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ABSTRACT
Background: Walnut consumption is associated with lower risk of type 2 diabetes (T2D) and cardiovascular disease

(CVD). However, it is unknown whether plasma metabolites related to walnut consumption are also associated with

lower risk of cardiometabolic diseases.

Objectives: The study aimed to identify plasma metabolites associated with walnut consumption and evaluate the

prospective associations between the identified profile and risk of T2D and CVD.

Methods: The discovery population included 1833 participants at high cardiovascular risk from the PREvención con

DIeta MEDiterránea (PREDIMED) study with available metabolomics data at baseline. The study population included

57% women (baseline mean BMI (in kg/m2): 29.9; mean age: 67 y). A total of 1522 participants also had available

metabolomics data at year 1 and were used as the internal validation population. Plasma metabolomics analyses were

performed using LC-MS. Cross-sectional associations between 385 known metabolites and walnut consumption were

assessed using elastic net continuous regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson

correlation coefficients were assessed between metabolite weighted models and self-reported walnut consumption

in each pair of training–validation data sets within the discovery population. We further estimated the prospective

associations between the identified metabolite profile and incident T2D and CVD using multivariable Cox regression

models.

Results: A total of 19 metabolites were significantly associated with walnut consumption, including lipids, purines,

acylcarnitines, and amino acids. Ten-CV Pearson correlation coefficients between self-reported walnut consumption and

the plasma metabolite profile were 0.16 (95% CI: 0.11, 0.20) in the discovery population and 0.15 (95% CI: 0.10, 0.20) in

the validation population. The metabolite profile was inversely associated with T2D incidence (HR per 1 SD: 0.83; 95%

CI: 0.71, 0.97; P = 0.02). For CVD incidence, the HR per 1-SD was 0.71 (95% CI: 0.60, 0.85; P < 0.001).

Conclusions: A metabolite profile including 19 metabolites was associated with walnut consumption and with a lower

risk of incident T2D and CVD in a Mediterranean population at high cardiovascular risk. J Nutr 2021;151:303–311.
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Introduction
Walnuts are one of the most popular types of nuts consumed
worldwide. Walnuts are a good source of PUFAs and are
rich in fiber, nonsodium minerals (i.e., potassium, calcium,
and magnesium), vitamins, phytosterols, and polyphenols (1).
Compared to other types of nuts, walnuts contain higher
amounts of the essential fatty acid α-linolenic acid (ALA;
18:3n–3) (11.6% of total fatty acid composition for walnuts
compared to <0.7% in other nuts) and linoleic acid (LA; 18:2n–
6) (2). Once absorbed, LA, the main vegetable n–3 PUFA, is
only modestly converted to its longer chain counterparts EPA
and DHA, but it appears to possess anti-inflammatory and
antiatherogenic properties on its own (3). The unique fatty acid
composition together with their richness in phytosterols are
believed to underlie the consistent cholesterol-lowering effect
of regular walnut consumption (4). In addition, accumulating
evidence from prospective studies suggests that higher walnut
consumption is associated with lower risk of various chronic
diseases, including type 2 diabetes (T2D) and cardiovascular
disease (CVD) (5, 6).

Although current evidence has shown a wide range of health
benefits from walnut consumption, the biological mechanisms
underlying these salutary effects are not fully understood.
Nutritional metabolomics is a rapidly evolving approach to
obtain deeper insights into diet–disease association that holds
great promise in improving our understanding of the biological

The PREDIMED study was funded by NIH grants R01 HL118264 and R01
DK102896 and by the Spanish Ministry of Health (Instituto de Salud Carlos
III, The PREDIMED Network grant RD 06/0045, 2006–2013, coordinated by
MAM-G; and a previous network grant RTIC-G03/140, 2003–2005, coordinated
R. Estruch). Additional grants were received from the Ministerio de Economía
y Competitividad-Fondo Europeo de Desarrollo Regional (Projects CNIC-
06/2007, CIBER 06/03, PI06-1326, PI07-0954, PI11/02505, SAF2009-12304,
and AGL2010-22319-C03-03) and the Generalitat Valenciana (ACOMP2010-181,
AP-111/10, AP-042/11, ACOM2011/145, ACOMP/2012/190, ACOMP/2013/159,
ACOMP/213/165, and PROMETEO17/2017). MG-F is supported by American
Diabetes Association grant 1-18-PMF-029. PH-A is supported by a postdoctoral
fellowship (Juan de la Cierva-Formación, FJCI-2017-32205). CW was supported
by an individual fellowship from the German Research Foundation (DFG). JS-
S gratefully acknowledges the financial support by ICREA under the ICREA
Academia program.
Author disclosures: J-PD-C received speaker and consulting honoraria from the
Dairy Farmers of Canada in 2016 and 2018, outside the submitted work. ER
reports grants, personal fees, nonfinancial support, and other from the California
Walnut Commission. JS-S reports serving on the board of the International Nut
and Dried Fruit Council and receiving grant support from this entity through his
institution. He also reports serving on the Executive Committee of the Instituto
Danone, Spain. He has also received research funding (tree nuts and olive oil
for the PREDIMED and/or PREDIMED-Plus trial) from the California Walnut
Commission; the Almond Board of California; Patrimonio Comunal Olivarero,
Spain; La Morella Nuts, Spain; and Borges S.A., Spain. He reports receiving
consulting fees or travel expenses outside of the submitted work from Danone,
Spain; Eroski Foundation, Spain; the International Nut and Dried Fruit Council,
Spain; and the Australian Nut Industry Council, Australia. FBH received research
support from the California Walnut Commission. All other authors report no
conflicts of interest. The funding sources had no role in the design, collection,
analysis, or interpretation of the data or in the decision to submit the manuscript
for publication.
Supplemental Figure 1 and Supplemental Tables 1–3 are available from the
“Supplementary data” link in the online posting of the article and from the same
link in the online table of contents at https://academic.oup.com/ajcn/.
MG-F, PH-A, FBH, and JS-S contributed equally to this work.
Address correspondence to MG-F (e-mail: mguasch@hsph.harvard.edu) or PH-A
(e-mail: pablo.hernandez@alumni.urv.cat).
Abbreviations used: ALA, α-linolenic acid; CV, cross-validation; CVD, car-
diovascular disease; LA, linoleic acid; MAG, monoacylglycerol; MedDiet,
Mediterranean diet; MSE, mean squared error; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PREDIMED, PREvención con DIeta MEDiterránea;
PS, phosphatidylserine; T2D, type 2 diabetes.

