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ABSTRACT

There is an increasing awareness that the gut microbiome plays a critical role in human health and disease, but
mechanistic insights are often lacking. In June 2018, the Health and Environmental Sciences Institute (HESI) held a
workshop, “The Gut Microbiome: Markers of Human Health, Drug Efficacy and Xenobiotic Toxicity” (https://hesiglobal.org/
event/the-gut-microbiome-workshop) to identify data gaps in determining how gut microbiome alterations may affect
human health. Speakers and stakeholders from academia, government, and industry addressed multiple topics including
the current science on the gut microbiome, endogenous and exogenous metabolites, biomarkers, and model systems. The
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workshop presentations and breakout group discussions formed the basis for identifying data gaps and research needs.
Two critical issues that emerged were defining the microbial composition and function related to health and developing
standards for models, methods and analysis in order to increase the ability to compare and replicate studies. A series of key
recommendations were formulated to focus efforts to further understand host-microbiome interactions and the
consequences of exposure to xenobiotics as well as identifying biomarkers of microbiome-associated disease and toxicity.

Key words: microbiome; gut; health; xenobiotics; environmental; biotransformation; biomarkers; animal models.

The gastrointestinal (GI) microbiota play an underlying role in
health. Alterations in stability and functional capabilities of
microbiota are associated with disease although is unclear
whether this is a cause or a result of the disease. Although there
is emerging research regarding the physiological functions of
intestinal microbes, less is known about the consequences of
chemically induced alterations to intestinal microbiome com-
position and toxicological effects to the host. The interactions
of xenobiotics with the microbiota as a result of drug therapy or
environmental exposures are of increasing interest to public
health.

Health and Environmental Sciences Institute (HESI) assem-
bled a cross-disciplinary group of experts (Table 1) to examine
gut microbial-host dynamics in order to better understand what
is currently known about the effect of chemical exposures on
the microbiome and to identify key knowledge gaps related to
such exposures (Figure 1).

KEY ISSUE NO. 1: DEFINING GUT
MICROBIOMES ASSOCIATED WITH HEALTH

The intestinal microbiome is made up of between 500 and 1000
bacterial species as well as viruses, archaea, and eukaryotic
microorganisms, many of which play a role in human health
and disease (Backhed et al., 2012; Gilbert et al., 2018; Hanson and
Weinstock, 2016; Ogilvie and Jones, 2015; Qin et al., 2010;
Tuddenham and Sears, 2015; Virgin, 2014; Ward et al., 2018).
There is great variation in species diversity, taxonomic

composition, and population density of microbiota in the gut of
humans and animal species. For those taxa that contribute to
human health little is known about the part that each microbial
species is filling, how well they perform that function, their
interactions with other microorganisms and with the host, and
where in the host they are acting (Backhed et al., 2012; Barratt
et al., 2017; Cho and Blaser, 2012; Gilbert et al., 2018).
Understanding the functions, features and normal ranges of the
microbial communities that support health will be essential in
addressing impacts of environmental agents and potentially
identifying microbial configurations that result in disease
(Lloyd-Price et al., 2016, 2019). The inclusion of functional meas-
urements may lead to different interpretations of microbiota di-
versity, compared with taxonomic classification alone, leading
to greater analytical challenges (Fu et al., 2016; Zhu et al., 2015).
However, there is a growing consensus that functional charac-
terizations are necessary for understanding and modeling the
physiology of the microbiome (Heintz-Buschart and Wilmes,
2018; Moya and Ferrer, 2016; Zhu et al., 2015).

