle, training results in greater lipid
storage, mitochondrial area, and proportion of lipid stores
in contact with mitochondria allowing for enhanced fat
oxidation (52, 53). Adaptations in fatty acid metabolism
occur concomitantly with an increased capacity to store
carbohydrate as glycogen within skeletal muscle (54). Despite
greater glycogen availability, training adaptations result in
increased rates of fat oxidation and decreased rates of total
carbohydrate and muscle glycogen oxidation (55). Such
improvements in fatty acid utilization likely reflect enhanced
metabolic flexibility, the ability to shift substrate oxidation
based on metabolic demand, with training (56).

Greater efficiency to utilize fat for energy in trained indi-
viduals may result in more favorable performance outcomes
when consuming a KD compared with untrained individuals.
Due to variations in training status and type (i.e., resistance
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vs. endurance), it is not feasible to completely isolate the
effects of training status across all 17 studies identified in this
systematic review. Previous regression analysis has reported
that higher V̇ O2max (i.e., aerobic capacity) is associated with
higher rates of fat oxidation (20, 21). As such, we used high
or low V̇ O2max, dichotomized by the median (53 mL · kg−1

· min−1) value, in the 11 studies assessing endurance-type
performance (time trial or time-to-exhaustion) to gain a
better understanding of whether higher V̇ O2max resulted in
enhanced physical performance with a KD compared with
CON. In studies using high V̇ O2max (≥53 mL · kg−1 ·
min−1), participants maintained performance (12, 16, 18,
28, 29) with the KD except for 1 study (37), where physical
performance was lower with a KD compared with CON.
Specifically, Burke et al. (37) reported a 3.3% decline in 10-km
time trial performance in elite race walkers consuming a KD
for 25 d, while consuming a high-carbohydrate diet showed
a 4.8% performance improvement compared with baseline.
Reductions in time trial performance were stated to be the
result of lower exercise economy, defined as greater oxygen
cost for a given speed or power output, when consuming
a KD (37). Although performance was maintained, this
observation of lower exercise economy while consuming a
KD is corroborated in other investigations (16, 29). Despite
preservation of performance, Burke et al. (16) reported that
10-km time trial performance in elite race walkers was
improved by 6.6% when consuming a high-carbohydrate
diet compared with a 1.6% decline when consuming a KD
for 21 d. Although the performance decline in KD was
not significant, the gap in performance between KD and
CON was similar (∼8%) in both studies conducted by
Burke et al. (16, 37). Additionally, Shaw et al. (29) observed
that, while physical performance was maintained despite
reduced exercise economy, variability doubled in time-to-
exhaustion when endurance-trained individuals consumed
a KD compared with CON. Individual variance with a KD
was the result of participants’ respiratory exchange ratio
(RER) at V̇ O2max (29). When RER was >1.0, indicating
preservation of carbohydrate oxidation at higher exercise
intensities, participants maintained physical performance;
when <1.0, performance declined after 31 d of a KD
(29). These findings suggested that even in more trained
participants, there is variance in how individuals respond to
KDs. This indicates that individuals interested in a KD to
support physical performance should test the diet, potentially
using RER at V̇ O2max as a mark, well before competition.
Although exercise economy was reduced in these studies
(16, 29, 37), duration of KD consumption was only 21–
31 d. Whether lower exercise economy persists if a KD was
followed for ≥84 d remains unknown. Regardless, although
overall performance with high V̇ O2max (≥53 mL · kg−1 ·
min−1) was maintained, there is some individual variance
with KDs potentially resulting in negative effects on physical
performance that should be considered.

In studies where participants had a low V̇ O2max
(<53 mL · kg−1 · min−1), endurance-type performance
was either maintained (15, 27, 33) or declined (30, 31)

following a KD compared with CON. Discrepancies between
maintenance and decline in performance may be attributed
to training adaptations during the diet interventions. Studies
reporting increases in V̇ O2max from baseline to post-KD
showed maintenance in physical performance (15, 33). When
V̇ O2max was maintained or slightly declined from baseline
to post-KD, physical performance declined (30, 31). This
suggests that some level of exercise training may be needed
when consuming a KD diet to ensure physical performance is
maintained. While endurance-type performance appears to
be maintained, following a KD does not appear to result in an
overall performance enhancement. Future investigation may
be warranted to assess the impact of training status and/or
V̇ O2max and RER on physical performance response to a KD
compared with CON.