effects of nutritional factors and may also help identify
potential novel biomarkers of dietary intake and/or disease risk
prediction (7).

A few previous studies, including acute feeding studies,
clinical trials, and observational studies, have evaluated how
the consumption of walnuts influences plasma and urinary
metabolites (8). Whereas some metabolites, including ALA-
derived oxylipins, (2) urolithins (9), and 5-hydroxyindole-3-
acetic acid, have been identified to be associated with walnut
consumption, findings for other metabolites have been incon-
sistent (8). Furthermore, no previous studies have investigated
whether plasma metabolites correlated with walnut intake are
also associated with a lower risk of cardiometabolic diseases.

In the current study, we used an agnostic machine learning
approach to identify plasma metabolites associated with walnut
consumption using data from the PREvención con DIeta
MEDiterránea (PREDIMED) study. We then assessed whether
the identified metabolite profile was associated with T2D and
CVD incidence risk independently of known risk factors.

Methods
Study population

Discovery population.
The study cohort was derived from the PREDIMED study, a multicenter
randomized feeding trial conducted in Spain from 2003 to 2010, which
examined the effects of the traditional Mediterranean diet (MedDiet) in
the primary prevention of CVD in a population at high cardiovascular
risk. A detailed description of the PREDIMED trial can be found
elsewhere (10, 11). The protocol was approved by the Institutional
Review Boards at all PREDIMED study locations, and all participants
provided written informed consent.

Two nested case–cohort studies were designed for metabolomics
profiling within the PREDIMED trial—1 for CVD, which was the
primary outcome of the trial, and 1 for T2D, which was a secondary
outcome. The PREDIMED-CVD study consisted of 229 incident
CVD cases free of CVD at baseline and 788 subcohort participants
(overlapping n = 37) (12, 13), and the PREDIMED-T2D study consisted
of 251 incident T2D cases and 641 subcohort participants (overlapping
n = 53) without T2D at baseline (14, 15). Participants with oral
glucose tolerance data at baseline (n = 130) were also included in the
PREDIMED-T2D project (Supplemental Figure 1).

For the current study, participants with available baseline
metabolomics data from the 2 case–cohort studies and with a
completed validated semiquantitative 137-item FFQ were selected to
develop the metabolite profile model (n = 1882). Participants with
missing FFQ data at baseline (n = 11), those who had daily energy
intake <500 or >3500 kcal/d for women and <800 or >4000 kcal/d
for men (n = 34), and those participants with ≥20% missing values
in metabolites (n = 4) were excluded. A total of 1833 participants
were included in the discovery population of the current analysis. From
the 1833 participants at baseline, 571 were randomly assigned to the
control diet, 633 were randomly assigned to the MedDiet supplemented
with extra virgin olive oil, and 639 participants were randomly assigned
to the MedDiet supplemented with nuts.

Validation population.
Internal validation was conducted using data from year 1 in the
PREDIMED study. Of the 1833 participants included in the discovery
population, 1522 had repeated measurements of diet and metabolomics
at year 1 of intervention, and they were used as the validation set
(Supplemental Figure 1).

Dietary assessment
At baseline and yearly thereafter, trained dietitians completed a
validated 137-item semiquantitative FFQ in face-to-face interviews
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with the participants. Energy and nutrient intake were estimated using
Spanish food composition tables (16, 17). Information on self-reported
walnut consumption was derived from the FFQ. The questionnaire
includes 1 item regarding the specific consumption of walnuts. The
dietitians asked the participants how often they consumed walnuts,
ranging from never to between 1 and 3 times per month, and how many
times per week (1, 2–4, or 5–6 times) or times per day (1, 2–3, 4–6, or
>6 times) they consumed walnuts.

Assessment of risk factors and covariates
Medical conditions, family history of disease, and risk factors were
collected through a questionnaire during the first screening visit.
At baseline and during annual visits, trained personnel measured
participants’ body weight, height, waist circumference, and blood
pressure according to the study protocol. Physical activity was assessed
using the validated Spanish version of the Minnesota Leisure-Time
Physical Activity questionnaire (18). Participants were considered to
have hypercholesterolemia or hypertension when they had previously
been diagnosed and/or they were being treated with cholesterol-
lowering or antihypertensive agents, respectively.

Metabolite profiling
The plasma metabolomics profiling was performed at the Broad Insti-
tute of Harvard University and Massachusetts Institute of Technology
using high-throughput LC-MS/MS techniques. After quality filtering
and standardization, 399 named metabolites were qualified for primary
analyses. From the 399 originally annotated metabolites, 11 metabolites
were removed due to high number of missing values (i.e., >20%) and
3 metabolites were considered an internal standard, thus leaving a total
of 385 metabolites in the final analysis.