Before beneficial or adverse effects of chemical exposure can
be determined, it is necessary to have a baseline for the bacte-
rial species diversity as well as an understanding of the func-
tional capacities associated with health. Given the considerable
variation across human populations, among individuals and
even within an individual, this will not be a single microbiome
but a group of features, capabilities and characteristics of micro-
bial communities that contribute to health. In defining such
microbiomes, temporal variability in these communities, such
as short-term perturbations associated with diet, lifestyle traits,

Table 1. Workshop Topics and Presenters

Workshop Topics Expert Presenters

Drugging gut microbial enzymes for treatment of CVD • Mark Brown, Cleveland Clinic
Biotransformation • Julia Cui, University of Washington

• Gary Perdew, Penn State University
• Andrew Patterson, Penn State University

Biomarkers of adverse effects • Rod Dietert, Cornell University
• Carrie Brodmerkel, Janssen
• Carl Cerniglia, US FDA-NCTR
• Joseph Petrosino, Baylor College of Medicine

Biomarkers of toxicity and disease • Kun Lu, University of North Carolina Chapel Hill
• Emily Hollister, Diversigen
• Elaine Richards Sumners, University of Florida

Human susceptibility • Nathan Price, Institute for Systems Biology
• Eugene Chang, University of Chicago
• Marijke Faas, University of Groningen

Animal models • Aaron Ericsson, University of Missouri
• Barbara Rehermann, NIH/NIDDK
• Tamara Tal, U.S. EPA

Experts from all sectors addressed state of the science and need for identification of biomarkers to advance understanding and decision making on efficacy and safety

of xenobiotics. Presentations can be found on the HESI website here (https://hesiglobal.org/event/the-gut-microbiome-workshop/).
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antibiotic exposure, or acute illness, as well as more long-term
impacts that may lead to deleterious chronic health outcomes
must be considered (Kundu et al., 2017). In addition, factors such
as geographic location, ethnicity, age, physical activity, genetics
and gender, resistance (the ability to withstand stress or pertur-
bations), and resilience (the capacity to return to a healthy
state) influence an individual’s microbiome (Backhed et al,
2012). For example, diet is associated with significant differen-
ces in microbiota both across populations and with longitudinal
studies, yet there may not be apparent adverse impacts to hu-
man health (Clemente et al, 2015; Yatsunenko et al, 2012). Such
observations suggest that there may be functional redundancy
in biochemical pathways in the microbiome (Baumler and
Sperandio, 2016). Large cohort studies may be needed in defin-
ing normal variations within a microbiome, especially if the
studies include longitudinal sampling of the microbiome (Faust
et al., 2015; Fettweis et al. 2019; Flores et al., 2014; Lloyd-Price
et al., 2019; Proctor et al., 2019; Vandeputte et al., 2017a,b;
Yassour et al., 2016; Zhou et al., 2019). Measurement of blood
metabolome is useful in predicting gut a-diversity in such stud-
ies (Price et al., 2017; Wilmanski et al., 2019).

For most healthy adults, there appears to be a window of
microbiome normalcy whose bounds are not typically
exceeded, even though there may be minor transitory variation
in composition observed with dietary changes or exposures to
certain xenobiotics (Kundu et al., 2017; Moya and Ferrer, 2016).
However, changes in microbial communities can be associated
with adverse health consequences. In one model, this may oc-
cur if a person’s microbiome leaves their respective window of
normalcy reaching a “tipping point” where their health is af-
fected. Alternatively, rather than a distinct shift there can be
stochastic changes in the microbiome leading to dispersion of
the microbiome composition as well as increased functions that
are related to disease (Armour et al., 2019; Zaneveld et al. 2017).

RESEARCH NEED NO. 1

In order to understand, adverse health effects of the micro-
biome resulting from disease or xenobiotic exposure, there is a
need to better understand the essential components,

capabilities, and range of microbial variation linked to a per-
son’s health. This requires comprehension of both the structure
and the function of the microbial community. Identification of
key conserved functional, metabolic, and biochemical pathways
present in healthy individuals may provide a strong starting
point.

It is evident that multiple factors contribute to the composi-
tion, diversity and function of the gut microbiome with regard
to health, drug efficacy, and xenobiotic toxicity. The list
includes genetics, diet, age, obesity, concomitant diseases,
drugs, and gender to name a few. There is a need to not only un-
derstand the impact of a single factor on the dynamics between
gut microbiome and the host but also to determine contribu-
tions of combinations of these factors. However, defining what
constitutes microbial diversity and functionally of both healthy
and unhealthy individuals will help to elucidate the relative
contributions of host factors.

