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Abstract
Background. Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. 
Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by 
neuropathologists. With advancing artificial intelligence (AI), the aim of this study was to determine whether deep 
learning can be applied to glioma classification.
Methods. A neuropathological diagnostic platform is designed comprising a slide scanner and deep convolutional 
neural networks (CNNs) to classify 5 major histological subtypes of glioma to assist pathologists. The CNNs were 
trained and verified on over 79 990 histological patch images from 267 patients. A logical algorithm is used when 
molecular profiles are available.
Results. A new model of the squeeze-and-excitation block DenseNet with weighted cross-entropy (named SD-
Net_WCE) is developed for the glioma classification task, which learns the recognizable features of glioma his-
tology CNN-based independent diagnostic testing on data from 56 patients with 17 262 histological patch images 
demonstrated patch level accuracy of 86.5% and patient level accuracy of 87.5%. Histopathological classifications 
could be further amplified to integrated neuropathological diagnosis by 2 molecular markers (isocitrate dehydro-
genase and 1p/19q).
Conclusion. The model is capable of solving multiple classification tasks and can satisfactorily classify glioma sub-
types. The system provides a novel aid for the integrated neuropathological diagnostic workflow of glioma.

Key Points

1.  An AI neuropathological platform was developed to classify histological and molecular 
subtypes of glioma.

2.  This model achieved promising histological diagnostic outcomes with patch-level 
accuracy of 86.5% and patient-level accuracy of 87.5%.
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Gliomas are the most prevalent primary malignant brain 
tumors in adults, and are classified into grades I–IV based 
on malignant behavior by the World Health Organization 
(WHO).1 Until recently, histologic diagnosis by neuropath-
ologists via microscopic visual inspection of histopatho-
logical slides has been the gold standard for classification, 
especially hematoxylin and eosin (H&E) sections, carrying 
prognostic information for patient management.2 The 2016 
WHO classification of tumors of the central nervous system 
facilitates objective and precise analysis of glioma, not only 
on growth patterns and behaviors but also more pointedly 
on genetic markers.3

Histopathological diagnosis of glioma is a laborious 
process, including manually examining both coarse and 
fine resolutions of images covering large volumes of tissue 
samples. The pathologist also faces complex classification 
criteria, which calls for detailed and exhaustive analysis 
based on experience. Moreover, despite well-established 
grading strategies, analyses from multiple pathologists 
on the same sample (especially those without significantly 
bifurcated appearance features) can easily yield inconsist-
ency even among experts, as they draw from different per-
ceptions and are subject to various biases.4,5 Interobserver 
variability has become an issue as prognosis diversity can 
vary based on histological diagnosis within one subtype 
of glioma.6–8 The evidences shows that subjectiveness 
could mislead clinical decisions, and there may be a better 
method for analyzing the histo-features of glioma to assist 
human intelligence.

The standard practice of microscopic diagnosis for 
classification and grading of cancer has only limitedly 
evolved throughout the decade. In contrast to other 
medical examinations, pathology has not kept up with 
the digital revolution.9 However, in recent years, with 
the development of slide scanners that digitize glass 
slides into images, mostly known as whole-slide images 
(WSIs),10 advancement in scanning technologies over the 
past 2–3  years11 has permitted large numbers of slides 
to be scanned, forging the way for computational pa-
thology and particularly the use of artificial intelligence 
to help pathologists with their efficiency and accuracy on 
diagnosis.12,13

Convolutional neural networks (CNNs) have been proven 
highly successful and often exceed conventional standards 
for a number of image analysis tasks,14 such as DenseNet 
and Inception-FCN.15,16 A deep learning approach to glioma 
classification can provide automatic and unbiased deci-
sions to help guide and corroborate neuropathologists’ 

work. Ertosun et al first applied CNNs to histopathological 
glioma grading17; however, their model only led to binary 
classification of glioblastoma (GBM) and low-grade glioma 
(LGG), and of grades II and III among LGG samples. There 
will be a greater benefit from a more detailed subtype 
classification of gliomas, which can provide a more clini-
cally valuable diagnosis. Thus, the immediate question is 
whether CNN can be applied to comprehensive glioma his-
topathological subtype diagnoses.

