
Genome analysis

Efficient dynamic variation graphs

Jordan M. Eizenga 1,2,†, Adam M. Novak 1,2,†, Emily Kobayashi 1,3,

Flavia Villani 4,5, Cecilia Cisar 1,2, Simon Heumos 6, Glenn Hickey1,

Vincenza Colonna4, Benedict Paten1,2 and Erik Garrison1,2,*

1Genomics Institute and 2Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA,
3Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA, 4Institute of Genetics and

Biophysics, Consiglio Nazionale di Ricerche, Naples 80131, Italy, 5Biotecnologie Mediche, Università degli Studi di Napoli Federico II,

Naples 80138,Italy and 6Quantitative Biology Center (QBiC), University of Tübingen, Tübingen 72076, Germany

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Peter Robinson
Received on April 21, 2020; revised on June 20, 2020; editorial decision on July 7, 2020; accepted on July 9, 2020

Abstract

Motivation: Pangenomics is a growing field within computational genomics. Many pangenomic analyses use bidir-
ected sequence graphs as their core data model. However, implementing and correctly using this data model can be
difficult, and the scale of pangenomic datasets can be challenging to work at. These challenges have impeded pro-
gress in this field.

Results: Here, we present a stack of two Cþþ libraries, libbdsg and libhandlegraph, which use a simple, field-
proven interface, designed to expose elementary features of these graphs while preventing common graph manipu-
lation mistakes. The libraries also provide a Python binding. Using a diverse collection of pangenome graphs, we
demonstrate that these tools allow for efficient construction and manipulation of large genome graphs with dense
variation. For instance, the speed and memory usage are up to an order of magnitude better than the prior graph im-
plementation in the VG toolkit, which has now transitioned to using libbdsg’s implementations.

Availability and implementation: libhandlegraph and libbdsg are available under an MIT License from https://
github.com/vgteam/libhandlegraph and https://github.com/vgteam/libbdsg.

Contact: erik.garrison@ucsc.edu

1 Introduction

As increasingly many individuals have been sequenced from certain
species, the field of computational pangenomics has emerged to ana-
lyze whole populations of genomes rather than individual genomes
(Computational Pan-Genomics Consortium, 2016). Much of the re-
search in computational pangenomics has coalesced around graph-
based approaches for representing populations of genomes (Paten
et al., 2017). Unlike conventional string-based representations,
graph data structures can represent genomic variation like substitu-
tions, insertions, deletions and other more complex genomic events.

Graph-based data structures present new computational chal-
lenges. In addition to sequence, genome graphs must represent top-
ology. Given the size of many genomes, this can be quite demanding
on computer memory. However, the total information content in a
genome graph is only incrementally more than the sequences of the
pangenome. This suggests that significant memory savings should be
possible. There is also significant impetus to make the graph data
structures computationally efficient, since they are frequently the
core data structure in pangenomics applications.

Early versions of the variation graph toolkit (VG) (Garrison
et al., 2018) have provided a cautionary tale of a naı̈ve implementa-
tion. VG used full-width machine words as identifiers for graph ele-
ments, and stored the elements and graph topology in a set of hash
tables. Loading the 1000 Genomes Project’s variant set into the VG
toolkit used to consume more than 300 GB of memory, which is
�30 times as large as the serialized representation (Garrison, 2019).

Although VG provided a memory-efficient representation of the
graph (XG) that could be used during read mapping and variant
calling, this representation did not allow for dynamic updates to the
graph. The dynamic implementation remained necessary for graph-
modifying steps of VG pipelines, such as the original construction of
the graph and augmenting the graph with novel variants. Some pipe-
lines could be made feasible by breaking large graphs into connected
components. However, this strategy reduces efficiency, and it is un-
tenable for pangenome graphs that consist of a single component.