Large cohort studies are valuable sources of data for defining
microbiomes associated with health, but comparison and repro-
ducibility across such studies is hindered by differences in ex-
perimental design and data analysis. Variation and bias in
sampling procedures, stabilization conditions, shipment and
storage practices, methods for analyte extraction and purifica-
tion, sample preparation and analysis, bioinformatic analysis
algorithms as well as the reference databases used are contrib-
uting factors (Backhed et al., 2012; Gilbert et al., 2018; Sinha et al.,
2017; Stulberg et al., 2016). Standardization of methods and ana-
lytical approaches is needed to develop a well-characterized
measurement pipeline. However, procedures may need to re-
main somewhat fluid to account for continuing technological
developments and evolving understanding of the biology
involved.

KEY ISSUE NO. 2: DEFINING CAUSES AND
EFFECTS OF ALTERING THE GUT MICROBIOME

GI microbiota are essential in maintaining health and wellness
by digesting food nutrients, producing endogenous metabolites
and biotransforming xenobiotics (Dietert and Silbergeld, 2015b).
Furthermore, in a healthy individual the gut microbiome,
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Figure 1. Key data gaps in the microbiome research field identified at the 2018 HESI workshop. HESI’s June 2018 workshop identified key data gaps in the gut micro-

biome research field. The results identify needs for easily accessible biomarkers and improved human and animal experimental model studies for testing and valida-

tion of the impact of changes in the gut microbiome on human health outcomes.
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together with the intestinal mucosa, is necessary to maintain gut
homeostasis and provide an epithelial barrier between the lumen
and the rest of the body (Hiippala et al., 2018; Rogers, 2015).

Loss, disruption or dispersion of a functional microbiome can
be associated with acute adverse health effects or chronic dis-
eases. For example, antibiotics can alter a healthy individual’s
microbiome resulting in diarrhea, leaving the body susceptible to
the development of Clostridium difficile infection (Backhed et al.,
2012; Schaffler and Breitruck, 2018; Schubert et al., 2014). Changes
in gut microbiota may be linked to the development of inflam-
matory bowel disease, colorectal cancer, and fatty liver disease
(Miyoshi et al., 2017; Sharpton et al., 2019; Wang et al., 2017).

Many of these chronic diseases have inflammatory or al-
tered immune system characteristics. Critical immune func-
tions related to epithelial signaling, inflammatory responses,
production of antimicrobial factors, and induction of
Immunoglobulin A antibodies are propagated locally in the GI
tract and associated secondary lymphoid tissues (Peyer’s
Patches; Baumler and Sperandio, 2016; Dietert and Dietert,
2015a; Hiippala et al., 2018). The microbiome contributes to the
development and maintenance of the immune system (Agace
and McCoy, 2017). Early life is characterized by a period of mi-
crobial flux and assembly which is affected by multiple factors
such as manner of delivery (vaginal or c-section), nutrition
(breast milk or formula) and antibiotic exposure. Although dy-
namic in nature, in adults the majority of the composition and
function of the microbiome of a healthy person is fairly stable,
but this decreases with age due to the loss of key species and a
progressive gain of pathobiotic bacteria (Buford, 2017).

The systemic influence of the GI microbiota on human
health can be altered by exogenous compounds during drug
therapy or environmental exposures. Antibiotics are used to re-
move a pathogen from the host, but an unintended conse-
quence can be alteration of the composition and function of the
gut microbiota (Miyoshi et al., 2017). Exposure to nicotine, arse-
nic, or polybrominated diphenyl ethers change the gut micro-
biome diversity (Chi et al., 2017, 2018; Li et al., 2018).