In this study, the “AI Neuropathologist for Glioma” plat-
form is proposed, which receives high-magnification his-
topathological images and returns a diagnosis based on 
these images, together with high-speed automated image 
collection for pathological slides, precise patch image 
stitching, and diagnostic networks. The significance of the 
study lies in high interobserver discordance rates among 
neuropathologists, since gliomas have indeterminate his-
tologic features.2 The goal is to reach the testing accuracy 
of at least 80% for histopathological images based on com-
puter science methodology by using retrospective data 
before carrying out future clinical research. In addition, 
molecular markers including isocitrate dehydrogenase 
(IDH) and 1p/19q status are necessarily integrated into the 
network in accordance with the WHO 2016 classification of 
tumors of the central nervous system for molecular patho-
logical diagnosis.

Materials and Methods

Digital Data Acquisition

Instead of using a manufacturer scanner with WSIs, in this 
study, a low-cost transformed slide scanner is developed 
by adding a digital camera and micropositioning platform 
on a routine optical microscope as shown in Fig.  1. The 
stained tumor section is placed on the micropositioning 
platform and images are captured after each movement. 
A  total of 300 image patches of size 2048  × 1536 pixels 
at 400x magnification were scanned for each slide under 
6 minutes, saved to our lab server, and later stitched to-
gether. The detailed methodologies can be found in 
Supplementary Material 1.

A total of 97 252 histopathological images were col-
lected from histopathological slides of 323 classified 
glioma patients. The dataset was obtained from the 
Central Nervous System Disease Biobank,18 Huashan 

Importance of the Study

Glioma is the most common brain tumor. Pathological di-
agnosis of glioma subtypes is essential for treatment plan 
and prognosis. However, current diagnosis heavily relies 
on experienced neuropathologists while personal error 
is almost inevitable. Therefore, we developed an “AI 
Neuropathologist” platform, comprising a slide scanner 
and deep CNNs to classify 5 major subtypes of glioma for 

assisting pathologists. Our model demonstrated a patch-
level accuracy of 86.5% and a patient-level accuracy of 
87.5%. Our CNNs learned the recognizable features of 
glioma histology, and can classify integrated neuropath-
ological subtypes along with IDH and 1p/19q status. The 
system provides a novel aid for the neuropathological di-
agnostic workflow of glioma.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa163#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa163#supplementary-data
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Hospital, Fudan University, Shanghai. In this study, we 
adopted a patient-level split of images into 3 parts: (i) the 
training set included 65 673 images (from 219 subjects), 
(ii) the validation set included 14 317 images (from 48 
subjects), and (iii) the testing set included 16 862 images 
(from 56 subjects). The study was ethically approved by 
the Huashan Hospital institutional review board. The 
images included 6 histological categories of glioma: 
oligodendroglioma (O, WHO grade II), anaplastic oligo-
dendroglioma (AO, WHO grade III), astrocytoma (A, grade 
II), anaplastic astrocytoma (AA, grade III), glioblastoma 
(GBM, grade WHO IV), and nontumor images of red blood 
cells and background brain glia (BG). The detailed data 
distribution is shown in Fig. 2. Each pathological image 
was categorized into one of the above 6 subtypes by 2 
trained doctors. For the cases with varied opinions, a 
senior pathologist reviewed the images and made the 
final decision. For each slide, 300 (patch) images were 
taken to cover most of the visible areas. Next, the image 
quality was checked and those with poor quality were 
discarded. The categorical spread of the dataset was rel-
atively imbalanced, since the labels were given on the 
patch level rather than the subject level. Data were ran-
domly split into the training and validation sets in rela-
tively similar proportions. The training set was used to 
train networks. The best performing model is selected by 
using the validation set. Finally, an independent testing 
dataset of 56 patients with 17 262 histological patch im-
ages was prepared for accuracy evaluation.

Diagnostic Model

The experiments were performed by using Pytorch on a 
Linux system and 2 NVIDIA Tesla 32G graphics processing 
units (GPUs). The strategy was to develop a diagnostic 
model based on image patches, and then combine the 
patch prediction results with molecular information into 
the final integrated neuropathological diagnosis for the 
patient.