Performance test type and intensity
Fat is a major energy source during low to moderate
submaximal (45–65% V̇ O2max) endurance exercise (57,
58). Sustained (20 mo) consumption of a KD can enhance
maximal fat oxidation to 1.5 g/min at 70% V̇ O2max,
replacing carbohydrate as the primary energy source (10).
This has resulted in the utility of a KD to be consid-
ered in the context of prolonged endurance performance
(40). Conversely, as described above, exercise economy has
been reported to decline when consuming a KD (16, 29,
37), with reductions being most prevalent during higher
(>70% V̇ O2max) exercise intensities (29). These findings
have led to the assertion that a KD may impair high-intensity
exercise performance (16, 29, 37). Potential negative effects
during higher-intensity exercise have been speculated to be
the result of lower glycogenolysis due to reduced glycogen
stores and impaired pyruvate dehydrogenase (PDH) activity
(29, 40). Importantly, reductions in PDH activity have
only been observed following a high-fat, non-KD (>50
g carbohydrate/d) with carbohydrate feeding during or
glycogen restoration prior to exercise (49, 59). Relatively little
work has been conducted on alterations of enzymatic activity
and molecular pathways in humans following a KD. It is
presently unknown if PDH activity is lower following a KD,
and if lower activity is the result of an impairment, lower
glycogen stores, or cellular adaptation.

With regard to muscle glycogen content, recent cross-
sectional findings by Volek et al. (10) have questioned
if lower muscle glycogen content and glycogenolysis are
present with a prolonged (9–36 mo) KD. Specifically, resting
muscle glycogen content was not different, and rate of
glycogen decline was similar during treadmill running at
65% V̇ O2max in elite ultra-endurance athletes habitually
consuming either KDs or high-carbohydrate diets (10).
However, results in muscle glycogen conflict with indirect
calorimetry measurements of lower carbohydrate oxidation
during exercise in KD compared with the high-carbohydrate
athletes (10). As KD athletes performed exercise 90 min after
consuming only 4 g of carbohydrate, lower carbohydrate oxi-
dation rates would be reflective of lower rates of endogenous
(i.e., glycogenolysis) carbohydrate oxidation. Additionally,
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Phinney et al. (12) and Webster et al. (11) reported lower
resting muscle glycogen concentrations and glycogenolysis in
well-trained cyclists during exercise following 6 wk and 8 mo,
respectively, of a KD. Lower muscle glycogen results from
severe carbohydrate restriction and lower endogenous glu-
cose production due to reductions in hepatic glycolysis, while
gluconeogenesis was maintained when consuming a KD (11).
Despite carbohydrate intake restricted to <50 g/d and lower
gluconeogenesis, under resting conditions glycogen content
was only ∼50% lower with a KD compared with CON, with
no differences postexercise (11, 12). These data suggest that,
although lower, some degree of gluconeogenesis allows for
glycogen resynthesis during exercise recovery. Additionally,
these data may indicate that lower glycogenolysis during
exercise is the result of initiating exercise with lower glycogen
content, rather than impairment of glycolytic flux with a KD
compared with CON.

The ability to maintain some level of muscle glycogen
may indicate sufficient stores are available to support higher-
intensity physical performance following a KD. In agreement
with this, McSwiney et al. (18) reported enhanced peak
and maintenance of average power output during sprint
performance in endurance-trained athletes following 84 d
of a KD compared with CON. Similarly, Dostal et al. (33)
reported no impairment of high-intensity continuous or
intermittent exercise lasting 25 min in recreationally trained
individuals following 84 d of a KD compared with CON.
Other studies assessing higher-intensity performance using
Wingate (32), sprint test (36), or time-to-exhaustion (70–
100% V̇ O2max) also reported no difference (12, 15, 33)
with KDs compared with CON. However, some studies
have reported lower physical performance on Wingate (17)
and time-to-exhaustion (30, 31) with KDs compared with
CON. In these studies, participants were categorized in this
systematic review to have low V̇ O2max (<53 mL · kg−1