To overcome this limitation, we have developed three new graph
genome data structures that are dynamic (allowing efficient updates
and edits) and also memory-efficient for real world genome graphs.
Here, we compare the performance of these data structures to the

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5139

Bioinformatics, 36(21), 2020, 5139–5144

doi: 10.1093/bioinformatics/btaa640

Advance Access Publication Date: 16 July 2020

Original Paper

http://orcid.org/0000-0001-8345-8356
http://orcid.org/0000-0001-5828-047X
http://orcid.org/0000-0002-9041-5167
http://orcid.org/0000-0003-3633-0610
http://orcid.org/0000-0001-8487-5936
http://orcid.org/0000-0003-3326-817X
https://github.com/vgteam/libhandlegraph
https://github.com/vgteam/libhandlegraph
https://github.com/vgteam/libbdsg
https://academic.oup.com/


original VG representation and to XG, using a diverse collection of
genome graphs obtained during our work in graphical pangenomics.

In addition to demonstrating the possibility of working with
large, complex graphs in small amounts of memory, these imple-
mentations expose a common API based on the HandleGraph model
described below. This model provides an interface to genome
graphs, based on their fundamental elements, which is intended
to be implementable atop a broad diversity of graph storage designs.
The VG toolkit has been refactored to use this API as its default
means of loading, saving and manipulating graphs since version
1.22.0, allowing it to use any of the implementations presented here.

We have packaged these implementations behind equivalent Cþþ
and Python APIs in libbdsg. This software library will reduce the
need for individual research groups to continually reimplement these
core data structures and ease the development of algorithms that ma-
nipulate large, complex pangenome graphs. Moreover, the reduction
in memory requirements makes it possible to move workloads that
would otherwise need specialized high-memory machines onto
cheaper ones that often also have more processing power (e.g. from
Amazon’s r4 instances to c5 instances). Combined with improvements
in access speed over the previous VG dynamic graph implementation,
substantial cost and time savings can be realized.

2 Implementation

2.1 Data model
Our libraries adopt node-labeled bidirected graphs as a formalism
for sequence graphs. In a bidirected graph, nodes are considered to
have left and right ‘sides’, and edges connect two sides rather than
two nodes. In bidirected sequence graphs, a node’s sides correspond
to the 50 and 30 ends of its DNA sequence. Nodes can be traversed
either from left to right, which is interpreted as the forward strand
of the sequence, or from right to left, which is interpreted as the re-
verse complement. This provides a natural means to encode DNA
strandedness.

Longer sequences can be formed by concatenating the sequences
of multiple adjacent nodes together. These nodes form a path, which
is defined as a list of oriented nodes (either forward or reverse), such
that the graph contains an edge between the adjacent sides of each
pair of subsequent oriented nodes in the list (Unlike the usage in
many graph theoretic contexts, we do not intend the term path to in-
dicate that these nodes must be distinct.). Some paths correspond to
sequences of interest, such as reference genomes or annotations of
the reference. Because paths like these are so frequently important in
practice, our graph formalism also includes a set of paths along with
the graph’s node and edges.

2.2 The HandleGraph interface
The libhandlegraph library describes an interface that exposes
basic operations on our sequence graph data model. The
HandleGraph model focuses on five fundamental entities in bidir-
ected sequence graphs (Fig. 1):

• Nodes identify pairs of complementary DNA strands and have

unique numerical identifiers (IDs).
• Strands represent one strand of a node’s DNA sequence.
• Edges link pairs of strands, in order.
• Paths represent sequences of interest as paths through the graph.
• Steps describe paths’ visits to nodes’ strands.

The defining feature of the model is that none of these entities
are accessed directly. Instead, they are accessed via handles, which
are references modeled after the concept of file handles. The handles
are implemented as a data type with no methods and no prespecified
meaning for its contents. Thus, we say that handles are ‘opaque’ in
that user code cannot usefully look inside them or manipulate their
contents. Instead, the libhandlegraph interface requires the se-
quence graph implementation to provide queries that consume and
produce handles, to expose graph information to users.