All image patches were first preprocessed and 
resampled to size of 512 × 384 while maintaining image de-
tails and aspect ratio to save computational GPU memory. 
For the training stage, to improve the generation ability 
of our model, an image augmentation process such as 
random rigid transformation (including vertical/horizontal 
flipping and rotation) was applied to each image. To avoid 
inconsistency in color and luminance due to the influence 
of light and staining process, the brightness, contrast, and 
color of each training image were randomly changed be-
fore it was fed into the network.

For the image patch diagnostic model, we proposed 
a neural network named squeeze-and-excitation block 
DenseNet (SD)-Net_WCE. Briefly, we employed the 
DenseNet structure as the backbone, where pathology 
images were sent to the convolutional layers to form fea-
ture maps, and different levels of feature maps are further 
densely concatenated to retain the low- and high-level 
image features. Such a design can strengthen feature 
propagation and encourage feature reuse. After that, 
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Fig. 1 Image collection and stitching process. (A) Samples of H&E-stained slides to be placed on a micromotion platform scanner. A camera is 
loaded on the top of the ordinary microscope, and a fretting platform is loaded on the stage to control the motion of the slide. (B) Scanner operation 
mechanism: the platform moves in an S-shape as the camera takes pictures of the view under the microscope. The view is transferred to the com-
puter screen in real time. The platform allows the glass slide to move 0.2 mm horizontally or 0.15 mm vertically each time. Images were captured 
under a setting of 10× eyepieces and 40× objective lenses with sizes of 2048 × 1536. As the platform captures 20 images horizontally and 15 images 
vertically, a total of 300 patches of images were taken and saved. (C) Image stitching: each patch (image) among 300 patches had a 30% overlap 
with surrounding patches, which achieved an intact pathological image as the final outcome.
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these feature maps were sent to fully convolutional layers 
with the softmax operator, and the output was the final 
prediction of glioma categories. Based on this, we added 
squeeze-and-excitation blocks between the batch normal-
ization layer and rectified linear unit layer in dense layers, 
named SD-Net. As different cells have different boundary 
shapes, certain channels of feature maps generated by the 
corresponding convolutional kernels contributed more 
to the final classification task. Thus, adding SD blocks 
can theoretically improve the classification performance 
theoretically. Each SD block was followed by a transition 
layer, eventually connected in series to form the proposed 
SD-Net. Finally, a modified weighted cross-entropy19 loss 
was adopted as the loss function to address the issue of 
data imbalance between glioma categories, to replace the 
original cross-entropy loss function in DenseNet. SD-Net 
optimized by such a weighted cross-entropy loss func-
tion is named SD-Net-WCE. Additionally, to accelerate 
convergence, a transfer learning strategy is utilized. That 
is, pretraining parameters on the ImageNet dataset were 
used to initialize our model. The model was optimized 
using the Adam20 algorithm; the original learning rate 
was set to 10–4, and the weight decay rate was set to (0.9, 
0.999). In the testing stage, the trained model was used 
to provide a prediction of glioma categories for a testing 
image patch.

Fig. 3 illustrates the image classification pipeline based 
on the deep learning model. To fuse image patch results 
at the patient level, a hierarchical strategy was employed. 
Despite background patches, 2 major types of oligodendro-
glioma (O and AO) and astrocytoma (A, AA, GBM) were dis-
tinguished based on the number of image patches. Then, 

based on the observation in training data, we determined 
that the oligodendroglioma slide would be classified into 
AO if its proportion (AO/(AO+O)) was greater than 10%, 
and into O otherwise. Similarly, the astrocytoma would be 
classified into GBM if its portion (GBM/(GBM+AA+A)) was 
greater than 10%. If not, it would be considered AA if its 
portion (AA/(AA+A)) was greater than 10%, and A  other-
wise. A detailed description of methods could be found in 
Supplementary Material 2.

Integrated Neuropathological Diagnosis

The formalin-fixed paraffin-embedded tumor tissue 
blocks were stored in the Glioma Tissue BioBank. Tumor 
DNA was extracted from a representative tumor area 
with more than 70% tumor content. Mutational hotspots 
of IDH1 at codon 132 and IDH2 at codon 172 were evalu-
ated by direct sequencing. Chromosome 1p and 19q 
codeletion were evaluated by fluorescence in situ hy-
bridization.21 A detailed description of the molecular bio-
marker evolution process is given in the Supplementary 
Material 3.