Exposure to xenobiotics can have effects in multiple ways.
These include those that are transitory, established, or develop-
mentally programmed (Dietert and Dietert, 2015a; Faust et al.,
2015; Fofanova et al., 2016; Moya and Ferrer, 2016; Norman et al.,
2015; Pascal et al., 2017; Sanz et al., 2015; Stenman et al., 2016).
The transitory outcomes, such as changes after eating, are typi-
cally easily correctable and the gut microbiome return to the
composition and functionality exhibited before the insult.
Established outcomes occur when there is the alteration of a key-
stone species within the microbiota which would require signif-
icant host and microbiota changes to recover the original
microbiota (eg, after C. difficile infection). The developmentally pro-
grammed outcomes are those that occur when the adverse im-
pact is the result of alteration during a critical window of the
microbiome development and can lead to later-in-life problems
associated with the microbiome (eg, antibiotics during early
childhood).

RESEARCH NEED NO. 2

The gut microbiome plays an essential role in maintaining
health and modification of the microbial communities can have
negative effects in the body. Defining what changes in the
microbiota are associated with acute or chronic adverse effects,
as well as the magnitude of change necessary, is needed.
Adverse effects can range from changes to the intestinal barrier
integrity to alterations or dispersion of the normal microbiota of

the host population of microbiota leading to a diseased state.
Identification of such adverse effects may provide biomarkers
of disease progression. To begin to identify causes and effects of
changes in the microbial population, 2 approaches are possible.
One is to start from a healthy individual’s baseline microbiome
then determine deviations associated with a disease state. The
second is determining what is a diseased state and ascertaining
if there are key nodes, drivers, or contributing factors that move
individuals from health to illness.

Despite the improvements in analytical, genomic, and bioin-
formatic techniques related to structure and function of the
microbiome in health and disease, there is still a knowledge gap
in the translation of high-throughput data from genotype to
phenotype and microbiome composition stability/instability
versus core function of the microbial community.

KEY ISSUE NO. 3: ACCOUNTING FOR
BIOTRANSFORMATION

GI microbiota have the capacity to metabolize endogenous and
exogenous compounds. The metabolites can have positive, neu-
tral, or negative effects on the host. Endogenous microbial
metabolites can exert physiological functions. Gut microbe-
derived metabolites can signal via receptors at the epithelium
interface and communicate with the host. For example, micro-
bial metabolism of tryptophan generates aryl hydrocarbon re-
ceptor (AHR) ligands, such as indole, indirubin, and indigo
(Hubbard et al., 2015). These ligands activate AHR and promote
intestinal homeostasis through regulation of innate cytokine or
chemokine gene expression, regulation of enterocyte differenti-
ation, as well as regulation and development of intraepithelial
lymphocytes and innate lymphoid cells. Gut microbial metabo-
lism can result in products associated with adverse health and
disease progression. The microbiome converts dietary lipid
phosphatidylcholine to trimethylamine (TMA), which is then
metabolized by hepatic flavin monooxygenases to TMA-N-
oxide (TMAO). TMAO is a proatherogenic factor associated with
cardiovascular disease (CVD; Brown and Hazen, 2015). Such
findings suggest that endogenous microbial metabolites could
be used as potential biomarkers of health or disease.