All analyses used overnight fasting (fasting for ≥8 h) plasma EDTA
samples collected at baseline and at year 1. Samples were processed at
each recruiting center no later than 2 h after collection and stored in –
80◦C freezers. Pairs of samples (baseline and first-year visit) from cases
and subcohort participants were randomly distributed before being
shipped to the Broad Institute for metabolomics assays.

LC-MS/MS was used to quantitatively profile polar metabolites
and lipids of the plasma samples. Details of the LC-MS/MS platform
can be found elsewhere (19–21). Briefly, amino acids and other polar
metabolites were profiled with a Nexera X2 U-HPLC (Shimadzu)
coupled to a Q-Exactive mass spectrometer (ThermoFisher Scientific).
Metabolites were extracted from plasma (10 μL) using 90 μL
of 74.9:24.9:0.2 (vol:vol:vol) of acetonitrile/methanol/formic acid
containing stable isotope-labeled internal standards [valine-d8 (Sigma-
Aldrich) and phenylalanine-d8 (Cambridge Isotope Laboratories)]. The
samples were centrifuged (9000 × g; 10 min; 4◦C), and the supernatants
were injected directly onto a 150 × 2-mm, 3-μm Atlantis HILIC
column (Waters). The column was eluted isocratically at a flow rate of
250 μL/min with 5% mobile phase A (10 mmol ammonium formate/L
and 0.1% formic acid in water) for 0.5 min followed by a linear gradient
to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 10
min. MS analyses were carried out using electrospray ionization in the
positive-ion mode, and full-scan spectra were acquired over 70–800 m/z.
Lipids were profiled using a Nexera X2 U-HPLC (Shimadzu) coupled
to an Exactive Plus orbitrap MS (Thermo Fisher Scientific). Lipids were
extracted from plasma (10 μL) using 190 μL of isopropanol containing
1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids)
as an internal standard. Lipid extracts (2 μL) were injected onto a
100 × 2.1-mm, 1.7-μm ACQUITY BEH C8 column (Waters). The
column was eluted isocratically with 80% mobile-phase A (95:5:0.1
vol:vol:vol 10 mM ammonium acetate/methanol/formic acid) for 1
min followed by a linear gradient to 80% mobile-phase B (99.9:0.1
vol:vol methanol/formic acid) over 2 min, a linear gradient to 100%
mobile-phase B over 7 min, and then 3 min at 100% mobile-phase
B. MS analyses were carried out using electrospray ionization in the
positive-ion mode using full-scan analysis over 200–1100 m/z. Raw data
were processed using Trace Finder version 3.1 and 3.3 (Thermo Fisher
Scientific) and Progenesis QI (Nonlinear Dynamics). Polar metabolite
identities were confirmed using authentic reference standards, and lipids

were identified by head group and total acyl carbon number and total
acyl double bond content. To enable assessment of data quality and to
facilitate data standardization across the analytical queue and sample
batches, pairs of pooled plasma reference samples were analyzed at
intervals of 20 study samples. One sample from each pair of pooled
references served as a passive quality control sample to evaluate the
analytical reproducibility for measurement of each metabolite, whereas
the other pooled sample was used to standardize using a “nearest
neighbor”approach. Standardized values were calculated using the ratio
of the value in each sample over the nearest pooled plasma reference
multiplied by the median value measured across the pooled references.

Statistical analysis
To identify the metabolite profile associated with walnut consumption,
we used walnut consumption and plasma metabolomics data from
PREDIMED at baseline as the training set (discovery population). A
combined data set from PREDIMED-CVD and -T2D nested case–
control studies was used to increase sample size and ensure sufficient
statistical power and model precision. Data from PREDIMED year
1 were used as the testing sets (validation cohorts) (Supplemental
Figure 1).

Baseline characteristics of study participants were described as
means and SDs for quantitative variables and as percentages for
categorical variables. Missing values of individual metabolites were
imputed in those metabolites with <20% of missing values using the
random forest imputation approach (“missForest” function from the
“missForest”R package) as recommended in metabolomics studies (22–
24). Importantly, different alternatives to this approach were found
to generate consistent results, as previously reported by our research
consortium (25). Missing values correspond to those determinations
that were below the limit of detection. To conduct the multivariate
analysis, metabolomic data were first centered and scaled using
the SD as the scaling factor (i.e., autoscaling) (26). Due to the
high dimensionality and collinear nature of the data, Gaussian (i.e.,
continuous) linear regression with elastic net penalty (implemented
in the “glmnet” R package) was used to build the model for walnut
consumption. In the discovery population (PREDIMED baseline), we
performed a 10 cross-validation (CV) approach—splitting the sample
into training (90% of the sample) and validation sets (10% of the
sample)—and then within the training sets we performed a further
10-fold CV to find the optimal value of the tuning parameter (λ)
that yielded the minimum mean squared error (MSE). The values
minMSE and minMSE + 1 SE were calculated using argument s =
“lambda.min” or s = “lambda.1se” in the cv.glmnet function (“glmnet”
R package). To report the coefficients from each CV iteration, we
evaluated the λ selection in the elastic net logistic regression. We selected
s = lambda.min because it gives the minimum mean CV error and s =
“lambda.1se” was not deriving a valid model. In addition to the λ value,
we evaluated the α parameter from 0 (i.e., Ridge regression) to 1 (i.e.,
Lasso regression) in 0.1 increments to test the best scenario for our data.
In this case, α = 1 was the model with best predicting accuracy in the
validation sets. Weighted models were constructed for each training–
validation data set pair (90% training and 10% validation) using the
coefficients for the metabolites obtained from each elastic net regression
in the training set.