When molecular pathological results were available, 
the above glioma categories could be extended into inte-
grated neuropathological diagnosis. As shown in Fig. 4, we 
provide the integration scheme for the 2 most important 
molecular information carried out by the WHO 2016 clas-
sification of tumors of the central nervous system3: IDH 
and 1p/19q. First, each of these 5 glioma categories was 
split into 2 branches based on the IDH status of the given 
patient, similar to a decision tree. If the final classification 
was not reached, the 1p/19q status was used to further split 
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Fig. 2 Six histological categories of glioma H&E sections were involved. 1) oligodendroglioma, 2) anaplastic oligodendroglioma, 3) astrocytoma, 
4) anaplastic astrocytoma, 5) glioblastoma, and 6) nontumor images of red blood cells and background brain glia. The images were divided into 
3 sets: 1) training set: 65 673 images from 219 subjects, 2) validation set: 14 317 images from 48 subjects, and 3) testing set: 16 862 images from 
56 subjects. Bar charts for the number of patches and patients are displayed on the left, and detailed numbers of 5 subtypes for the training, 
validation and testing sets are shown on the right. Note that background image patches were taken from the boundary of tumor regions in the 
sections.
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the patient diagnosis into 2 branches, where the horizontal 
arrows lead to the final diagnosis. In this way, the molec-
ular pathological diagnosis was obtained.

Results

A CNN (model SD-Net-WCE) was developed for automated 
classification of pathology images into 6 subtypes. The 
performance of the CNN models on pathological image 
classification was evaluated, including both SD-Net and 
SD-Net-WCE. For comparison, 2 other popular methods 
were adopted: DenseNet and Inception-FCN. The proposed 
SD-Net-WCE shows the best accuracy at 87%. A detailed 
comparison can be found in Supplementary Material 4.

In simple terms, the overlap of each image is discarded, 
165 patches are put into the model for a single case. 
Images pass through the SD blocks and layers to obtain 
6 categories of patch-level output including GBM, AA, AO, 
A, O, and BG. For better visual effect, they are then as-
signed to different colors. Those outcomes then pass the 
patient-level diagnostic scheme for the final patient-level 
outcome. A  detailed demonstration can be found in the 
video Hyperlinked Supplement 1—Software Operational 
Approach.

The CNNs were trained and verified on over 79 990 histo-
logical patch images from 267 patients and independently 
tested on data from 56 patients with 17 262 histological 
patch images. Table 1 shows the sensitivity and specificity 
across 5 classifications in 6-fold after cross-validation with 

an average patch accuracy of 86.5%. Fig. 5 gives the confu-
sion matrices of the proposed SD-Net-WCE. By comparing 
the input testing subject, and the corresponding atten-
tion maps, the attention map can accurately highlight the 
tumor cell clusters, which further ensures the efficacy and 
robustness of our deep learning model. The image patch 
prediction results were then combined to complete the 
final classifications of the mosaic large images and pro-
duce the patient-level diagnosis. The results show that our 
deep CNN can learn pathological features and accomplish 
glioma classification tasks, since our patient-level accuracy 
reached 87.5%.

Ultimately, our model reached the molecular level with 
a total of 323 cases, including training, validation, and 
testing groups. During genetic testing, 7 cases had no re-
served tissue blocks and 20 cases failed quality control due 
to the high degradation of the specimens. Those 27 cases 
were allocated to “not otherwise specified (NOS)” based 
on their histological diagnosis. Hence, 296 cases were 
genetically tested for IDH and 1p/19q status. All results 
were input into a logical algorithm derivation. Numbers 
of cases that fall into each final histological and molecular 
diagnosis are shown in Fig.  4. All data are presented in 
Supplementary Material 5.