For example, we could obtain a handle to a strand from a
HandleGraph implementation by providing a node’s ID and an
orientation (forward or reverse). We could then provide this handle
to another of the graph’s methods to obtain handles to this strand’s
neighbors, and a further method would map the neighbors’ handles
to their node IDs. Alternatively, we could obtain a handle to a path
from its name (e.g. ‘chr22’), and then iterate over handles to the
path’s steps to follow its course through the graph.

One benefit of this design is that any algorithm designed for one
HandleGraph implementation can be applied to all other implementa-
tions. Since the actual contents of a handle are unspecified, this benefit
is achieved while simultaneously maintaining flexibility in the imple-
mentation. Another benefit is that, since the user works only through
handles that they cannot forge or modify, their ability to make mis-
takes can be restricted. For example, the interface can enforce the con-
straints that define valid paths through bidirected graphs during edge
traversal. Furthermore, implementations can be made memory-safe
by eliminating raw pointers and other direct access to graph elements.

2.3 Graph implementations
We consider five implementations of the HandleGraph model. To
ground our experimental results, here, we provide a high-level over-
view of each implementation. Two implementations, VG and XG,
have been described previously (Garrison et al., 2018; Garrison,
2019). The others are combined in the libbdsg library (https://
github.com/vgteam/libbdsg), which provides three concrete imple-
mentations: HashGraph, ODGI (Optimized Dynamic Graph
Implementation) and PackedGraph. Each implementation represents
a different tradeoff in terms of speed, memory use and capabilities.
All of the implementations except XG are dynamic. They support ef-
ficient addition and deletion of nodes, edges, paths and steps, as
well as some specialized methods such as splitting a node into mul-
tiple shorter nodes. Table 1 provides a high-level summary of the
differences between the libbdsg implementations.

2.3.1 VG

We have extended the graph representation in VG, previously
described in the study by (Garrison et al., 2018), to match the

Fig. 1. Entities in the bidirected sequence graph. Top: a variation graph showing nodes

(yellow rectangles), each of which contain a forward and reverse strand (red solid and

dashed rectangles, respectively). Strands show the node identifier, the direction (þ or –

) and the sequence of the strand. Note that reverse strands show the reverse comple-

ment sequence of the forward strand. All edges are shown as connections between

nodes, with forward-to-forward edges denoted by solid lines, and reverse-to-reverse

edges denoted by dashed lines. Two edges that invert from forward to reverse and re-

verse to forward are shown with dotted lines. Edges run from the strand at their begin-

ning to that at their end, as indicated by the arrowhead. Bottom: an illustration of four

paths. Each has a name, and can be referenced by a handle, which are omitted for

brevity. Each path is shown in its natural direction as a series of connected steps that

refer to strands in the graph. The first two paths differ by a SNP, with one passing

through 2þ:T, and the other through 3þ:G. The third path is the reverse complement

of the first. The fourth is the same as the first, but contains an inversion, passing

through 5-:AATC rather than 5þ:GATT. (Color version of this figure is

available at Bioinformatics online.)

5140 J.M.Eizenga et al.

https://github.com/vgteam/libbdsg
https://github.com/vgteam/libbdsg


HandleGraph API. The backing data structures used remain the
same. The graph entities are stored as objects in a backing vector,
and referred to internally by hash tables that map between node
identifiers and pointers into this vector. Edges are indexed in a hash
table mapping pairs of handles to edge objects. Paths are stored in a
set of linked lists, with a hash table mapping between nodes and
path steps. This arrangement was tenable for the early development
of algorithms working on variation graphs. Its inefficiency, caused
by unnecessary overheads and data duplication, has resulted in sig-
nificant difficulties for groups working with VG. The other
HandleGraph implementations respond to the limitations of this ap-
proach. In version 1.22.0, vg was updated to use HashGraph
(below) as the default format, though it remains compatible with all
implementations described in this article via the HandleGraph API.