GI microbiota express biotransformation enzymes that me-
tabolize a variety of therapeutic drugs and environmental com-
pounds that can result in changes in efficacy and toxicity
(Klaassen and Kui, 2015; Spanogiannopoulos et al., 2016). Gut
bacteria can convert a prodrug to an active drug or detoxify the
parent compound leading to modified drug availability, as well
as changes in pharmacokinetics-pharmacodynamics (PKPDs).
Sulfasalazine, a prodrug for ulcerative colitis, is directly metabo-
lized by the gut bacteria at the azo bond to generate 2 bioactive
metabolites, sulfapyridine (antimicrobial) and 5-aminosalicy-
late (anti-inflammatory; Peppercorn and Goldman, 1972). The
cardiac drug glycoside digoxin undergoes reduction to an inac-
tive metabolite, dihydrodigoxin, which is significantly de-
creased if antibiotics are preadministered (Haiser et al., 2013;
Lindenbaum et al., 1981). Microbial metabolites of a drug can
also increase toxicity. The chemotherapeutic drug irinotecan is
metabolized to SN-38 which is both the active and toxic metab-
olite. SN-38 is formed and glucuronidated by the liver and then
transported to the gut where it undergoes deconjugation by gut
bacteria. This results in longer gastrointestinal (GI) exposure,
reabsorption, and greater bioavailability of SN-38 (Wallace et al.,
2010). The gut microbiome is also implicated in the interindivid-
ual variability in metabolism of the analgesic and antipyretic
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acetaminophen. The endogenous microbial metabolite p-cresol
and acetaminophen are substrates for sulfotransferases.
Individuals with high levels of p-cresol generated by bacteria
may have decreased acetaminophen metabolism through com-
petition for hepatic sulfonation, which could result in an ele-
vated risk for acetaminophen-induced hepatotoxicity (Clayton
et al., 2009).

Nontherapeutic drugs and environmental xenobiotics can
induce compositional changes and functional changes an in gut
microbiota. In turn, these compounds may also be biotrans-
formed by the microbiome. Arsenic is metabolized by gut bacte-
ria and also alters the abundance and profile of the gut
microbiome (Chi et al., 2018; Gokulan et al., 2018; Lu et al., 2014).
Polychlorinated biphenyl or polybrominated diphenyl ether ex-
posed mice show altered bile acid homeostasis resulting in part
from changes in gut microbiota bile acid metabolism (Cheng et
al, 2018; Li et al, 2018). Gut anaerobes are capable of transform-
ing Hg2þ to highly toxic and permeable methylmercury and sig-
nificantly contributing to its body burden and poisoning
(Edwards and McBride, 1975).

In addition to directly biotransforming chemicals, the gut
microbiome can influence the host xenobiotic metabolizing ca-
pability. Comparison of hepatic drug metabolizing genes in con-
ventional and germ-free (GF) mice show that 34 genes, including
Cyp3a, decrease, whereas 21 genes, including Cyp4a, increase
(Selwyn et al., 2015). A cluster of 112 hepatic genes linked to xe-
nobiotic metabolism and retinoid X receptor-inhibiting path-
ways are differentially expressed in conventional and GF mice.
This results in more efficient pentobarbital metabolism and
shorter anesthesia time in GF mice (Bjorkholm et al., 2009).

RESEARCH NEED NO. 3

Current experimental approaches to evaluate microbe-mediated
biotransformation primarily include: (1) in vitro incubation of in-
dividual bacterial strains, mixed cultures in bioreactors, or puri-
fied enzymes with compounds, (2) ex vivo incubation of a fecal
microbiome community (or other GI regions of interest) with
compounds, and (3) in vivo administration of compounds into
animals such as rodents. These approaches provide evidence in
support of microbial metabolism of many approved drugs (Sousa
et al., 2008; Zimmermann et al., 2019). However, more caution is
required when extrapolating these results into humans than
with traditional PKPD approaches, given the high diversity and
interindividual variability of the human gut microbiome.
Comprehensive and accurate modeling approaches for analyzing
microbial metabolism information and incorporating into host
PKPD models are necessary.

As more information on biotransformation of xenobiotics by
the microbiome is published, a public database would be valu-
able. Such a database would be a repository centralizing com-
prehensive data that identifies compounds, responsible
bacteria and/or enzymes, metabolites generated and metabolic
pathways. This requires a collaborative effort involving
researchers from academia, government and industry, working
together with the regulatory agencies to promote a better un-
derstanding of microbiome-mediated biotransformation.

KEY ISSUE NO. 4: DETERMINING BIOMARKERS
OF DISEASE AND TOXICITY

Biomarkers of disease and toxicity resulting from perturbations
of the gut microbiota composition and function, from changes

in microbial metabolites, or as a consequence of microbial bio-
transformation of xenobiotics would be useful. There are a num-
ber of characteristics for an ideal biomarker. It should be able to
differentiate between disease progression and/or response to
treatment. Stool samples or accessible tissues and/or biofluids
should be used and analysis be affordable to facilitate accep-
tance and use for large scale screening. The biomarker needs to
work for high-risk populations and distinguish between the dis-
ease and other potentially microbiome-mediated effects.

