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Abstract

Ultrasound shear wave elastography is a modality used for noninvasive, quantitative evaluation of 

soft tissue mechanical properties. A common way of exploring the tissue viscoelasticity is through 

analyzing the shear wave velocity dispersion curves. The variation of phase velocity with 

frequency or wavelength is called the dispersion curve. An increase of the available spectrum to be 

used for phase velocity estimation is meaningful for a tissue dispersion analysis in vivo. A number 

of available methods for dispersion relation estimation exist which can give diffuse results due the 

presence of noise in the measured data. In this work we compare six selected methods used for 

dispersion curve calculation in viscoelastic materials. Non-parametric, parametric and high-

resolution methods were examined and compared. We tested selected methods on digital phantom 

data created using finite-difference-based method in tissue-mimicking viscoelastic media as well 

as on the experimental custom tissue-mimicking phantoms. In addition, we evaluated the 

algorithms with different levels of added white Gaussian noise to the shear wave particle velocity 

from numerical phantoms. Tests conducted showed that more advanced methods can offer better 

frequency resolution, and less variance than the fast Fourier transform. In addition, the non-

parametric Blackman-Tukey approach exhibits similar performance and can be interchangeably 

used for shear wave phase velocity dispersion curves calculation.
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1. Introduction

Ultrasound shear wave elastography (SWE) is a technique that has been used to measure the 

mechanical properties to evaluate normal and pathological soft tissues (Sarvazyan et al. 
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(2011)). Typically, a single array transducer is used to generate a high intensity focused 

beam to impart a force to the soft tissue through the acoustic radiation force (ARF) 

phenomenon (Nightingale et al. (2001)). After the ARF is applied, a propagating shear wave 

results from the medium perturbation (Nightingale et al. (2003)). Ultrafast ultrasound 

imaging techniques are used to acquire ultrasound data for estimating the shear wave motion 

in the field-of-view (Montaldo et al. (2009); Song et al. (2015)). Then different algorithms 

use the shear wave motion data at multiple locations to estimate the shear wave velocity, 

which is proportional to the mechanical properties of the tissue.

Many SWE implementations assume that the soft tissue under investigation is elastic, linear, 

isotropic, homogeneous, and incompressible. However, soft tissues can be characterized as 

viscoelastic. One characteristic of viscoelastic materials is that the shear wave velocity at 

different frequencies (phase velocities) vary, which is a property called dispersion (Chen et 

al. (2004)). Many groups have utilized this concept to characterize the viscoelasticity of 

tissues such as liver, breast, kidney, skeletal muscle, among others (Tanter et al. (2008); 

Muller et al. (2009); Chen et al. (2009); Deffieux et al. (2009); Gennisson et al. (2010); 

Amador et al. (2011); Chen et al. (2013); Nightingale et al. (2015); Deffieux et al. (2015); 

Kumar et al. (2018)).

There are a few different methods that have been utilized to estimate the phase velocity 

dispersion for different frequencies. Typically, spatiotemporal data with one spatial and one 

temporal dimension is analyzed. Initial efforts used a phase gradient algorithm (Chen et al. 

(2004); Deffieux et al. (2009)) to evaluate the shear wave phase at specific frequencies, at 

multiple lateral locations to the ARF push beam. In more recent work, two-dimensional 

Fourier transforms (2D-FT) have been applied to obtain a distribution with dimensions of 

spatial and temporal frequency (Alleyne and Cawley (1991); Couade et al. (2010); Bernal et 

al. (2011)). Factors such as noise, spatial and temporal sampling, and selection of the spatial 

and temporal extent can cause changes in the estimated dispersion curves (Rouze et al. 

(2015, 2017); Kijanka et al. (2018, 2019)). Differentiation of viscoelastic tissues can be 

accomplished when higher frequencies can be used, so signal processing techniques can be 

employed to maximize the bandwidth for computing the dispersion curves.

The goal of this work is to evaluate different techniques for transforming data in the 

spatiotemporal domain to a frequency-based domain for evaluation of the dispersion curves. 

As mentioned above, Fourier-based methods have been utilized as well as a Radon sum 

approach, the Multiple Signal Classification (MUSIC) method, and a continuous wavelet-

based approach (Nightingale et al. (2015); Kijanka et al. (2018, 2019)). To more fully 

evaluate methods that may be applied for estimating dispersion curves with different classes 

of algorithms to evaluate how they perform on data from numerical and physical viscoelastic 

phantoms. We will evaluate the performance of the algorithms with different levels of signal-

to-noise ratio (SNR).

The rest of the article is organized as follows. First, we present a brief introduction to non-

parametric, parametric and high-resolution methods. These methods were tested on particle 

velocity data from the numerical simulations of shear wave propagation in viscoelastic 

media. The robustness of the methods was tested by adding noise to these data sets. We also 
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examined the methods on data from custom made tissue-mimicking (TM) viscoelastic 

elastography phantoms. Results from these digital and physical phantoms will be reported. 