Pearson correlation coefficients were derived between self-reported
walnut consumption and the metabolite profile model in both the
discovery and validation populations. For reproducibility purposes,
regression coefficients are reported using 10 iterations of the 10-CV
elastic regression approach in the whole data set. Metabolites that were
selected in 9 out of the 10 iterations in the 10-CV elastic regression are
also reported but not included in the main metabolite profile model.
These analyses are based on consistency among CV runs, and therefore
any P-value is derived.

We used weighted Cox regressions with Barlow weights and robust
variance estimator to assess the associations between the metabolite
profile associated with walnut consumption at baseline and year 1 with
incident T2D risk (245 incident events from baseline and 161 events
from year 1) and CVD risk (222 incident events from baseline and 151
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incident events from year 1) within the T2D and CVD nested case–
cohort studies, respectively. Multivariable model 1 (the basic model)
was adjusted for age, sex, and propensity scores (11) and stratified by
intervention group and recruitment center. Model 2 (sociodemographic
model) was further adjusted for BMI, smoking status (never, former, or
current smoker), alcohol intake (grams per day) and squared alcohol
intake, education level (primary, secondary, academic), physical activity
(metabolic-equivalent minutes per day), family history of coronary heart
disease (yes/no), baseline dyslipidemia or lipid-lowering medication use
(yes/no), baseline hypertension or antihypertensive use (yes/no), and
T2D prevalence (only in CVD analyses). Model 3 (diet model) was
additionally adjusted for total energy and intakes of vegetables, fruits,
cereals, red and processed meat, fish, olive oil, eggs, legumes, and
dairy in quintiles. Dietary variables were included on the basis of their
association with the outcomes (CVD and T2D) and/or their correlation
with the exposure (walnut intake). The final model [model 4 (+ self-
reported walnut consumption)] included covariates from model 3 plus
the consumption of walnuts from which the metabolite set was derived.

In sensitivity analysis, to test whether the associations were
consistent if only metabolites positively associated with walnut intake
are included in the models, we performed elastic net regression
allowing only positive associations between metabolites and walnut
consumption and calculated the 10-CV Pearson correlation coefficient
in the discovery population using the metabolite profile model obtained.
P < 0.05 was considered statistically significant. All analyses were
performed using R version 3.4.2 statistical software (R Foundation for
Statistical Computing).

Results
Characteristics of the study participants

Baseline characteristics of the study participants are presented
in Table 1 by total population and by extremes of walnut
consumption using tertiles. The mean ± SD consumption
of walnuts at baseline was 6 ± 9 g/d and the respective
consumption at 1 y was 10 ± 12 g/d; walnut consumption
increased due to the nature of the PREDIMED intervention.
Participants with a higher consumption of walnuts at baseline
had a lower BMI, were less likely to be women and to smoke,
and had a higher intake of total energy (Table 1).

Identification of walnut-related metabolites

Figure 1 shows the metabolites selected 10 times in 10-CV
validations of the elastic net regressions sorted by coefficient
values. Table 2 summarizes the number of metabolites and
the Pearson correlation coefficients between the metabolite
profile model and walnut consumption values in the discovery
cohort and in the internal validation population (PREDIMED
year 1). A total of 19 metabolites were significantly associated
with walnut consumption. Of these, 9 metabolites had positive
coefficients, whereas 10 had negative coefficients. The means
and SDs of the metabolites’ regression coefficients selected
9 and 10 times in the 10-CV elastic net regressions using
lambda.min are shown in Supplemental Table 1. In addition
to the 19 metabolites that were selected 10 times in the 10-CV
elastic net regressions, 15 additional metabolites, 9 with positive
coefficients and 6 with negative coefficients, were selected a total
of 9 times in the 10-CV elastic net regressions (Supplemental
Table 2). Table 3 shows the individual Pearson correlation
coefficients between each consistently selected metabolite and
walnut consumption. The direction of the associations between
individual correlations is consistent with the coefficients of the
metabolite profile model (Figure 1).

The 10:2 carnitine, 36:4 phosphatidylcholine (PC),
biliverdin, guanine, 4-hydroxy-3-methylacetophenone, and

22:1 monoacylglycerol (MAG) were the metabolites with
the strongest positive coefficient values, whereas isocitrate,
40:6 phosphatidylserine (PS), cyclohexylamine, succinate,
and 36:5 phosphatidylethanolamine plasmalogen were the
metabolites with strongest negative coefficient value (Figure 1).
The Pearson correlations between walnut consumption and
the metabolite profile were 0.16 (95% CI: 0.11, 0.20) in the
discovery population (baseline) and 0.15 (95% CI: 0.10, 0.20)
in the validation population (at year 1).

In sensitivity analysis, we calculated the Pearson correlation
coefficients between self-reported walnut consumption and the
metabolite profile obtained in the discovery population only
allowing metabolites with positive coefficients, and the results
were consistent with those of the primary analyses in both the
discovery (0.13; 95% CI: 0.08, 0.19) and validation populations
(0.14; 95% CI: 0.10, 0.19) (Table 2).