There are some examples of microbiome biomarkers of dis-
ease that are promising. Alterations in gut microbiota are asso-
ciated with hypertension. Exposure of hypertensive rats to the
antibiotic minocycline attenuates blood pressure (Yang et al.,
2015). In animals and humans systolic blood pressure is corre-
lated with microbiota composition and metabolites, as well as
alterations in gut structure (Kim et al., 2018). Zonulin, a bacterial
product and a marker of intestinal permeability, is elevated
with high systolic blood pressure but is not an ideal biomarker
since it is also associated with celiac disease (Fasano et al., 2000;
Kim et al., 2018). A more specific indicator may be the negative
correlation of butyrate producing bacteria which alter systolic
blood pressure and plasma butyrate levels (Kim et al., 2018).

TMAO blood levels are of interest as a biomarker for CVD, in-
sulin resistance, and type 2 diabetes (Miao, 2015). The production
of TMAO in mammals primarily occurs via gut bacteria. Studies in
humans and animals show circulating levels of TMAO are associ-
ated with risk and progression of CVD (Tang et al., 2014). Sensitive
assays, particularly those amenable to the clinical setting, are be-
ing developed which will facilitate use of TMAO as a biomarker
(Garcia et al, 2017). The initial association of TMAO with CVD
resulted from using untargeted metabolomics in cardiac patients
(Wang et al., 2011). This approach can be expanded to use multiple
data streams (clinical tests, metabolomes, proteomes, genome se-
quence, and microbiome) to develop correlation networks in order
to identify bacterial analytes associated with normal physiology
or disease (Price et al., 2017). For example, there is an association
between phenylacetylglutamine and the Coriobacteriaceae and
Mogibacteriaceae families. Phenylacetylglutamine is a microbial
metabolite and is a risk factor for CVD in those with chronic kid-
ney disease (Poesen et al., 2016).

Microbial biomarkers may also prove useful for identifying
xenobiotic toxicity. Low dose exposure of mice to polychlori-
nated biphenyls alters microbiota composition leading to a
greater abundance of species that generate secondary bile acids
causing increases in serum bile acids (Cheng et al., 2018). At
higher doses serum bile acids were not affected due to an in-
crease in hepatic efflux transporters (Cheng et al., 2018).

Although in vivo studies are useful for discovering biomarkers,
there is also a need for in vitro methods. In mice, tempol acts as an
antioxidant by detoxifying reactive oxygen species and modulates
the gut microbiome host signaling axis resulting in prevention of
weight gain (Cai et al., 2016; Li et al., 2013). Incubation of mouse ce-
cal content with tempol and analysis of samples using flow cy-
tometry as well as high-throughput mass spectrometry and
nuclear magnetic resonance-based metabolomics show that tem-
pol disrupted microbiota membrane physiology and metabolic ac-
tivity consistent with the in vivo data (Cai et al., 2016). Such a multi-
prong in vitro approach holds promise for screening xenobiotics for
gut microbial toxicity and identifying potential biomarkers.

RESEARCH NEED NO. 4

Case studies provide examples of potential biomarkers that
could serve as the basis for noninvasive diagnostic tests to
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identify disease and track its progression. When an associa-
tion between a disease and gut microbiota is recognized, addi-
tional work will be needed to distinguish between microbial
changes that are a cause or a result of the disease. Biomarkers
should also be applicable beyond their discovery cohorts and
be able to distinguish between disease states of interest and
nontarget diseases, as well as having a reasonable degree of
specificity.

Discovery and qualification of biomarkers will also be ad-
vanced by the adoption of standard protocols which will gener-
ate robust and reproducible data that facilitates comparisons of
studies. Detailed methods and procedures for analysis of gut
microbiota structure and function that will be useful for toxico-
logic studies are available (Nichols et al., 2018).