The results will be followed with a discussion and conclusions.

2. Methods

In this section, a brief introduction to non-parametric, parametric and high-resolution 

spectrum estimation methods is provided. Selected methods are described and appropriate 

references where more details can be found are provided. The methods’ performance is 

investigated based on the shear wave particle velocity motion data in Secs. 4 and 5.

2.1. Non-parametric Methods

Non-parametric approaches are the most widely used techniques for spectrum estimation. 

These methods are based on the idea of estimating the auto-correlation sequence of a 

random process from a set of measured data. Then, the Fourier transform is applied to obtain 

an estimate of the power spectrum (Hayes (1996)). Likely the most well-known techniques 

are: Periodogram, Blackman-Tukey, Bartlett, Welch and Thomson’s multitaper (Bartlett 

(1948); Blackman and Tukey (1958); Welch (1967); Thomson (1982); Kay (1993); Hayes 

(1996); Williams and Madisetti (1997); Vaseghi (2008)).

2.1.1. Periodogram—The power spectrum of a stationary process is the Fourier 

transform of the autocorrelation sequence

Px(ejω) = ∑
k = − ∞

∞
rx(k)e−jkω, (1)

where rx(k) is the autocorrelation sequence, which in theory may be determined (over an 

infinite interval) as

rx(k) = lim
N ∞

1
2N + 1 ∑

n = − N

N
x(n + k)x∗(n) . (2)

However, x(n) is typically measured over a finite interval. The asterisk represents complex 

conjugation. Then, the autocorrelation sequence can be written with a finite sum as

rx(k) = 1
N ∑

n = 0

N − 1 − k
x(n + k)x∗(n), (3)

where k = 0,…,N−1. Taking the discrete Fourier transform of rx(k) gives an estimate of the 

power spectrum called the periodogram which can be written as

PPER(ejω) = ∑
k = − N + 1

N − 1
rx(k)e−jkω . (4)
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The periodogram is proportional to the squared magnitude of the discrete Fourier transform 

(DFT) and may be easily computed using the DFT (Hayes (1996); Williams and Madisetti 

(1997)). In the following part of the manuscript the periodogram is referred to two-

dimensional Fourier transform (2D-FT).

2.1.2. Blackman-Tukey—The Blackman-Tukey (BT) method referred to as 

periodogram smoothing was designed for decreasing the statistical variability of the 

periodogram (Blackman and Tukey (1958)). The Blackman-Tukey spectrum estimate can be 

written as

PBT(ejω) = ∑
k = − M

M
rx(k)w(k)e−jkω, (5)

where w(k) is a window extending from −M to M applied to the autocorrelation estimate. 

The variance of the periodogram is reduced by applying a window to rx(k) in order to 

decrease the contribution of the unreliable estimates to the periodogram. The variable w(k) 

can be any window that has a nonnegative Fourier transform. Resolution of the BT method 

is window dependent. A smaller number of autocorrelation estimates can be used to form the 

estimate of the power spectrum, if for example rectangular window is used (Blackman and 

Tukey (1958); Hayes (1996); Williams and Madisetti (1997)). Based on trial analysis the M 

= 64, and a Blackman window were used in this work. The influence of the M parameter on 

the dispersion curves calculation is examined in the Appendix.

2.2. Parametric (Model-based) Methods

Parametric methods, also known as model-based methods, are the second set of approaches 

used for spectrum estimation. These methods use a different approach for spectral estimation 

than the non-parametric techniques. Instead of trying to estimate the power spectrum density 

directly from the data, the methods model the data as the output of a linear system driven by 

white noise. Then the methods estimate the parameters of that linear system. The first step 

with the parametric approach is to select an appropriate model for the process. This can be 

done based on a priori knowledge about how the process is generated. Commonly used 

models are autoregressive, moving average, autoregressive moving average and harmonic 

(Hayes (1996); Williams and Madisetti (1997)). One of the most well-known model-based 

methods are: Burg, Yule-Walker, Modified Covariance, Maximum Entropy, the Minimum 

Variance Distortionless Response (Capon) (Capon (1969); Ulrych and Clayton (1976); 

Haykin and Kesler (1979); Shon and Mehrotra (1984); Kay (1993); Hayes (1996); Williams 

and Madisetti (1997); Vaseghi (2008)).

2.2.1. The Minimum Variance Distortionless Response (MVDR)—The Minimum 

Variance Distortionless Response (MVDR) is also referred to as a Capon estimator (Capon 

(1969)). The MVDR spectrum is derived through the selection of the MVDR beamforming 

weight vector w by solving the following problem

min
w

wH Rw subject to wH a(θ) = 1, (6)
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where R denotes the covariance matrix of the measured signal, and w is the MVDR 

beamforming weight vector. The resulting MVDR spectrum is then given as

PMV DR(θ) = w(θ)H Rw(θ) = 1
a(θ)HR−1a(θ)

, (7)

where, w(θ) is the weight vector in a form

w(θ) = R−1a(θ)
a(θ)HR−1a(θ)H , (8)

and a(θ) is the array response to the incident signal from direction θ. The covariance matrix 

size, R, equal to 2 was applied in this study, based on our preliminary analysis. The 

influence of the covariance matrix size on the dispersion curves calculation is examined in 

the Appendix.