Discussion

The development of pathology depends on technological 
advances.22 The main hypothesis addressed in this work 
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is that the clinical-grading and classification performance 
of glioma can be reached by annotating at the patch level. 
To test our hypothesis, we developed and applied a deep 
learning approach to the problem of automated classifi-
cation of different histopathological subtypes of glioma 
based on the dataset collected from Huashan Hospital 
using a self-developed digital slide scanner. A large dataset 
was compiled comprising 97 252 images from 323 slides of 
323 individual cases across 5 different subtypes of glioma. 
We performed this through the assembly of 2 CNN com-
ponents, each specialized to its tasks. Our preliminary 
results appear to be promising, showing 86.5% patch ac-
curacy and 87.5% patient-level accuracy for distinguishing 
O, AO, A, AA, and GBM on the independent testing dataset. 
We take advantage of the recent advances in deep learning 
to train a deep neural network in the task of glioma 

classification. CNNs are composed of multiple layers, 
each of which provides an integral step in the data proc-
essing. Early in the network, the first layers can produce 
only low-level, basic patterns. Conversely, the deepest 
layers of the model can represent highly complex, abstract 
features that may correspond with particular classes. (See 
Hyperlinked Supplement 2—Animation for an overall con-
cept of this study.

 “AI Neuropathologist” is considered to be a part of 
translational medicine, and thus the actual clinical perfor-
mance of the model is most concerning. Practically, to our 
knowledge, there is no applied glioma pathological diag-
nostic system. By looking into multiple deep learning strat-
egies, the model we developed has given the most reliable 
result with comparatively high accuracy. It is also con-
sidered to be competitive compared with pathologists with 

  
Table 1 Sensitivity, specificity, and accuracy of each fold across each classification of SD-Net_WCE model

O A AO AA GBM Accuracy

Fold 1 89.48 / 98.50 90.58 / 96.60 91.11 / 96.54 81.14 / 92.41 79.68 / 97.37 87%

Fold 2 95.10 / 96.73 87.10 / 96.71 93.57 / 95.66 82.09 / 96.27 74.21 / 95.88 86%

Fold 3 89.10 / 98.17 91.71 / 95.04 95.04 / 97.28 87.34 / 92.31 68.29 / 99.21 87%

Fold 4 87.36 / 96.87 87.95 / 94.21 85.83 / 98.43 84.28 / 92.70 68.61 / 97.79 85%

Fold 5 84.84 / 98.14 87.05 / 96.86 83.61 / 98.70 88.69 / 90.28 79.19 / 97.87 87%

Fold 6 90.39 / 98.53 93.22 / 97.28 90.51 / 97.52 86.91 / 95.93 76.81 / 97.46 89%

Average Sensitivity (%) 89.37 89.60 89.94 85.08 74.46 Mean accuracy: 86.5%

Average Specificity (%) 97.82 96.12 97.36 93.32 97.60
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Fig. 4 Illustration of logical algorithms. Five histological classifications with different grades of patient level prediction are demonstrated by using 
the deep learning model. IDH mutation and 1p/19q codeletion status are set as molecular markers. When genetic testing is not done, diagnosis con-
clude as “histological classification + NOS.” When molecular information of the patient is available, it could be extended into molecular patholog-
ical diagnosis by following the route of a decision tree. Final integrated classifications include A with IDH wildtype, AA with IDH wildtype, GBM with 
IDH mutation, GBM with IDH wildtype, A with IDH mutation and 1p/19q non-codeletion, AA with IDH mutation and 1p/19q non-codeletion, O with IDH 
mutation and 1p/19q codeletion, AO with IDH mutation and 1p/19q codeletion, A NOS, AA NOS, O NOS, OA NOS, and GBM with NOS. (B) Number 
and proportion of final diagnosis of all 323 cases after integrating IDH and 1p/19q status with histological classification in accordance with the 2016 
WHO classification of tumors of the central nervous system.
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low time consumption, as the automated process takes 
less than 10 minutes in total, including image collection, 
stitching, and diagnosis. Given that accurate and rapid 
diagnosis is the future direction of digital pathology de-
velopment, our study has the potential for assisting patho-
logists with their diagnoses in the practical field, especially 
for those who lack experience in diagnosing glioma. The 
cell and histologic structures of different types of glioma 
which are considered by pathologists are also well recog-
nized by the model. The task of classifying the type and 
grade of glioma using image features is not unlike other 
types of automated image feature learning problems, in 
which a set of predefined features is used to characterize 
the image and predict the classification label, and our work 
can be approached using features such as nuclear shape.23 
However, a substantial disadvantage of this is the need to 
know those that are the most informative in the task. Often 
the best features are not known, and a method of unsuper-
vised feature learning can be advantageous, particularly if 
abundant data are available.