2.3.2 XG

XG was initially developed in response to the memory and runtime
costs of VG, which prevent its application to large graphs. It add-
itionally provides positional indexes over paths that are required for
read mapping and variant calling, and is the graph data model used
in most established bioinformatic operations on variation graphs
(Garrison et al., 2018; Hickey et al., 2020). Unlike other
HandleGraph implementations, XG is a static graph index. This per-
mits a more powerful set of efficient queries against the graph, espe-
cially for paths. The encoding is designed to balance speed and low-
memory usage. The topology of the graph is encoded in a single vec-
tor of bit-compressed integers, which promotes cache efficiency.
Rank and select operations on succinct bit vectors are used to pro-
vide random access over the variable-length records, which each en-
code a node’s sequence, ID and edges. Embedded paths are encoded
in variable-length integer vectors with Elias gamma encoding. Rank
and select operations on succinct bit vectors also provide queries by
base-pair position along paths. A detailed description of XG can be
found in the study by Garrison (2019).

2.3.3 HashGraph

HashGraph is a relatively simple encoding, which is largely similar
to the original VG graph. As such, it can be seen as a streamlined
point of comparison for the other new dynamic graph implementa-
tions. However, the simplicity of this encoding has the benefit of
allowing fast queries. Thus, even though HashGraph still has rela-
tively high memory requirements, it can still be useful in high mem-
ory compute environments or for small sequence graphs (such as
subgraphs of genome graphs).

Like VG, HashGraph encodes the topology of the graph in a
hash table indexed by node IDs. However, what were separate hash
tables in VG have been consolidated to avoid storing the keys mul-
tiple times. The hash table it uses is a drop-in replacement for the
equivalent standard library (STL) data structure, and has been
shown to outperform it in empirical evaluations (Brehm, 2019).
Each hash table entry contains the sequence, an adjacency list of the
edges in two STL vectors, and a vector indicating the path steps that
the node can be found on. The graph’s paths are represented using
doubly linked lists to support efficient modification at any position.

In contrast to the more memory-efficient implementations, all of
these data structures support computation in their native in-memory
representation. Thus, the run time to access graph elements does not

also include decompressing the data. This is how HashGraph main-
tains its comparative speed advantage.

2.3.4 Optimized dynamic graph implementation

ODGI is based on a node-centric encoding that is designed to im-
prove cache efficiency when traversing or modifying the graph. This
encoding is split between graph topology and paths, which is im-
portant for achieving a balance of runtime performance and mem-
ory usage on graphs with large path sets. It uses delta encoding of
edges and path steps to reduce the cost of representing graphs with
local partial order and sparsity, both of which are common features
of pangenome graphs. ODGI is the default data model of the ODGI
toolkit (https://github.com/vgteam/odgi), which provides high-level
algorithms for graph manipulation and interrogation that are
designed to work at the scale of large pangenomes.

In ODGI, each node N ¼ ðB;PÞ is represented by a structure
that contains a byte array B ¼ ðQ; EÞ encoding its sequence and
associated edges, and a compressed integer vector P ¼ S1 . . .Ss

describing the path steps that traverse it. The full graph model is
simply an array of these node records G ¼ N 1 . . .N jGj with some
additional data structures to allow for random access of paths by
name, and to maintain important statistics about the size of the
graph, its node ID space, and its path set.

Each node’s sequence Q is stored using a full byte per character
at the start of the byte array B. This allows ODGI to represent pro-
tein as well as DNA sequence graphs, and allows for copy-free refer-
ence to the node sequences. The edges that begin or end at the node
are recorded in the remainder of B, encoded as deltas between the
rank of the other end of the edge and the current node.

ODGI stores paths as bidirectional linked lists that allow effi-
cient insertions, deletions and replacements of path steps. These
paths are encoded in a manner that exploits common properties of
pangenome graphs, and node-level data structures are organized to
support efficient operation on graphs with very deep path coverage.
The path steps P ¼ S1 . . .Ss on each node are recorded as a series of
records in a dynamic integer vector which is compressed so that only
the largest integer entry is stored at full bit-width (Prezza, 2017).
Each step S ¼ ðpid; dp; dn; rp; rnÞ contains a path identifier pid, refer-
ences to the previous dp and next dn node ID and strands on the path
encoded as deltas relative to the current node, and the ranks of the
previous rp and next rn steps among the path steps on their respect-
ive nodes. This path encoding scheme is similar to that used in the
dynamic GBWT (Sirén et al., 2019), but differs in that the paths are
not prefix sorted.