2.2.2. Modified Covariance—The modified covariance method is based on minimizing 

the sum of the squares of the forward and backward prediction errors. The method is also 

known as the Forward-Backward method (Nuttall (1976)) and the Least Squares Method 

(Ulrych and Clayton (1976)). The modified covariance method requires finding the solution 

to the set of linear equations

rx(1, 1) rx(2, 1) ⋯ rx(p, 1)
rx(1, 2) rx(2, 2) ⋯ rx(p, 2)

⋮ ⋮ ⋯ ⋮
rx(1, p) rx(2, p) ⋯ rx(p, p)

ap(1)
ap(2)

⋮
ap(p)

= −

rx(0, 1)
rx(0, 2)

⋮
rx(0, p)

, (9)

where the autocorrelations rx(k,l) are given as

rx(k, l) = ∑
n = p

N − 1
[x(n − l)x∗(n − k) + x(n − p + l)x∗(n − p + k)] . (10)

The modified covariance method in comparison to e.g. the Yule-Walker or Maximum 

Entropy methods does not require windowing of the data in the formation of the 

autocorrelation estimates. Therefore, for short data records the modified covariance method 

generally produces higher resolution spectrum estimates than Yule-Walker or Maximum 

Entropy (Shon and Mehrotra (1984)). In addition, the Modified Covariance method is not 

subject to spectral line splitting (Kay and Marple (1979)). Furthermore, in contrast to other 

autoregressive methods, the Modified Covariance method gives statistically stable spectrum 

estimates with high resolution (Nuttall (1976); Ulrych and Clayton (1976); Hayes (1996); 

Williams and Madisetti (1997)). A first-order of the method was used, based on our trial 

analysis. The influence of the method’s order on the dispersion curves calculation is 

examined in the Appendix.
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2.3. High-resolution Based on Subspace Eigenanalysis Methods

High-resolution methods, also known as super-resolution methods or subspace methods, 

generate frequency component estimates for a signal based on an eigenanalysis or 

eigendecomposition of the autocorrelation matrix. Examples for this category of methods 

are: Pisarenko, Multiple Signal Classification (MUSIC), Eigenvector, Minimum Norm, 

Minimum Variance, Principle Component based method (Pisarenko (1973); Schmidt (1986); 

Hayes (1996); Williams and Madisetti (1997); Ribeiro et al. (2013); Kijanka et al. (2018)).

2.3.1. Multiple Signal Classification (MUSIC)—The MUSIC method is an 

improvement of the Pisarenko’s harmonic decomposition technique (Pisarenko (1973)). It 

ensures asymptotically unbiased estimates of a general set of signal parameters. MUSIC 

relies on the orthogonality between signal and noise subspaces spanned by the eigenvectors 

of the correlation matrix to conclude signal propagation characteristics for multiple signal 

contributions (Kijanka et al. (2018)). Using the noise subspace eigenvectors (M-p) the power 

spectrum can be calculated using the following estimation function

PMUSIC(ejω) = 1
∑i = p + 1

M eHvi
2 , (11)

where, e‒H is the vector of complex exponentials ejω. Superscript H denotes the Hermitian 

operator. The eigenvectors v‒i correspond to the M − p smallest eigenvalues that span the 

noise subspace. M is the size of the autocorrelation matrix, and p is a number of complex 

exponentials in white noise (Schmidt (1986); Hayes (1996); Williams and Madisetti (1997); 

Kijanka et al. (2018)). Parameters p = 1 and M = 0.5 of the input data size (i.e. M = 64) were 

used. Constant p = 1 was selected in our studies due to one propagating shear wave mode is 

expected to be found in the examined bulk media (Kijanka et al. (2018)). Parameter M was 

selected based on our preliminary analysis. The influence of the autocorrelation matrix size 

on the dispersion curves calculation is examined in the Appendix.

It is worth noting that if M = p + 1, then the MUSIC algorithm is equivalent to the 

Pisarenko’s method.

2.3.2. The Eigenvector—The Eigenvector (EV) method is closely related to the 

MUSIC algorithm (Johnson and DeGraaf (1982)). It estimates the exponential frequencies 

from the peaks of the eigenspectrum given by

PEV (ejω) = 1
∑i = p + 1

M 1
λi

eHvi
2 ,

(12)

where, λi is the eigenvalue associated with the eigenvector v‒i. The only difference between 

the EV method and MUSIC is the use of inverse eigenvalue weighting in EV and unity 

weighting in MUSIC. This causes that EV yields fewer spurious peaks than MUSIC. The 

EV method is also considered to shape the noise spectrum better than MUSIC (Johnson and 

DeGraaf (1982)). Parameters p and M were selected to be the same as for the MUSIC 
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algorithm. The influence of the autocorrelation matrix size on the dispersion curves 

calculation for the Eigenvector method is examined in the Appendix.