· min−1), which did not change during the course of the
diet intervention. As described in the previous section, lower
training status and lack of training adaptation during the
intervention may have contributed to the negative effects of
the KD on performance. Time trial performance, which is
generally more moderate in intensity, was no different (18,
27, 28, 60) with a KD compared with CON, except for Burke
et al. (37), which is described above. Overall, these data
suggest moderate- to high-intensity exercise performance
can be maintained, although training status should be
considered when initiating a KD. Although performance may
be maintained, overall, results from these studies do not
suggest enhancement in physical performance.

While KDs have historically been associated with
endurance-type performance, recent studies have begun
assessing their impact on lower-body power using vertical
jump tests and upper- and lower-body strength. The majority
of studies showed no difference (26, 32, 35, 36) with a KD
compared with CON. Vargas-Molina et al. (34) was the only
study to report lower squat and bench-press maximum lift
performance in strength-trained women following 56 d of
a KD compared with CON. This investigation included a

controlled resistance-training program designed to increase
muscle size and strength. All participants, regardless of KD
or CON, increased bench-press and squat strength compared
with baseline; however, strength gains were greater in the
CON compared with the KD group. These findings suggest
that increases in strength can be achieved on a KD, but these
gains may be blunted compared with CON in women. To
date, this is the only study assessing the impact of a KD on
measurements of strength in women, so further investigation
is warranted. Overall, data from these studies indicate there
is no negative or positive effect of a KD on lower-body
power measured by vertical jump or upper- and lower-body
strength compared with CON.

Sex differences
Sex is a primary factor regulating substrate oxidation (20,
21). Women have higher rates of fat oxidation and lower
rates of carbohydrate oxidation during aerobic exercise
compared with men when consuming mixed macronutrient
diets (61). When comparing the response in substrate
oxidation between men and women consuming a KD, fat
oxidation was higher during exercise at 35–80% V̇ O2max
in men, while women had higher rates of fat oxidation
when exercise was >80% V̇ O2max with a KD compared
with CON (62). Whether differences in substrate oxidation
indicate physical performance responses to a KD compared
with CON vary between men and women has not been
determined. Although sex difference responses in physical
performance following a KD have not specifically been
tested, in 3 of the 5 studies that reported lower physical
performance participants were all (30, 34) or primarily
(31) women. Adherence to a KD has been reported to
lower dietary iron intake and mean corpuscular hemoglobin,
and mean corpuscular hemoglobin concentration decreased,
although serum ferritin was unchanged (63). Additionally,
KDs have been reported to result in higher circulating IL-
6 concentrations postexercise compared with CON (64).
Elevations in IL-6 result in increased circulating hepcidin
concentrations, which inhibits iron transport (65). Poor iron
status reduces oxygen-carrying capacity of RBCs, leading
to declines in physical performance (66, 67). As women
are biologically susceptible to lower iron status, lower iron
intake with a KD may impact women more so than men.
It is important to state that iron status was not assessed
in the female participants in these KD studies (30, 31, 34).
Additionally, participants in Sjodin et al. (30) and Zinn et al.
(31) were categorized as having low V̇ O2max (<53 mL · kg−1

· min−1) in the current systematic review, with no adaptations
in V̇ O2max from baseline to post-KD. On the contrary,
work by Dostal et al. (33), which included primarily female
participants with low V̇ O2max (<53 mL · kg−1 · min−1), but
who increased V̇ O2max during the 84-d KD intervention,
were able to maintain physical performance. These data
suggest that females can maintain physical performance
following a KD. It is possible that negative effects in Sjodin et
al. (30) and Zinn et al. (31) were the result of lower training
status and lack of a training response when consuming a KD
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TABLE 5 Change in body composition following a KD versus CON diet in healthy subjects1