2.3.5 PackedGraph

PackedGraph is designed to have a very low-memory footprint. The
backing data structures are implemented using bit-compressed inte-
ger vectors. The bit-width of these vectors is chosen dynamically,
starting with a bit-width of 1 and then reallocating the vector at a
higher width whenever an edit operation introduces an integer that
is too large to be represented with the current width. In the typical
case that the value of ith entry in the vector is O(i), these realloca-
tions have an O(1) amortized run time per edit.

Many of the integer vectors tend to also have entries that are
highly correlated with their neighbors. PackedGraph exploits this
characteristic to achieve greater compression by only storing one

Table 1. Comparison of features between libbdsg graph implementations

Model HashGraph ODGI PackedGraph

Design goal Simplicity, speed Memory efficiency Balanced speed/memory

Topology data structure Hash table Single integer vector Several integer vectors

Topology compression None Delta encoding Windowed bit compression

Sequence compression None None Bit compression

Pointer encoding Memory addresses Delta-encoded ranks Vector indexes

Note: The three graph implementations all use adjacency lists to encode graph topology and linked lists to encode paths. The differences in encoding these

structures reflects different design goals for each implementation.

Efficient dynamic variation graphs 5141

https://github.com/vgteam/odgi


entry per fixed-size window at full bit-width. The rest of the entries
are stored in a separate integer vector and expressed as a difference
from that entry. Since the differences within a window tend to be

small, this encoding keeps the bit-width for each window small as
well.

The data associated with each node is recorded in several com-
pressed integer vectors (at the same index in each). Contrast XG and

ODGI, which encode data in a single vector to improve cache effi-
ciency. Recording only one homogenous data type in a vector
increases the correlation between neighboring values, which in turn

improves compression. The adjacency list for the graph, the steps
that each node is found on, and the paths themselves are represented

using linked lists. The linked lists reside within the same bit-
compressed integer vectors, where pointers are created by treating
some integer entries as indexes into the vector itself. This pointer

encoding also guarantees the technical condition that accessing the
ith entry is O(i). The linked lists that occur on every node (the adja-
cency lists and node step lists) are included in a single vector across

all nodes. This serves two purposes. First, the windowed compres-
sion scheme in the integer vectors is inefficient if lists are smaller

than the window size, as is often the case. Second, due to the local
partial order that is found in many pangenome graphs, neighboring
nodes often connect to the same nodes and are found on the same

paths as each other. Thus, the values they store are also highly
correlated.

2.4 Python binding
We have implemented a Python binding to the graph implementa-
tions in libbdsg using Pybind11 (Jakob et al., 2017). This allows

the data structures to be used in Python applications, significantly
lowering the barrier-to-entry for pangenomic application develop-
ers. This functionality is documented at https://bdsg.readthedocs.io,

including a tutorial. This documentation also serves as useful intro-
duction to the HandleGraph API.

2.5 Code availability
Both libhandlegraph and libbdsg are open sources under an
MIT License. They are available on GitHub at https://github.com/
vgteam/libhandlegraph and https://github.com/vgteam/libbdsg.

Documentation for the two libraries, including the Cþþ handle
graph API, HashGraph, ODGI and PackedGraph, is available at

https://bdsg.readthedocs.io alongside the documentation for the
Python binding.