2.4. Dispersion Curves Extraction

The frequency-wavenumber (f-k) domain distribution of ultrasound shear waves were 

processed in a way that, first one-dimensional Fourier transform was performed in time 

domain and then other, selected method was used in spatial domain to create the frequency-

wavenumber distribution. Next, phase velocity curves were computed from finding the 

maximum peaks in the f-k distribution. The coordinates of the peaks are used to calculate the 

phase velocity, c = 2πf/k. A flow chart presenting calculation of the frequency-wavenumber 

distribution of ultrasound shear wave is shown in Fig. 1. A similar approach was used for 

example in (Kijanka et al. (2018)). No thresholding was used.

In this work, we used the Kelvin-Voigt (KV) rheological viscoelastic model for the 

numerical simulations. We adopt this rheological model because it has been shown in 

literature, in multiple works, that the KV model does describe shear wave velocity 

dispersion over certain ranges of frequency (Deffieux et al. (2009); Catheline et al. (2004); 

Gennisson et al. (2010); Chen et al. (2013); Amador et al. (2013); Nguyen et al. (2014); 

Kijanka and Urban (2020a)). The KV model requires only two parameters. It contains a 

dashpot, μ2, and a spring, μ1, placed in parallel. The stress-strain relationship of the KV 

model is represented in the form

σ = μ1 − μ2
∂
∂t ε, (13)

where, the stress, σ, is related to the strain, ε, by the shear elasticity μ1, the shear viscosity 

μ2, and the time derivative, ∂
∂t . From the complex wave vector, solving the one-dimensional 

Helmholtz equation, the shear wave velocity of the KV model can be calculated as (Kijanka 

and Urban (2020a))

V s(ω) =
2(μ1

2 + ω2μ2
2)

ρ μ1 + μ1
2 + ω2μ2

2 , (14)

where, ω is an angular frequency. The reference shear wave phase velocity curves for the 

KV model, used in the following part of the article, were calculated using Eq. (14), with μ1 

and μ2 parameters given in Sec. 3.1.

3. Materials

3.1. Numerical Tissue-Mimicking Phantoms

To produce digital phantoms of viscoelastic materials, for which the mechanical properties 

are known, we used finite-difference-based modeling. Finite difference staggered grid 

scheme was implemented and used to generate particle velocity shear wave motion data 

(Virieux (1986)). The acoustic radiation force push beam was simulated using the FOCUS 

software package (Zeng and McGough (2008); Chen and McGough (2008); FOCUS 
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(2019)). A linear array with 32 active elements, with element width of 0.283 mm, element 

height of 7 mm, element kerf of 0.035 mm, elevation focus of 25 mm was simulated with a 

center frequency of 4.0 MHz, and using an attenuation, α, of 0.5 dB/cm/MHz and sound 

velocity, c, of 1540 m/s. The intensity, I, was calculated as I = ⟨p⟩2 /ρc, to be used in the 

body force defined by F = 2αI/c where, p is the pressure. A focal depth of 20 mm was used 

for the push beams with a fixed f-number (F/N) of 2.21.

A viscoelastic, isotropic, homogeneous, and nearly incompressible model for soft tissue, 

when the KV model for viscous loss is incorporated, is described by Navier’s equation 

(Bercoff et al. (2004))

λ1 + 2μ1 + (λ2 + 2μ2) ∂
∂t ∇(∇ ⋅ u) + μ1 + μ2

∂
∂t ∇ × (∇ × u) + F = ρ ∂

∂t u, (15)

where, λ1 and μ1 are the first Lamé constant and shear elasticity, respectively. λ2 and μ2 

denote the first Lamé constant and shear viscosity, and ρ is the density. u is the local particle 

displacement, F is the induced body force, and t is the time.

The entire process was implemented in MATLAB (Mathworks, Natick, MA, USA) using 

parallel computation technology, offered by modern graphics processing units (GPUs) and 

compute unified device architecture (CUDA) used in low-cost graphics cards. The domains 

were uniformly spatially sampled at 0.1 mm. The cells were taken to be sufficiently small 

which represents a good approximation to realistic complex media. The dimensions of the 

simulated domain are x = ±60 mm in the lateral direction and z = 0-60 mm in the axial 

dimension. We adopted a KV material model with a constant μ2 of 2 Pa·s, and varying μ1 = 1 

kPa (Model 1), 4 kPa (Model 2), and 8 kPa (Model 3), respectively. Poisson’s ratio was 

0.499999(7), ensuring a compressional wave speed of 1500 m/s. The Courant-Friedrichs-

Lewy condition for the stability of numerical models was set to 0.45.