Association of walnut-related metabolites with T2D
and CVD risk

Supplemental Table 3 depicts the characteristics of the study
population included in the Cox models by T2D or CVD incident
case–control status. T2D and CVD incident cases were more
likely to be men and current smokers, and they had a higher
BMI.

After adjusting for lifestyle and dietary risk factors, the HR
and 95% CI for T2D per SD increment in the metabolite profile
model of walnut consumption was 0.86 (95% CI: 0.74, 1.00;
P = 0.05) in the discovery population (cases = 245) (baseline
data) and 0.82 (95% CI: 0.64, 1.05; P = 0.13) in the internal
validation population (cases = 161) (year 1 data) (Table 4,
model 3). When the models were further adjusted for self-
reported walnut consumption (model 4), the results remained
consistent.

The metabolite profile of walnut consumption was inversely
associated with CVD risk in the discovery and in the internal
validation populations after adjusting for potential confounders
and self-reported walnut consumption (Table 4). The HR (95%
CI) for CVD of the multivariable model adjusted for lifestyle
and dietary factors was 0.66 (95% CI: 0.56, 0.77; P < 0.001)
using baseline (cases = 222) and 0.75 (95% CI: 0.60, 0.93;
P = 0.01) in the internal validation discovery population
(cases = 159). The results remained significant when the models
were adjusted for self-reported walnut consumption.

Discussion

Using an agnostic machine-learning approach, we identified
19 plasma metabolites, including lipids, purines, acylcarnitines,
and amino acids, that were associated with walnut consumption
using data from the PREDIMED study. The identified walnut-
related metabolite profile was inversely associated with T2D
and CVD risk after adjusting for potential confounders and
self-reported walnut consumption. Although the correlations
between walnut consumption and the metabolite profile were
weak, these findings may help provide new insights into the po-
tential biological mechanisms underlying associations between
walnuts and cardiometabolic health and illustrate the potential
of metabolomics profiling to better understand mechanisms
underlying diet–disease relationships. To our knowledge, this is
the first study to specifically examine the association between
plasma metabolite profile of walnut consumption and the risk
of cardiometabolic diseases.
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TABLE 1 Characteristics of participants in the PREDIMED trial at baseline and year 11

Characteristic All participants
Participants with low

walnut intake (tertile 1)
Participants with high
walnut intake (tertile 3)

PREDIMED—baseline (discovery cohort)
Participants, n 1833 691 467
Age, y 67 ± 6 67 ± 6 67 ± 6
Female sex, n (%) 1055 (57.6) 420 (60.8) 247 (52.9)
Prevalent type 2 diabetes, n (%) 492 (26.8) 209 (30.2) 110 (23.6)
BMI, kg/m2 29.9 ± 3.5 30.4 ± 3.7 29.2 ± 3.3
Physical activity, Mets-min/wk 254 ± 255 215 ± 226 278 ± 243
Current smoker, n (%) 287 (15.7) 106 (15.3) 67 (14.3)
History of hypercholesterolemia, n (%) 1408 (76.8) 513 (74.2) 377 (80.7)
History of hypertension, n (%) 1599 (87.2) 602 (87.1) 400 (85.7)
Family history of coronary heart disease, n (%) 451 (24.6) 172 (24.9) 106 (22.7)
Dietary intake

Energy intake, kcal/d 2283 ± 544 2150 ± 538 2446 ± 541
Walnuts intake, g/d 6 ± 9 0 ± 0 19 ± 8
Total nuts intake, g/d 11 ± 13 2 ± 7 28 ± 14
Total dairy intake, g/d 375 ± 221 364 ± 21 379 ± 230
Vegetable intake, g/d 332 ± 150 312 ± 35 359 ± 172
Fruit intake, g/d 361 ± 197 340 ± 198 401 ± 198
Legume intake, g/d 20 ± 13 20 ± 14 21 ± 11
Grain intake, g/d 231 ± 101 220 ± 104 236 ± 100
Meat intake, g/d 134 ± 56 132 ± 57 132 ± 57
Fish intake, g/d 101 ± 53 92 ± 47 105 ± 49
Egg intake, g/d 20 ± 11 19 ± 11 19 ± 10
Alcohol intake, g/d 9 ± 15 8 ± 15 11 ± 16

PREDIMED—year 1 (internal replication cohort)
Participants, n 1522 531 347
Age, y 68 ± 6 68 ± 6 67 ± 6
Female sex, n (%) 875 (57.5) 320 (60.3) 190 (54.8)
BMI, kg/m2 29.8 ± 3.7 30.3 ± 3.8 29.3 ± 3.6
Prevalent type 2 diabetes, n (%) 463 (30.4) 190 (35.8) 104 (30.0)
Physical activity, Mets-min/wk 247 ± 255 230 ± 244 224 ± 211
Current smoker, n (%) 215 (14.3) 81 (15.4) 52 (15.0)
History of hypercholesterolemia, n (%) 1153 (75.8) 383 (72.1) 266 (76.7)
History of hypertension, n (%) 1318 (86.6) 457 (86.1) 294 (84.7)
Dietary intake

Energy intake, kcal/d 2285 ± 544 2077 ± 510 2574 ± 536
Walnuts intake, g/d 11 ± 12 0.5 ± 0.9 30 ± 10
Total nuts intake, g/d 21 ± 23 3 ± 5 55 ± 22
Total dairy intake, g/d 366 ± 214 364 ± 220 369 ± 211
Vegetable intake, g/d 345 ± 137 329 ± 140 381 ± 145
Fruit intake, g/d 389 ± 195 368 ± 196 422 ± 223
Legume intake, g/d 22 ± 11 22 ± 11 23 ± 10
Grain intake, g/d 225 ± 93 215 ± 96 232 ± 91
Meat intake, g/d 124 ± 51 122 ± 51 127 ± 56
Fish intake, g/d 106 ± 45 98 ± 45 116 ± 46
Egg intake, g/d 20 ± 11 20 ± 12 21 ± 9
Alcohol intake, g/d 8 ± 13 7 ± 12 9 ± 13

1Values are means ± SDs for continuous variables or number and percentages for categorical variables. Mets, metabolic-equivant
hours; PREDIMED, PREvención con DIeta MEDiterránea.