3 Evaluation

3.1 Human genome with structural variants
We measured the core operation performance of the four graph

implementations and the graph class from the popular VG software
(as implemented prior to version 1.22.0). In particular, we measured

(i) memory usage to construct a graph, (ii) time to construct a graph,
(iii) memory usage to load an already-constructed graph and (iv)
time to access nodes, edges and steps of a path. These access opera-

tions are one of the major drivers of run time in pangenomic appli-
cations, such as VG’s read mapping algorithm. Accesses were

performed with a single thread, and the reported access time is the
average time taken when accessing each graph element sequentially.
All evaluations were performed on a 3.1 GHz Intel Xeon Platinum

8000 series processor. The presented results are from a graph
describing the structural variants of the Human Genome Structural

Variation Consortium (Chaisson et al., 2019), which was recently
used to genotype structural variants (Hickey et al., 2020).
Specifically, the graph consists of the GRCh38 primary scaffolds

and 72 485 indel variants ranging in size from 50 bp to 76 kbp. The
results generally match our expectations based on the implementa-
tions’ design goals (Fig. 2).

3.2 Genome graph collection
To compare the methods’ performances across a wide variety of dif-

ferent graphs, we applied each to a collection of 2299 graphs col-
lected during our research on graphical pangenomics. For each

graph and graph implementation, we measured the same metrics
described in the previous section as well as various graph properties
including size, edge count, cyclicity and path depth. We summarize

these results in Figures 3 and 4.
For graph construction and loading, we observe similar trends as

for the HGSVC graph. VG’s performance in terms of memory usage
is very poor, both during construction and load. For construction

and load, all models exhibit largely linear scaling characteristics,
outside of very small graphs where static memory overheads domin-
ate. PackedGraph yields the best memory performance for larger

graphs (which are mostly the chromosomes of the 1000 Genomes
Project graph), while for the medium-sized graphs in the collection
(�1 Mbp), ODGI requires less memory.

For graph queries and iteration, the relative performance of the
models is largely maintained across the entire range of graph sizes.

However, we observe that the hash-based models (VG and
HashGraph) have very good performance for smaller graphs (in han-

dle and edge enumeration) but decrease in throughput as the graph
size increases. Smaller, less dramatic decreases in performance can
be seen for the other implementations. For path enumeration, the

highest-performing methods are XG and HashGraph at approxi-
mately 10 times faster than ODGI, whose relative path storage is

costly to traverse.

3.3 1000 Genome Project chromosome graphs
Variation graphs built from the 1000 Genomes Project (1000GP)

variant catalog and the human reference genome have fairly homo-
genous and regular features. In addition, they have connected com-

ponents of very different sizes, each corresponding to a
chromosome. This provides a natural, fairly controlled means to ex-
plore the scaling behavior of our data structures. Moreover, graphs

of this form are seeing increasing use in variant-aware resequencing
analyses (Crysnanto and Pausch, 2019). Thus, the performance of

data structures on these graphs is of general interest.

Fig. 2. Performance on a graph of structural variants from the HGSVC.

Abbreviations used here and in subsequent figures and tables: vg, VG; hg,

HashGraph; og, ODGI; pg, PackedGraph; xg, XG. All four new graph implementa-

tions compare favorably to VG. PackedGraph tends to be the most memory effi-

cient, HashGraph tends to be the fastest, and ODGI is balanced in between. XG

provides good performance on both memory usage and speed, but it is static

5142 J.M.Eizenga et al.

https://bdsg.readthedocs.io
https://github.com/vgteam/libhandlegraph
https://github.com/vgteam/libhandlegraph
https://github.com/vgteam/libbdsg
https://bdsg.readthedocs.io


We first evaluated the scaling performance of the various
HandleGraph implementations relative to node count for each of
the nuclear chromosomes in the 1000GP (Fig. 5). We find that for
all methods, load memory scales almost perfectly with node count,
with an average R2 ¼ 0:998. Due to differences in variant density
among the chromosomes, the average correlation relative to se-
quence length is lower (R2 ¼ 0:986).

In Table 2, we report the average memory performance of the
methods relative to graph sequence length, and also the iteration
performance in terms of elements per second. We find that the best-
performing method in terms of memory usage is PackedGraph,
which consumes around 1/20th the memory of VG per basepair of
graph in the 1000GP set. Moreover, it provides much better iter-
ation performance for nodes (handles), edges and path steps.
HashGraph and XG have similar iteration performance, but XG, by
virtue of its use of compressed, static data structures, requires less
than half as much memory. ODGI optimized for efficient dynamic
operations on graphs with higher path coverage, and in general is
not as performant as other methods on this set.