Resulting shear wave velocity responses were interpolated with a temporal sampling 

frequency of 6 kHz and then used for further data processing. Data measured from multiple 

points over a 6 mm and 25 mm lateral segment length, with 0.2 mm spatial resolution, were 

used for the spectrum methods (described in Sec. 2) examination. The spatial resolution of 

0.2 mm was selected since the spatial resolution higher than 0.1 mm is very often used in 

clinical applications. The methods for numerical phantoms of viscoelastic materials are 

studied in the presence of noise, as added white Gaussian noise to wave motions. The white 

Gaussian noise was generated in MATLAB software using the awgn(·) function and then 

added to the shear wave time-domain particle velocity signals. The power of the wave 

motion was measured. Subsequently, white Gaussian noise was added to the time-domain 

vector signals. A signal-to-noise ratio (SNR) for the noise-added models was set to vary 

from 5 to 35 dB.

3.2. Custom Tissue-Mimicking Phantoms

Custom TM viscoelastic phantoms, similar to those used in a shear wave attenuation study 

(Kijanka et al. (2019); Kijanka and Urban (2020b)), were used (CIRS Inc., Norfolk, VA, 

USA) in this work. The reference dispersion curves of these phantoms are not known. A 
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Verasonics ultrasound system (V1, Verasonics, Inc., Kirkland, WA) equipped with a linear 

array transducer (L7-4, Philips Healthcare, Andover, MA) was used for data acquisition. The 

acoustic radiation force (ARF) push beams were focused at 20.02 mm. The push duration 

was 400 μs and the push frequency was 4.09 MHz. The push beam was generated by 48 

active elements, which was placed on a side of the L7-4 probe. A plane wave acquisition 

was used using three angularly directed plane waves (−4°, 0°, and +4°) that were coherently 

compounded (Montaldo et al. (2009)). The effective frame rate after compounding was 

4.167 kHz. The motion (shear wave particle velocity) was calculated from the in-phase/

quadrature data using an autocorrelation algorithm (Kasai et al. (1985)).

4. Results

4.1. Numerical FDM Viscoelastic Phantoms Results

Numerical FDM viscoelastic phantom results were investigated for shear wave particle 

velocity data with added white Gaussian noise. Shear wave spatiotemporal data are 

presented in Fig. 2. The results are shown for three different viscoelastic media with varying 

shear modulus of 1, 4, and 8 kPa, and a constant viscosity of 2 Pa·s. Models with higher 
μ2
μ1

ratio are considered as more viscoelastic.

Figures 3, 4, and 5 present shear wave phase velocity dispersion curves computed using six 

different approaches: the 2D-FT, BT, MVDR, Modified Covariance, MUSIC, and EV 

methods, for three numerical phantoms, respectively. The results were calculated at a focal 

depth of 20 mm. Data with added white Gaussian noise with various levels of SNR are 

presented. The first signal position in the lateral direction was chosen to be 0 mm and 

distance between two measurement points was 6 mm and 25 mm, respectively. All these 

results are compared with true, analytical values calculated using Eq. (14). The phase 

velocity curves for media with higher viscoelasticity (lower shear modulus) are more 

affected by noise (e.g. Fig. 3 vs Fig. 5). Various methods give different robustness for the 

viscoelastic data investigated. This is also shown in Figs. 6 and 7.

Figures 6 and 7 show comparison of phase velocity errors calculated with respect to the 

reference dispersion curve (Eq. (14)) in the frequency domain. The error was calculated as a 

difference between computed phase velocity and a reference velocity (analytical dispersion 

curves). Errors in Figs. 6 and 7 refer to the results presented in Figs. 3, 4, and 5, respectively. 

Results for the 2D-FT method are most affected by the noise (Fig. 6). The MVDR and 

Modified Covariance approaches estimated the phase velocity within the investigated 

frequency range with lower error for all three numerical phantoms examined in this study, 

but the results are underestimated by about 0.1 m/s (Fig. 6). The MUSIC and Eigenvector 

techniques performed with the least error as can be seen in Fig. 6.

Figure 7 shows how performance of all the methods changes if a limited amount of spatial 

input data is truncated from 25 mm to 6 mm (x = 0-6 mm). A few differences can be clearly 

distinguished in comparison to the results for x = 0-25 mm shown in Fig. 6. First, oscillatory 

behavior can be seen for the softest (the most viscoelastic) phantom in Fig. 7a, for all the 

results. Second, for the models with μ1 = 4 and 8 kPa higher deviation is present for lower 
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frequencies which increases with higher material stiffness. The phase velocity error flattens 

as the frequency increases. Third, the error for 4 kPa and 8 kPa, for higher frequencies 

exhibits less variation than for the lateral segment length of 25 mm. This is clearly visible in 

Figs. 7b, and 7c for a SNR of 35, 25, and 15 dB. In addition, results for 2D-FT, for 6 mm are 

strongly deflected in comparison to Fig. 6 (x = 0-25 mm).