Some previous observational and intervention studies eval-
uated how the metabolome is influenced by walnut consump-
tion. Traditionally, ALA has been considered the best blood
biomarker of walnut consumption, mainly because one of the
key differences in the fatty acid profile of walnuts compared
with other nuts and other foods is the high amount of ALA
in walnuts (2). Precisely, ALA was the biomarker used in
the PREDIMED study to demonstrate compliance with the
MedDiet supplemented with nuts (which included 15 g of

walnuts per day) (11). Acute feeding studies and clinical trials
have identified high ALA in blood (including plasma and
erythrocytes) after walnut consumption or when mixed nuts
included walnuts; other studies have also identified LA after
the consumption of walnuts, which is the major PUFA present
in walnuts (8). McKay et al. (27) showed that compared to
baseline concentrations, both LA and ALA of erythrocytes were
higher after a 6-wk intervention with 42 g/d of walnut intake
in 21 healthy men and women. However, other food sources
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FIGURE 1 Coefficients for the metabolites selected 10 times in the 10 cross-validations of the continuous elastic regression for walnut
consumption in the PREDIMED study. Values are means ± SDs for the set of metabolites consistently selected (i.e. 10 times) after 10 iterations of
the elastic continuous regression procedure with 10-fold cross-validation (using lambda.min) employing the whole data set of subjects (n = 1833).
Metabolites with negative coefficients (n = 9) are plotted on the left, whereas those with positive coefficients are shown on the right (n = 10).
LPC, lysophosphatidylcholine; MAG, monoacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PREDIMED, PREvención con
DIeta MEDiterránea; PS, phosphosphingolipid; TAG, triglyceride.

of ALA and LA, particularly some seed oils, are common;
hence, these fatty acids cannot be considered as highly specific
markers of walnut consumption, except in populations in which
the intake of seed oils is lower or has been controlled in
clinical settings. In a Spanish population with dyslipidemia,
higher phospholipid proportions of ALA were correlated with
walnuts; the coefficients between fatty acid proportions and
the corresponding calculated intakes were r = 0.44; P < 0.001
(28). Although ALA has been identified as a reliable biomarker
of walnuts, the identification of other metabolites associated
with walnut consumption could provide a deeper understanding
of the potential biological pathways that are influenced by
the consumption of walnuts, and thus metabolites reflect the
inherent variation in metabolism of diet and, therefore, more
closely represent biological availability. In addition, identifying
a metabolite model with several metabolites could be more
specific of walnut consumption rather than the use of a
single metabolite. Although ALA and LA were not measured
in the platforms used for the current study, the metabolite

model selected 36:4 PC as the second metabolite with the
highest coefficient. 36:4 PC is a phosphatidylcholine that
can be derived from both endogenous and food sources and
belongs to the LA/ALA metabolic pathway (29). However, the
metabolomics platforms only identified lipids by head group
and total acyl carbon number and total acyl double bond
content; thus, 36:4 PC cannot be confirmed as 16:0–20:4
PC, and it could also be 18:2–18:2 PC, 18:1–18:3 PC, or
others.

In previous studies, urolithins—a product of ellagitannins
metabolized by gut microbiota (9)—have been commonly
identified in urine after walnut consumption. Although they
may be used to differentiate between the intake of walnuts
and nuts because they are not abundant in the latter, they
have been reported after the intake of other foods high in
polyphenols, such as strawberries, blackberries, and raspberries
(8). Specifically, in a previous study within the PREDIMED
trial, 18 urinary metabolites, including markers of fatty
acid metabolism, ellagitannin-derived microbial compounds,

TABLE 2 Pearson correlation coefficients between metabolomics signatures and consumption

Discovery population (PREDIMED baseline)

Internal validation
population (Year 1 data

in PREDIMED)

Assessment

Pearson correlation with
metabolomic signature

(95% CI) Total metabolites1

No. of metabolites
with positive
coefficients

No. of metabolites
with negative
coefficients

Pearson
correlation

(95% CI)

Walnuts, g/d 0.16 (0.11, 0.20) 19 9 10 0.15 (0.10, 0.20)
0.13 (0.08, 0.19)2 9 9 0 0.14 (0.10, 0.19)

1Metabolite coefficients obtained 10 times in the cross-validation procedure for the elastic net continuous approach. Results using the lambda.min option. PREDIMED,
PREvención con DIeta MEDiterránea.
2Pearson correlation and 95% CI between self-reported walnut intake and the multimetabolite model using only metabolites with positive values.
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TABLE 3 Pearson correlation coefficients between the
metabolites consistently associated with the consumption of
walnuts in the PREDIMED study1