KD CON

First author (ref)
Duration,

d
Body mass,

kg
Fat mass,

kg
Fat-free
mass, kg

Protein, g ·
kg−1 · d−1

Body mass,
kg

Fat mass,
kg

Fat-free
mass, kg

Protein, g ·
kg−1 · d−1

Dostal et al. (33) 84 − 3.6 − 2.9 − 0.72 1.69 − 0.9 − 0.4 − 0.52 1.13
Greene et al. (26) 84 − 1.9 0 − 1.8 1.55 1.5 1 0.4 1.43
Heatherly et al. (27) 21 − 2.1 − 2.2 − 0.1 1.13 NR NR NR 1.64
Kephart et al. (35) 84 − 3 − 2.5 − 0.5 1.08 − 0.3 − 0.3 0 NR
LaFountain et al. (36) 84 − 7.7 − 5.9 − 1.4 NR 0.1 − 0.6 0.8 NR
McSwiney et al. (18) 84 − 5.9 − 4.6 0.3 1.49 − 0.8 − 0.5 0.1 1.30
Prins et al. (28) 42 0.5 − 0.2 0.4 2.66 0.1 0.5 − 0.4 1.55
Vargas-Molina et al. (34) 56 − 2.2 − 1.1 − 0.7 1.86 0.8 0.4 0.7 1.55
Wilson et al. (32) 70 − 2.6 − 4.2 1.5 1.67 0.6 − 2.2 2.7 1.69

1Values are means. Change calculated at post minus pre diet intervention. CON, mixed macronutrient control diet; KD, ketogenic diet; NR, not reported; ref, reference.
2Data not presented in original manuscript.

and not sex. Presently, it has not been determined if KDs
result in poorer iron status in females. Future investigation
is needed to determine if a KD negatively impacts iron
status differently between men and women, and what impact
this may have on physical performance. At a minimum,
individuals who wish to follow a KD should be educated on
both the risks of low iron status and nutritional strategies to
avoid it, whether by consumption of iron-rich foods, or by
inclusion of an iron supplement or multivitamin while on a
KD.

Body composition
In addition to metabolic adaptations, KDs have been sug-
gested to have beneficial effects on reducing body and fat
mass (57, 68). Results from 9 studies that measured changes
in body composition in the current systematic review appear
to corroborate this statement (Table 5). Following consump-
tion of a KD, body mass, fat mass, and fat-free mass declined,
with comparatively little change observed when consuming
CON diets. Reductions in body mass came primarily from fat
mass, with a relatively small contribution from fat-free mass.
Minimal loss in muscle mass may be attributed to protein
intake being consumed at twice the RDA (1.6 g · kg−1 ·
d−1), which has previously been shown to minimize declines
in fat-free mass during weight loss due to maintenance of
nitrogen balance (69). It was not the intention of these
studies for participants to consume hypocaloric diets on a KD
compared with CON. Regardless, the observed reductions
in body and fat mass while consuming a KD may suggest
some benefit to athletes who compete in sports with weight
classes or have an aesthetic component. However, disparities
in changes in body mass between a KD and CON make it
difficult to determine impact on physical performance. Our
group previously reported that severity of negative energy
balance and change in body mass is associated with declines
in physical performance following military operations (70).
Whether reductions in body mass impaired any potential
performance gains while consuming a KD is unclear. Future
investigation is needed, tightly controlling dietary intake to

ensure similar changes in body mass between KD and CON
diets to remove this potential confounding variable.

Conclusions
In conclusion, the overall evidence of the 17 studies included
in this systematic review suggests that physical performance
can be maintained when consuming a KD compared with
CON. However, the current evidence does not support an
ergogenic effect of consuming a KD. Despite renewed interest
by the athletic and scientific community, there remains
relatively little research in the area on the impact of a KD
on physical performance. Additionally, the variance in study
design to include population training status, duration of
consuming a KD, performance outcome type and intensity,
and sex may contribute to discrepancies in outcomes across
studies. Although evidence is limited, shorter study duration,
training status/V̇ O2max, and potentially sex differences
may be possible factors that account for lower physical
performance when consuming KDs compared with CON
diets. Future investigations should consider assessing time-
course changes in physical performance, and powering
sample sizes to examine the effects of training status and/or
sex on physical performance following a KD compared with
CON.
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