KEY ISSUE NO. 5: OPTIMIZING ANIMAL
MODELS

Although animal species have limitations in completely repli-
cating humans, they provide an opportunity to manipulate host
genetics and the environment to allow insight into the relation-
ship between the microbiota, xenobiotics, toxicity, and disease.
Although species differences must be recognized in extrapolat-
ing animal studies to humans, such data are valuable.

Rodents are widely used in studying the microbiome. The
compositions of gut microbiota vary among genetically distinct
strains of mice (Friswell et al., 2010). Differences also occur in
laboratory strains compared with genetically similar wild popu-
lations (Rosshart et al., 2017). GF mice and gene-knockout mice
are also useful models. GF mice can be colonized with a single
(mono-associated) agent, a defined bacterial combination such
as altered Schardler flora or human fecal samples (De Palma
et al., 2017; Franklin and Ericsson, 2017; Orcutt et al., 1987;
Ridaura et al., 2013). Interestingly, introducing microbiota from
wild mice into laboratory mouse strains increases resistance to
influenza infection, decreases inflammation and increases re-
sistance to certain types of cancer (Rosshart et al., 2017). The
wild mouse microbiome develops as a result of evolutionary
pressures due to continuous exposure to natural toxins and
pathogens, thus it may offer a better model for human disease
(Rosshart et al., 2017).

Disparities in gut microbiota of the same mouse strain can
be attributed to vendor or institutional location (Friswell et al.,
2010). Within a facility, the room, cage housing, food, water, and
bedding all have an effect (Ericsson et al., 2018; Friswell et al.,
2010; Hildebrand et al., 2013; Hugenholtz and de Vos, 2018;
Robertson et al., 2019).

Although rodents are the most commonly used models in
microbiome studies, zebrafish are also proving to be useful.
Zebrafish develop rapidly and externally to the mother, thereby
enabling direct embryo exposures. The GI tract is homologous
to that in mammals, although there are differences in the im-
mune system. Zebrafish are kept at a lower temperature than
mammals which may compromise the ability to study human-
relevant microorganisms. Xenobiotic-microbiome interactions
can be evaluated in the zebrafish model. For example, exposure
of zebrafish larvae to the antimicrobial compound triclosan
results in changes in the community structure of the micro-
biome. There is an increase in triclosan resistant species which
results in a greater ability to biotransform triclosan (Weitekemp
et al., 2019). Gut microbiota in zebrafish also alter metabolism
and mediate the neurodevelopmental toxicity of 17-b-estradiol
(Catron et al., 2019).

RESEARCH NEED NO. 5

Study reproducibility in the biosciences is an ongoing concern
(Mullane and Williams, 2017). Variations in experimental de-
sign, methods, and statistical analysis can contribute to an in-
ability to replicate results and conclusions. Complicating this
further is the diversity and function of the gut microbiota
(Franklin and Ericsson, 2017; Turner, 2018).

Reproducibility in studies of gut microbiome host dynamics
can be increased by recognizing the sources of variation, priori-
tizing them; then, identifying ways to address them (Ericsson
and Franklin, 2015; Franklin and Ericsson, 2017). To limit varia-
tion in mouse models, numerous approaches have been devel-
oped to standardize gut microbiota profiles including
cohousing, cross fostering, and GF derivation, although each
has advantages and disadvantages (Ericsson and Franklin, 2015;
Franklin and Ericsson, 2017). Maintaining a stable microbiome
composition across animals and experiments is a problem that
is not easily solved. Banking fecal samples annually and defin-
ing the microbiome at the initiation of a study would allow in-
stitutional drift to be monitored (Franklin and Ericsson, 2017). In
some instances, repeating studies in the second generation
addresses the need for exposure to microbiota in early develop-
ment (Franklin and Ericsson, 2017). For zebrafish, protocols for
GF derivation and gnotobiotic husbandry provide useful guid-
ance for standardization (Melancon et al., 2017).