Metabolite

40:6 PS − 0.11 (−0.16, −0.06)
16:1 LPC − 0.08 (−0.13, −0.03)
14:0 LPC − 0.08 (−0.13, −0.03)
Isocitrate − 0.08 (−0.13, −0.03)
Succinate − 0.07 (−0.12, −0.03)
Cyclohexylamine − 0.06 (−0.11, −0.01)
36:5 PE plasmalogen − 0.05 (−0.09, −0.00)
Piperine − 0.05 (−0.09, −0.00)
Sorbitol − 0.05 (−0.09, −0.00)
N-acetylaspartic acid 0.05 (0.00, 0.09)
22:1 MAG 0.05 (0.00, 0.09)
4-Hydroxy-3-methylacetophenone 0.05 (0.02, 0.09)
Guanine 0.07 (0.02, 0.11)
Serine 0.07 (0.02, 0.11)
Bilirubin 0.07 (0.03, 0.12)
54:6 TAG 0.08 (0.04, 0.13)
36:4 PC 0.08 (0.04, 0.13)
Biliverdin 0.09 (0.04, 0.13)
10:2 carnitine 0.11 (0.07, 0.16)

1Values are Pearson correlations and 95% CIs for the metabolites consistently
associated with the consumption of walnuts. LPC, lysophosphatidylcholine; MAG,
monoacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PREDIMED, PREvención con DIeta MEDiterránea; PS, phosphatidylserine; TAG,
triglyceride.

and metabolites of the tryptophan/serotonin pathway were
associated with walnut consumption (30). In the current study,
and consistent with previous results using urine samples in
the PREDIMED, tryptophan was also selected in the multi-
metabolite model. Tryptophan is found in considerably high
amounts in walnuts, and bacterial degradation of tryptophan
generates indole acid derivatives, which have been identified in
urine after walnut consumption (31). Whereas urine may be
more reflective of short-term or acute consumption, most of
the plasma metabolites that we identified as markers of walnut
intake may rather reflect the intake over days to weeks, which is
more meaningful when evaluating the association with chronic
disease risk.

Given that walnuts are high in unsaturated fats, it is not
surprising that a large proportion of the metabolites that we
identified are related to PUFA and lipid metabolic pathways.
The elastic net regression identified several lipids, especially
glycerophospholipids and glycerols, that were positively as-
sociated with walnut consumption, including 36:4 PC, 22:1
MAG, and 54:6 triglycerides, which could reflect the fatty acid
composition of walnuts. On the other hand, 2 LPCs (14:0
and 16:1) and 40:6 PS were inversely associated with walnut
consumption. In the current study, carbohydrate metabolites
and metabolites from the tricarboxylic acid cycle, including
isocitrate, succinate, and sorbitol, were also inversely associated
with walnut intake. Because the nutritional composition of
walnuts consists mostly of fatty acids and protein, and the
amount of carbohydrates is relatively low, it is not unexpected
that carbohydrate-related metabolites were inversely associated
with walnut intake.

10:2 carnitine was also selected in the model. Carnitines can
be derived from diet, mainly from animal food, but can also
be synthesized in the body from several precursors, including
lysine and methionine (32). Previous studies have suggested

that short-chain carnitines are associated with higher risk of
cardiometabolic diseases (13, 15, 33), but the role of medium-
chain carnitines has not been clearly established and it is
possible that they play different functions in the β-oxidation of
fatty acids in the mitochondria (32). Of note, we acknowledge
that it is possible that some of the metabolites may have been
selected by chance due to the use of agnostic machine-learning
approaches.

Serine was also significantly and positively associated with
walnut consumption. Serine is a nonessential amino acid that
can be supplied from food or synthesized by the body from
several metabolites. It can be found in higher amounts in nuts,
especially walnuts (34), peanuts, and almonds, as well as other
foods, including soybeans and legumes. Thus, it is plausible that
combined with other lipids it can be a potential marker of the
consumption of walnuts and other nuts. Finally, 2 metabolites
involved in porphyrin and chlorophyll metabolism have been
identified in the multimetabolite model: bilirubin and biliverdin.
Bilirubin is a bile pigment, and biliverdin also belongs to the
class of organic compounds known as bilirubin. It has been
shown that walnut consumption alters the GI microbiota and
microbially derived secondary bile acids (35). However, its role
in humans is not fully understood.

Previous observational studies have shown that higher
consumption of walnuts is associated with a lower risk of
developing T2D and CVD (5, 6). In a report based on data from
the Nurses’ Health Study and the Health Professionals Follow-
Up Study, walnut consumption was associated with a lower risk
of incident CVD after comparing highest with lowest categories
(RR: 0.81; 95% CI: 0.71, 0.91) (6). Similarly, higher walnut
consumption was associated with a 33% (RR: 0.67; 95% CI:
0.54, 0.82) lower risk of T2D when comparing participants who
consumed ≥2 servings/wk of walnuts with those who never or
rarely consumed walnuts (P for linear trend < 0.001) (5). In
the current study, after adjusting for potential confounders and
self-reported walnut consumption, and consistent with previous
findings showing inverse associations of walnut consumption
with cardiometabolic diseases, we observed that the metabolite
model predicting walnut consumption was also associated with
17% (HR: 0.83; 95% CI: 0.71, 0.97) lower risk of T2D
and 29% (HR: 0.71; 95% CI: 0.60, 0.85) lower risk of
CVD.

