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Body composition (BC) analysis is the measurement 
of fat, muscle, and bone for assessment of fitness and 

health. Analysis of BC on radiologic images has a long 
tradition. According to PubMed, there are more than 
1400 articles on BC and CT, with the first appearing 
shortly after the commercialization of CT (1). There are 
good reasons for this interest. BC is predictive of clinical 
outcome in a number of important scenarios. Examples 
include risk prediction for patients undergoing surgery 
or chemotherapy, mortality and cardiovascular morbidity 
prediction, and assessment of metabolic syndrome and 
adverse drug effects.

Body mass index is one method of determining BC 
but is too simplistic. Hence the need for imaging-based 
methods. Until recently, BC was measured manually using 
simple techniques such as thresholding and manual tracing 
on a single abdominal CT or MRI scan, typically between 
the L1 and L4 levels. Because manual assessment of BC is 
time consuming and expensive, its use has been limited to 
research studies and clinical trials. More recently, partially 
and fully automated software for measuring BC has been 
reported. The study by Magudia et al in this issue of Radi-
ology describes one such automated assessment (2).

Magudia et al have developed a deep learning BC 
analysis pipeline for routine abdominal CT. Their soft-
ware measures muscle and visceral and subcutaneous fat 
at the L3 level. The software automatically finds the L3 
level and then performs single-slice fat and muscle analy-
ses. The authors developed their software on 595 scans 
from patients with pancreatic adenocarcinoma from a 
multi-institution study and 534 scans from patients with 
lymphoma from a different institution. They validated 
the results using an additional 100 manually segmented 
images. Finally, they applied the software to the CT scans 

of 12 128 outpatients from three hospitals to generate 
age-, race-, and sex-normalized reference curves or no-
mograms. As expected, normal BC varied significantly 
with age, race, and sex. The authors also found that skel-
etal muscle area z scores (a normalized measure) were sig-
nificant predictors of 2-year survival in combined models 
that included body mass index.

What are the implications of this and similar studies? 
For one, routine quantification of abdominal CT for BC 
could be done on every scan fully automatically and at 
little or no additional cost. The data so acquired could be 
combined with other clinical information such as patient 
history, laboratory values, and drug treatments to make 
predictions that are clinically relevant for the particular pa-
tient. The nomograms presented in the article by Magudia 
et al are important because the BC can best be properly 
assessed and combined with other clinical data when they 
are corrected for age, sex, and race.

BC metrics are some of the easiest to automate in an ac-
curate way and tend to be more robust than other current 
machine learning–based techniques. This is because fat has 
a well-defined Hounsfield unit range and muscle anatomic 
variation at the L3 level tends to be relatively limited and 
easily modeled using small training datasets. BC also has a 
strong track record of clinical relevance across numerous 
published studies. The combination of ease of implemen-
tation, robustness, and proven clinical utility suggests that 
automated BC could become routinely available clinically 
sooner rather than later.

Some of the limitations of the current work include a 
lack of analysis according to whether intravenous contrast 
material was given, limitations in the number of races in-
vestigated (only White non-Hispanic and Black patients 
were included), analyses at only a single vertebral level, and 
a reference population of outpatients who cannot be re-
garded as healthy and who could have atypical BCs. Recent 
work indicates that muscle, bone, and fat measurements 
vary between unenhanced and intravenous contrast mate-
rial–enhanced CT of the same patient (3). Such measure-
ments can be normalized by means of a linear correction if 
the data are first stratified accordingly by whether contrast 
material is given. While Magudia et al made their soft-
ware publicly available, they did not publish their trained 
model, CT datasets, and manual segmentations, thereby 
limiting reproducibility.
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The evolution of BC is another topic of interest. Interval 
changes are important in treatments for obesity, assessment of 
renal and bone marrow transplant recipients, and population-
based assessments of nutritional status. There has been limited 
work in the use of automated BC software for longitudinal 
analyses.

What is one to do with the blizzard of data presented in 
Magudia et al’s supplementary material? In all likelihood, these 
nomograms would be incorporated into the software and used 
to compute the z scores without the need for the radiologist to 
consult the tables. These z scores would incorporate the age-, 
sex-, and race-specific distributions found by the authors. One 
would then know where an individual patient stands in terms of 
BC. A 2-year survival prediction could also be output. A sum-
mary of the findings could be inserted directly into the radiology 
report, requiring the radiologist only to double check whether 
the results seem reasonable for a given patient.

The radiologist’s intuition about the reasonableness of the re-
sults would likely develop quickly if the software were applied on 
every case. Radiologists who interpret images from dual-energy 
x-ray absorptiometry will already be familiar with normalized 
scores. Radiologists who perform US on children will already be 
familiar with the use of nomograms for assessing organ size as a 
function of age and sex. These are not new concepts, just applied 
for a new indication.

How do the authors’ findings compare with others in the lit-
erature? In a recent study from my collaboration with Dr Perry 
Pickhardt at the University of Wisconsin, we found that BC as-
sessment of both muscle and visceral-to-subcutaneous fat ratio 
were good predictors of 2-year survival in patients undergoing 
colorectal cancer screening (4). Other work from our collabo-
ration showed that automated BC was predictive of metabolic 
syndrome and future osteoporotic fractures (5,6). It is clear that 
automated systems such as the one presented by Magudia et al 
will prove useful for prediction of important clinical outcomes.

How do the authors’ segmentation results compare with other 
automated BC analyses in the literature? Weston and colleagues 
(7) found Dice scores (a measure of segmentation accuracy) of 
0.97 and 0.98 for visceral and subcutaneous fat, respectively, and 
0.96 for muscle assessments. Burns et al (8) showed a Dice score 
of 0.94 for muscle segmentation. These results are comparable 
to the Dice score range of 0.95–0.98 reported by Magudia et al 
and indicate that such analyses are reproducible across different 
deep learning methods. However, more data are needed to show 
generalizability in multi-institutional datasets.

What is the likely future for automated BC assessment? 
Analyses of tissues other than fat and muscle at abdominal imag-
ing are being automated and validated. Although these tissues 
are not traditionally considered part of BC, these analyses fall 
roughly into the nascent category of opportunistic screening, the 
identification of abnormalities other than those addressing the 
primary indication for the scan. Examples include bone mineral 
densitometry for osteoporosis, noncoronary calcific atheroscle-
rosis scoring for cardiovascular and oncology risk prediction, 
and liver steatosis for nonalcoholic fatty liver assessment. One 
can imagine other automated assessments being routinely per-
formed, such as major organ volumetrics (liver, spleen, kidneys, 
pancreas) and management of incidentalomas. In short, BC 
analyses such as the work by Magudia et al are likely to lead 
the way to more routine clinical use of automated analyses in 
abdominal imaging.
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