4 Discussion

We have presented a set of simple formalisms, the HandleGraph ab-
straction, which provides a coherent interface to address and ma-
nipulate the components of a genome variation graph. To explore
the utility of this model, we implemented data structures to encode
variation graphs and matched them to this interface. This allowed
us to directly compare these HandleGraph implementations on a di-
verse set of genome graphs obtained during our research. These
experiments reveal that genome graphs need not pay the computa-
tional expense of the early versions of VG. The best-performing
models require an order of magnitude less memory than VG while
providing higher performance for basic graph access operation and
element iteration. For these reasons, VG has transitioned to using
these newer graph implementations.

The efficiency of these methods and their encapsulation within a
coherent programming interface will support their reuse within a di-
verse set of application domains. Variation graphs have deep simi-
larity with graphs used in assembly; these libraries could be used as

edges per second
handles per second

steps per second

(1
,1

e+
03

]

(1
e+

03
,1

e+
04

]

(1
e+

04
,1

e+
05

]

(1
e+

05
,1

e+
06

]

(1
e+

06
,1

e+
07

]

(1
e+

07
,1

e+
08

]

(1
e+

08
,1

e+
09

]

(1
e+

09
,1

e+
10

]

1e+05

1e+06

1e+07

1e+06

1e+07

1e+08

1e+06

1e+07

1e+08

graph sequence length (bp)

model

vg

hg

og

pg

xg

Fig. 4. Graph element enumeration performance. Iteration performance for edges,

nodes and path steps for the full graph collection, shown in terms of elements per se-

cond. HashGraph provides the highest performance for all element iteration types

on smaller graphs, but this performance falls of with larger graphs, presumably due

to scaling properties of the backing hash tables. The same pattern can be seen for

VG, although the overall performance is worse. Although it has the worst edge iter-

ation performance, PackedGraph provides good performance on node and path step

iteration. The relative path encoding in ODGI yields poor performance on path iter-

ation, and node decoding overheads appear to reduce its node iteration perform-

ance, but it has good graph topology traversal performance, perhaps due to cache

efficiency of the edge encoding. XG provides excellent iteration performance in all

cases

Fig. 5. Load memory versus node count for chromosome graphs built from 1000

Genomes Project variants and GRCh37. For each method, memory requirements

are more strongly correlated with the number of nodes in the graph (R2 ¼0.998)

than with the graph sequence length (R2 ¼0.986). Although the memory require-

ments are dominated by graph sequence size, node count will increase with variant

density. Methods generally incur an overhead for each node that is larger than the

sequence length. Linear scales clarify that the absolute difference in performance be-

tween VG and the other methods is substantial

build m
em

ory (bytes)
load m

em
ory (bytes)

(1
,1

e+
03

]

(1
e+

03
,1

e+
04

]

(1
e+

04
,1

e+
05

]

(1
e+

05
,1

e+
06

]

(1
e+

06
,1

e+
07

]

(1
e+

07
,1

e+
08

]

(1
e+

08
,1

e+
09

]

(1
e+

09
,1

e+
10

]

1e+07

1e+08

1e+09

1e+10

1e+11

1e+07

1e+08

1e+09

1e+10

graph sequence length (bp)

model

vg

hg

og

pg

xg

Fig. 3. Memory requirements for model construction and loading. Memory costs versus

graph sequence size for the graph collection, colored by HandleGraph model. The mem-

ory requirements for graph construction tend to be higher than those for loading the

graph model. All methods show fixed overheads of several megabytes, seen in the flat

tail to the left of both plots. Outside of this region, all methods show roughly linear scal-

ing in both build and load costs per input base pair. The relative differences in memory

costs appear to be stable between different methods across many orders of magnitude in

graph size. (Color version of this figure is available at Bioinformatics online.)