Boxplots of the phase velocity error within a range of 200-900 Hz, for the three numerical 

models investigated, were calculated for the data with a SNR of 35, 25, 15, and 5 dB, for 30 

iterations each, respectively. Results are summarized in Fig. 8. The bottom and top edges of 

the box indicate the 25th and 75th percentiles, respectively. White circles represent the mean 

values of the phase velocity error, whereas a solid line within each box corresponds to a 

median value, calculated from 30 iterations and a frequency range from 200-900 Hz. 

Outliers were also plotted if values are greater than q3+w(q3−q1) or less than q1 − w(q3 − 

q1), where w is the maximum whisker length, and q1 and q3 are the 25th and 75th percentiles 

of the sample data, respectively. The parameter w was chosen to be 1.5. Interquartile range 

(IQR) quantitative evaluation can be made by calculation of a difference between 25th and 

75th percentiles of the sample data as IQR = q3 − q1. Results for two different lateral 

segments are presented, 6 and 25 mm, respectively. Additionally, IQR values for each model 

and various SNR levels are summarized in Table 1.

For the numerical, viscoelastic models investigated the largest box plots are present for the 

2D-FT method, from all the approaches examined in this work. The second non-parametric 

method, Blackman-Tukey, gives much improved results (smaller box plots) in relation to the 

2D-FT. This behavior can be seen for all the models, SNR levels and two lateral segments. 

Considering a moderate noise level, e.g. 15 dB, and longer lateral distance (x = 0-25 mm), 

IQRs for μ1 = 1 kPa (model 1) are 0.592 and 0.161 m/s for the 2D-FT and BT methods, 

respectively (Table 1). The parametric methods, MVDR and Modified Covariance, have 

higher IQR values than BT, at the level of 0.204 and 0.215 m/s, respectively. The high-

resolution approaches on the other hand, MUSIC and Eigenvector, have IQRs equal to 0.163 

and 0.140 m/s, respectively (Table 1). Considering the same phantom and SNR level but for 

shorter lateral segment length, i.e. 0-6 mm (Fig. 8b), increased IQRs are observed for most 

approaches. The non-parametric 2D-FT and BT methods have IQR of 0.608 and 0.208 m/s, 

and the parametric MVDR and Modified Covariance methods have 0.238 and 0.209 m/s, 

respectively. The high-resolution approaches exhibit slight increase of IQR to 0.213 and 

0.205 m/s for the MUSIC and Eigenvector methods, respectively.

Less viscoelastic materials, with lower 
μ2
μ1

 ratio, have lower variation (lower IQR) in 

calculated dispersion phase velocities, as can be seen in Fig. 8 and Table 1. For example, for 

viscoelastic model 3 (μ1 = 8 kPa), SNR of 15 dB and the lateral segment length of 25 mm, 

IQR for 2D-FT is equal to 0.112 m/s. At the same time the BT results have an IQR of 0.057 

m/s, which is at almost the same level as the IQR for the MUSIC and Eigenvector methods, 

i.e. 0.056 and 0.055 m/s, respectively. The parametric methods again exhibited higher IQRs 

than the BT and high-resolution approaches, 0. 101 and 0.099 m/s, respectively. Comparing 

these values with the IQRs for shorter lateral segment some differences can be observed out 
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of which 2D-FT exhibited the largest IQR value change. In a similar way other phantoms 

and white Gaussian noise levels can be analyzed following Fig. 8 and Table 1.

4.2. Experimental TM Phantoms Results

In this section, the non-parametric, parametric and high-resolution methods were used for 

phase velocity dispersion curves calculation for the experimental TM phantom data. Three 

different custom made TM phantoms were investigated, and the results are shown in Figs. 9 

and 10 for 25 mm and 6 mm lateral segment lengths, respectively. Two different acquisition 

positions were tested for each phantom.

Generally, all the approaches examined in this paper estimated dispersion curves with 

similar trends, within all the experimental phantoms, for the lateral segment length of 25 mm 

(Fig. 9). The biggest differences between the methods are observed for frequencies below 

250 Hz and above 1000 Hz. The Modified Covariance method estimated dispersion curves 

slightly lower in comparison to other approaches for frequencies below 250 Hz. For 

frequencies above 1000 Hz, the 2D-FT had higher variations for Phantom A and acquisition 

2 compared to other techniques (Fig. 9a). For Phantoms B and C all the approaches show 

variations for higher frequencies in Figs. 9b and 9c. The smallest ones are observed for the 

Modified Covariance method for all the phantoms and acquisitions examined. The MUSIC 

and Eigenvector methods performed with lower variation compared to the 2D-FT, BT and 

MVDR techniques.

Some differences between the methods are also observed for the short lateral segment length 

shown in Fig. 10. All the methods performed similarly for Phantom A. The Modified 

Covariance gives the lowest variation above 1000 Hz for Phantom B. Stiffer Phantom C 

shows higher deviations between the methods. Dispersion curves for the 2D-FT and 

Modified Covariance are separated from phase velocities calculated using other approaches.