Despite the general concerns about overfitting and scar-
city of data, our chosen model trains well on the dataset 
and proves robust in validation. Although subject-level 
prediction will almost always yield better accuracy, the 2 
methods are fairly consistent with one another and may 
be entirely comparable. False patch labeling, though miti-
gated in validation testing, remains an issue in the training 

phase, as the network will still learn from incorrect ex-
amples. Currently, there are no obvious solutions that can 
provide sufficient data augmentation without compro-
mising the integrity of the data other than slowly gathering 
more samples. We found the lack of availability of high-
quality histopathological images to be the greatest limiting 
factor in our study. The publicly available datasets from 
The Cancer Genome Atlas are for LGG and GBM and con-
tain only large WSIs, each exceeding 2 GB in size. Le Hou 
et  al approached this problem also by employing patch-
based CNNs, although their model operates on data at a 
much lower resolution of 20x.24 Our work can benefit from 
a region-of-interest detection method to extract suitable 
image samples from WSIs and then serve as input into our 
current classification model.

The most recent research by Hollon et  al developed a 
near real-time intraoperative brain tumor diagnosis using 
stimulated Raman histology and deep neural networks.25 
The basis of the study was Raman histology, which is not 
well popularized in the clinical histopathological field. 
Nevertheless, traditional histological diagnosis is still the 
mainstream of cancer care. Although their results showed 
a higher accuracy, it is unrealistic to take in this model 
practically at short notice considering both training and 
equipment expenses. In addition, the data distribution con-
centrated on nonglial tumors, and glioma classification by 
using Raman histology had a relatively poor performance 
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among types of brain tumors, which was the evidence of 
requiring traditional postoperative histopathology. Deep 
learning models of histopathology for other disciplines 
are also developing rapidly these years. For example, Yu 
et al developed a lung cancer model to differentiate ade-
nocarcinoma and squamocellular carcinoma.26 Similarly, 
other models, including skin cancer, breast cancer, pros-
tate cancer, and cervical cancer, remain a dichotomy rather 
than multiclassification, which can divide images into ei-
ther cancerous or noncancerous histology.10,27,28

The WHO 2016 classification of tumors of the central 
nervous system concludes that IDH and 1p/19q are neces-
sary genetic features when integrated diagnosing glioma, 
since molecular signatures can sometimes outweigh histo-
logic characteristics.3 Therefore, in addition to histological 
classification, our model has also adopted molecular diag-
nosis by using a logical algorithm. If molecular information 
of patients is available, the final diagnosis can be further 
amplified, as shown in Fig. 4. It now appears that the tech-
nical difficulties are the deep learning network of histolog-
ical image recognition. Relatively, logical discrimination of 
molecular markers is clear and intelligible. Our model is 
capable of updating if any novel molecular marker is indi-
cated in future WHO classification.

The result of our evaluation of accuracy for glioma clas-
sification is a reasonable preliminary result but leaves 
room for improvement. There are several potential reasons 
for this performance. First, protocols for tissue slicing, 
staining, image acquisition, etc, are critical. Thus, the 
quality of the image, specifically to patches, could take ef-
fect. The variation within the tissue slides, and portions of 
pathology images could contain nontumor tissue which 
may or may not be relevant to the diagnosis. Future work 
in which our methods are applied to more independent 
multicenter data would be good to establish the mag-
nitude of those confounding aspects on the accuracy. 
Furthermore, as our model can only classify 5 major types 
of glioma, it is necessary to distinguish nonglial images 
before being allocated into glioma subtypes. These images 
include normal tissue and other types of brain tumors, 
which can be achieved by expanding both the number 
and kind of samples and adding another neural network 
in advance.

In summary, by taking advantage of deep image learning 
technologies, the proposed “AI Neuropathologist” can suc-
cessfully classify 5 major types of histopathological glioma 
images and integrate with IDH and 1p/19q status according 
to the most recent standards outlined by the WHO 2016 
classification of tumors of the central nervous system. The 
accuracy of the diagnostic model at both patch level and 
patient level has reached expectations and showed com-
petitiveness compared with existing models. At present, 
the accuracy of our model has reached the general condi-
tion of carrying out prospective clinical research, and it will 
be the focus of the next step for our projects.
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online.
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