Often the discrepancies in reported results can be attributed
to variations in study design. Unfortunately, key details are of-
ten missing from publications. Omissions can be reduced by
adoption of Animal Research: Reporting of Experiments guide-
lines (Kilkenny et al., 2012). This checklist of 20 items covers spe-
cies, strain and number of animals, husbandry, experimental
design, methods, and statistical analysis.

Determining the optimal microbiota to facilitate translating
results from mice to humans depends on the question being
asked. The current model of colonizing GF mice with microbiota
derived from inbred, wild murine, or human sources has great
potential. This approach is currently limited by the availability
of the number of defined combinations and characterized
mouse or human material. The development of a wider array of
standardized samples would be useful.

Several in vitro models of host-microbiome interactions have
been described that complement in vivo studies (Arnold et al.,
2016; von Martels et al., 2017). Although there are anaerobic bac-
teria gut epithelial cell cocultures showing feasibility for experi-
mental use, further refinements and standardization are still
necessary (von Martels et al., 2017). It is also recognized that no
one model is perfect, the best one to use will depend on the
question being addressed.

RECOMMENDATIONS

The gut microbiome plays a pivotal part in health, but under-
standing its multiple roles still needs to be fully elucidated. HESI’s
gut microbiome workshop was convened to identify research
areas critical to determining how gut microbiome alterations
may influence human health. Data gaps and research needs to
address specific issues have been identified based on workshop
presentations and breakout group discussions (Table 2).

There are 2 topics that cut across the key issues. The first is
the lack of clarity in what constitutes gut microbiomes in
healthy individuals. It is recognized that there are many factors
that contribute to variation across and within human popula-
tions. Consequently, there is not a single microbiome but rather
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a suite of microbiomes that are associated with health. As yet,
these have not yet been adequately defined. Having information
on which species comprise such microbiomes and the normal
range of variation is critical in order to define disease and ad-
verse effects. The second is the need to adopt standards for
methods, models and data analysis. This will facilitate compari-
sons across studies and reproducibility of data.

Moving forward the key recommendations are to focus
efforts on the following important areas:

• Defining the range of gut microbiota composition and function

gut microbiomes associated with health and/or disease;
• Identifying microbiome changes linked to disease and adverse

health effects;
• Characterizing the formation and function of microbiota metab-

olism of endogenous products on health and disease;
• Determining the effects of xenobiotics on microbiota composi-

tion and function;
• Increasing understanding of the impact of microbiota biotrans-

formation of xenobiotics on efficacy and toxicity;
• Identifying a suite of biomarkers to monitor health, disease and

adverse effects resulting from microbiota-host interactions;
• Standardizing variables such as husbandry, study design, sample

collection, analysis, and statistical methods

Addressing these issues will provide further insight into the
role of the microbiome in human health, disease and toxicity.
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• Standardize samples collection procedures

Defining causes and effects
altering the gut microbiome

• Identify changes in species composition and function associated with disease
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• Understand mechanisms affecting host susceptibility to diseases and adverse

effects correlated with microbiota
• Factors impacting the microbiome
• Factors impacting the host

Accounting for
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• Characterize biotransformation enzymes in microbiota species
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• Develop and maintain a public database of compounds, microbiota, and metabolites generated

Determining biomarkers of
disease and toxicity

• Identify and characterize microbiota metabolites associated with disease and toxicity
• Characterize developed biomarkers

• Specificity
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• Develop reliable and inexpensive analytical methods for these biomarkers to facilitate translation
from the research laboratory to a clinical setting

Optimizing animal models • Standardize husbandry practices that influence microbiome composition and function
• Adopt practices that facilitate comparison and reproducibility of studies
• Identify the impact of the source of the microbiome in mouse models

• Wild mice
• Laboratory mice
• Human

• Refine in vivo and in vitro models of host-microbiome interactions

Key research areas and needs, as identified by workshop speakers and participants who participated in breakout group discussions.
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