5. Discussion

Dispersion curves, represented in wavenumber-frequency or velocity-frequency domains, 

play an important role when analyzing material properties of biological tissues. The most 

common method for dispersion relation estimation is based on the fast Fourier transform 

(2D-FT). For many applications, FFT-based methods produce sufficiently good results. 

However, more advanced methods can offer better frequency resolution, and less variance 

(Hayes (1996); Williams and Madisetti (1997); Trefethen (2000); Vaseghi (2008)).

In this work, we present a comparison between the selected non-parametric, parametric and 

high-resolution methods used for shear wave dispersion curves calculation of viscoelastic 

materials. The methods’ robustness was examined on simulated data from FDM models of 

shear wave propagation induced by acoustic radiation force in viscoelastic media. FDM 

models do not take into account displacement underestimation bias which occurs during 

ultrasound motion detection, which is a limitation here. As a result, only adding Gaussian 

noise to the resulting particle velocity from the numerical models may not completely 

capture the noise model experienced in practice. We compared the performance of various 

methods using different levels of added white Gaussian noise as shown in Figs. 3–5 and 
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more thoroughly with an analysis of the error in Figs. 6 and 7, and box plots in Fig. 8, and 

Table 1, respectively. The results showed that the Blackman-Tukey method and high-

resolution approaches give the lowest phase velocity variation. We observed the qualitative 

similarities between the simulation and experimental data. Moreover, in this study, we have 

experimental data in viscoelastic phantoms to supplement the simulation data.

The methods were also tested with experimental data in custom made TM viscoelastic 

phantoms. The results were generally similar between the examined methods. We also 

examined the performance of all the methods for the limited shear wave motion particle 

velocity data (short lateral segment length).

It should be mentioned that the wave velocity dispersion results from all the approaches are 

dependent on the data input to the algorithm. It was observed in previous works that 

adjusting the distance range of the data, i.e., the distance from the source can cause changes 

to the dispersion (Rouze et al. (2017); Kijanka et al. (2018, 2019)). Shear waves at higher 

frequencies typically undergo higher attenuation and therefore do not propagate as far 

leading to shorter lateral imaging lengths (Kijanka and Urban (2020a)). In this study, we 

chose the distance from the source to be 0 mm since shear wave motion data measured at a 

very close spatial distance includes information about higher frequencies. Hence, we were 

able to estimate phase velocity dispersion curves up to 1000 Hz, even for highly viscoelastic 

(high 
μ2
μ1

 ratio) tissue-mimicking numerical phantom shown in Fig. 3. The goal of this work 

was to examine different methods performance for the same shear wave input data, and the 

measured lateral segment length was the same for all the approaches.

An important issue in the selection of dispersion curves estimation technique is the 

performance of the estimator. In this paper, it was shown that, in comparing one method to 

another, there is a different level of phase velocity variation within a frequency range. The 

non-parametric methods are not designed to incorporate information that may be available 

about the process into the estimation processing. In some applications this may be a 

limitation. Generally, parametric methods produce smoother estimates of the power 

spectrum than non-parametric methods, however they are subject to higher error from model 

misspecification. The Blackman-Tukey method, which makes no assumptions about the 

process, produces more accurate estimates of the dispersion curves than the parametric 

techniques, as was shown in Figs. 3–8.

The high-resolution methods assume that measured signals are a sum of complex 

exponentials or sinusoids in white noise. They tend to estimate the frequencies of the 

complex exponentials. These methods do not yield true power spectral density estimates. 

They do not preserve process power between the time and frequency domains, and the 

original signal cannot be recovered by taking the inverse Fourier transform of the frequency 

estimate. Whereby, the wavenumber-frequency distribution computed using MUSIC or EV 

cannot be used to the shear wave attenuation estimation using, e.g. the attenuation measuring 

ultrasound shear elastography (AMUSE) method (Nenadic et al. (2016)).

We can conclude from our study that more advanced approaches, like MUSIC or 

Eigenvector, are more difficult to implement and they have input parameters that should be 
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known a priori (number of exponentials that exist within the measured signal). For some 

scenarios there is no need to apply MUSIC or other advanced techniques but the non-

parametric Blackman-Tukey approach may be sufficiently used, like for example for 

materials with higher 
μ2
μ1

 ratio and high SNR. Additionally, for MUSIC and the Eigenvector 

we need to provide two input parameters (number of signals to be found and size of the 

covariance matrix) whereas, for Blackman-Tukey the length of the smoothing window is 

provided. The BT approach does not require any a priori knowledge about the measured 

process.

It is worth noting that in our work we investigated tissue-mimicking viscoelastic bulk media, 

where a single propagating shear wave was generated and measured. Hence, only one 

dispersion curve was estimated for each dataset using the methods examined. All the 

parameters for all the methods discussed in our manuscript were evaluated for these kinds of 

bulk materials. These methods could be used to estimate dispersion curves in other 

applications where multiple modes are present such as for guided waves in arteries or 

materials with finite thickness. In those cases, other parameter values may provide better 

results. This however, would have to be investigated separately, and is beyond the scope of 

this work.