Efficient dynamic variation graphs 5143



the basis for assembly methods. They could also be used for geno-
typing and haplotype inference methods based on graphs (Garg
et al., 2018).

Ongoing work is establishing large numbers of highly contiguous
whole genome assemblies for humans (https://humanpangenome.
org/). Improvements in sequencing technology are likely to make
such surveys routine. It is natural to consider a pangenome reference
system, based on the whole genome alignments of such assemblies,
as the output of these pangenome projects. Recent results demon-
strate that many basic bioinformatic problems can be generalized to
operate on such structures. Should these pangenome representations
become common or standard, then variation graph data structures
like those we have presented here will form the basis for a wide
range of pangenomic methods.

Funding

This work was supported, in part, by the National Institutes of Health

(award numbers U01HG010961, U41HG010972, R01HG010485,

2U41HG007234, 5U54HG007990, 5T32HG008345-04, U01HL137183 to

B.P.) and the W. M. Keck Foundation (award number DT06172015 to B.P.).

S.H. acknowledges funding from the Central Innovation Programme (ZIM)

for SMEs of the Federal Ministry for Economic Affairs and Energy of

Germany.

Conflict of Interest: none declared.

References

Brehm,W. (2019) Hash tables with pseudorandom global order. INFOCOMP

J. Comput. Sci., 18, 20–25.

Chaisson,M.J. et al. (2019) Multi-platform discovery of haplotype-resolved

structural variation in human genomes. Nat. Commun., 10, 1784.

Computational Pan-Genomics Consortium. (2016) Computational

pan-genomics: status, promises and challenges. Brief. Bioinf., 19, 118–135.

Crysnanto,D. and Pausch,H. (2019) Sequence read mapping and variant dis-

covery from bovine breed-specific augmented reference graphs.

10.1101/2019.12.20.882423.

Garg,S. et al. (2018) A graph-based approach to diploid genome assembly.

Bioinformatics, 34, i105–i114.

Garrison,E. (2019) Graphical Pangenomics. Ph.D. thesis, University of

Cambridge.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by rep-

resenting genetic variation in the reference. Nat. Biotechnol., 36, 875–879.

Hickey,G. et al. (2020) Genotyping structural variants in pangenome graphs

using the vg toolkit. Genome Biol., 21, 1–17.

Jakob,W. et al. (2017) pybind11 – seamless operability between cþþ11 and

python. https://github.com/pybind/pybind11.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Prezza,N. (2017) A framework of dynamic data structures for string processing.

In International Symposium on Experimental Algorithms. Leibniz

International Proceedings in Informatics (LIPIcs). King’s College, London, UK.

Sirén,J. et al. (2019) Haplotype-aware graph indexes. Bioinformatics, 36,

400–407.

Table 2. Performance on 1000 Genomes Project chromosome

graphs

Model Build Load Iteration rate (millions)

B/bp B/bp Node/s Edge/s Step/s

vg 80.2 77.2 24.6 2.8 2.9

hg 36.7 23.9 59.5 18.9 127.2

og 30.3 13.7 24.1 11.5 8.2

pg 37.6 3.80 63.7 4.6 24.3

xg 54.3 9.31 54.2 20.5 117.0

Note: Average build memory, load memory and iteration times for graph

elements for the chromosome-level graphs built from all the variants in the

1000 Genomes Project and the GRCh37 reference genome against which the

variant set was originally reported. VG requires �20 times as much memory

to load the graphs as PackedGraph, while even the most costly libbdsg

model (HashGraph) requires �1/3 as much memory. In these graphs, ODGI

provides the lowest performance for handle iteration. However, in all other

metrics, VG performs much worse than the other models. Bold indicates low-

est memory usage or fastest operation.

5144 J.M.Eizenga et al.

https://humanpangenome.org/
https://humanpangenome.org/
https://github.com/pybind/pybind11

	l
	l
	tblfn1
	tblfn2