The current study has several strengths, including the large
sample size, detailed covariate data to control for confounding,
and a metabolite profile approach that allowed the analysis
of >300 metabolites. We employed agnostic machine-learning
models using well-characterized metabolites. Moreover, we
cross-validated our results internally in the discovery population
using baseline data and conducted replication analysis using
data at year 1. The current study also has limitations. First,
because dietary data were collected using an FFQ, measurement
errors may be present compared to use of short-term biomarkers
of intake. However, the validity and reproducibility of the
FFQ have been reported previously. Of note, the correlation
between total nut consumption assessed by FFQ and 3-d dietary
records was relatively high (r = 0.55) (36). Second, because
of the observational design of our study, we are unable to
establish causality of the association between the metabolomic
signatures and cardiometabolic diseases. Nevertheless, we per-
formed rigorous multivariable adjustment to minimize residual
confounding. Furthermore, although we evaluated the cross-
population reproducibility of the metabolite profiles, it should
be validated in independent populations. Similarly, because the
study was conducted in an older Mediterranean population, the
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TABLE 4 HRs (95% CIs) for incident type 2 diabetes and cardiovascular disease according to
metabolites correlated with walnut consumption in the PREDIMED study1

PREDIMED study baseline2 PREDIMED year 13

HR (95% CI) P HR (95% CI) P

Type 2 diabetes
No. of cases/total participants 245/923 161/704
Score of metabolites predicting walnuts

Model 1 (basic model) 0.82 (0.72, 0.94) 0.005 0.76 (0.63, 0.91) 0.004
Model 2 (+ sociodemographic model) 0.86 (0.74, 0.99) 0.04 0.80 (0.64, 0.99) 0.044
Model 3 (+ diet model) 0.86 (0.74, 1.00) 0.05 0.82 (0.64, 1.05) 0.125
Model 4 (+ consumption of walnuts) 0.83 (0.71, 0.97) 0.02 0.81 (0.63, 1.03) 0.092

Cardiovascular disease
No. of cases/total participants 222/993 159/916

Model 1 (basic model) 0.72 (0.63, 0.84) <0.001 0.74 (0.62, 0.88) <0.001
Model 2 (+ sociodemographic model) 0.67 (0.58, 0.78) <0.001 0.76 (0.62, 0.92) 0.007
Model 3 (+ diet model) 0.66 (0.56, 0.77) <0.001 0.75 (0.60, 0.93) 0.011
Model 4 (+ consumption of walnuts) 0.71 (0.60, 0.85) <0.001 0.76 (0.61, 0.95) 0.016

1Model 1 (basic model): adjusted for age, sex, and propensity scores; stratified by intervention group and recruitment center. Model
2 (sociodemographic model): model 1 + BMI, smoking status (never, former, or current smoker), alcohol intake and squared alcohol
intake (grams per day), education level (primary, secondary, academic), physical activity (metabolic-equivant minutes per day), family
history of CHD (yes/no), baseline dyslipidemia or lipid-lowering medication use (yes/no), baseline hypertension or antihypertensive
use (yes/no), and T2D prevalence (only in CVD analysis). Model 3: model 2 + total energy and intakes of vegetables, fruits, cereals,
red and processed meat, fish, olive oil, eggs, legumes, and dairy in quintiles. Model 4: model 3 + intake of walnuts from which
metabolite set was derived. CHD, coronary heart disease; CVD, cardiovascular disease; PREDIMED, PREvención con DIeta
MEDiterránea; T2D, type 2 diabetes.
2Analysis of CVD risk was conducted among the 993 participants of the PREDIMED CVD case–cohort data set or 923 in the T2D
case–cohort data set. Cox proportional hazard models, with Barlow weights (inverse probability weights to account for the
overrepresentation of cases), were used to estimate HRs and their 95% CIs for risk of CVD. Person-time of follow-up was
calculated as the interval between the baseline date and date of CVD or T2D event, death, or date of the last participant contact,
whichever came first. HRs refer to 1-SD increase in correlated multimetabolite score.
3Walnuts intake, metabolic signatures, and covariates were assessed at year 1, and outcome was the incident CVD events
occurred after the year 1 visit through the end of follow-up. The analytic models were the same as in the baseline analysis. A total
of 916 participants were included in the CVD analyses and 704 in the T2D analyses.

intake of total nuts at baseline was 11 g/d and walnut intake was
6 g/d, which are higher than the intake in other populations;
thus, the results cannot easily be extrapolated to the general
population. Third, the analysis was limited to 385 targeted
metabolites; thus, we cannot exclude that more biologically
relevant metabolites regarding walnut intake were absent from
the analytical data set and could be identified using untargeted
approaches. The metabolomics approach used for quantifying
lipids did not identify the specific fatty acids for each molecule;
consequently, we can only provide the number of carbons and
double bonds of each lipid, and thus some relevant walnut
biomarkers may have been missed. Future studies are warranted
to identify additional biomarkers of walnut intake. Finally,
considering that the plasma metabolome reflects the overall
metabolic homeostasis resulting from dietary intake and other
biological processes, the metabolite profile model identified
not only metabolites derived from food but also variations
in the metabolism that are affected by dietary intake and
other factors influencing metabolites. Therefore, the metabolite
profile model associated with walnut consumption could reflect
the combined effects of walnuts, substitution of other food
by the consumption of walnuts, and individual metabolic
responses to diet (37). Although all these aspects may contribute
to the health effects of walnut consumption, the current
study was not designed to differentiate between biomarkers
of intake and metabolites that reflect individual metabolic
responses.

In conclusion, we identified a panel of 19 plasma metabolites
associated with walnut consumption. We also provided evidence
that the identified walnut metabolite profile is associated with
lower risk of T2D and CVD in Mediterranean individuals

at high cardiovascular risk. Together, these findings provide
insights into potential biological mechanisms underlying as-
sociations between walnut consumption and cardiometabolic
health.
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