6. Conclusions

We tested six different approaches to spectrum estimation used for dispersion curves 

calculation in viscoelastic materials, including the most known and widely used 2D-FT, and 

we performed a robustness study of these techniques. The high-resolution methods give the 

lowest phase velocity variation. Nevertheless, the Blackman-Tukey approach exhibits similar 

performance and can be interchangeably used for shear wave phase velocity dispersion 

curves calculation. Although, each method differs in its resolution and variance, the general 

performance is fundamentally limited by the amount of data that is available. Future work 

will be devoted to develop methods that improve robustness of spectrum estimation 

approaches for higher frequencies, i.e. above 1000 Hz, for the phantoms tested in this work.
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Appendix

To support our selection of the input parameters used for specific methods investigated in 

this work, we conducted a parametric study in Fig. 11. Figure 11 shows parametric studies 

of the (a) Blackman-Tukey, (b) MVDR, (c) Modified Covariance, (d) MUSIC, and (e) 

Eigenvector methods, respectively. Phase velocity errors were calculated for various 

controlling parameters, for five selected values, of each method to test their influence on the 

tested data. The numerical FDM tissue-mimicking viscoelastic model with μ1 = 4 kPa and μ2 
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= 2 Pa·s, and a SNR of 15 dB, as an example, was used for these investigations. Results in 

Fig. 11 give an idea about the performance of the methods if other values of the parameters 

were used for the dispersion curve estimation in the viscoelastic bulk materials.
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Figure 1: 
A flow chart showing a dispersion curve extraction of ultrasound shear wave propagating in 

viscoelastic bulk media. (1) collect two-dimensional spatiotemporal data, (2) perform one-

dimensional Fourier transform (FT) in time domain, (3) execute a selected method (as 

another transformation, OT) in spatial domain to create the frequency-wavenumber 

distribution.
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Figure 2: 
Spatiotemporal shear wave velocity motion data presented for the numerical FDM tissue-

mimicking viscoelastic models for μ1 of (a) 1 kPa, (b) 4 kPa, (c) 8 kPa, and a constant μ2 = 2 

Pa·s.
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Figure 3: 
Phase velocity dispersion curves calculated for the numerical FDM tissue-mimicking 

viscoelastic models with assumed μ1 = 1 kPa and μ2 = 2 Pa·s. Results for six different 

methods are presented: 2D-FT, Blackman-Tukey (BT), MVDR, Modified Covariance, 

MUSIC, and Eigenvector. Results were calculated for the numerical viscoelastic phantoms 

with a SNR of (a) 35 dB, (b) 25 dB, (c) 15 dB, and (d) 5 dB. Blue dots and red stars 

represent results for a lateral distance of 0-25 mm and 0-6 mm, respectively. Continuous, 

black lines correspond to the analytical KV phase velocity curves.
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Figure 4: 
Phase velocity dispersion curves calculated for the numerical FDM tissue-mimicking 

viscoelastic models with assumed μ1 = 4 kPa and μ2 = 2 Pa·s. Results for six different 

methods are presented: 2D-FT, Blackman-Tukey (BT), MVDR, Modified Covariance, 

MUSIC, and Eigenvector. Results were calculated for the numerical viscoelastic phantoms 

with a SNR of (a) 35 dB, (b) 25 dB, (c) 15 dB, and (d) 5 dB. Blue dots and red stars 

represent results for a lateral distance of 0-25 mm and 0-6 mm, respectively. Continuous, 

black lines correspond to the analytical KV phase velocity curves.
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Figure 5: 
Phase velocity dispersion curves calculated for the numerical FDM tissue-mimicking 

viscoelastic models with assumed μ1 = 8 kPa and μ2 = 2 Pa·s. Results for six different 

methods are presented: 2D-FT, Blackman-Tukey (BT), MVDR, Modified Covariance, 

MUSIC, and Eigenvector. Results were calculated for the numerical viscoelastic phantoms 

with a SNR of (a) 35 dB, (b) 25 dB, (c) 15 dB, and (d) 5 dB. Blue dots and red stars 

represent results for a lateral distance of 0-25 mm and 0-6 mm, respectively. Continuous, 

black lines correspond to the analytical KV phase velocity curves.
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Figure 6: 
Phase velocity error calculated in a frequency range for shear wave particle velocity motion 

data measured in a lateral distance from 0-25 mm (blue dots in Figs. 3, 4, and 5). Results 

were estimated for the numerical tissue-mimicking viscoelastic models with assumed μ1 of 

(a) 1 kPa, (b) 4 kPa, and (c) 8 kPa, with manually added white Gaussian noise, with a SNR 

of 35 dB, 25 dB, 15 dB, and 5 dB.
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Figure 7: 
Phase velocity error calculated in a frequency range for shear wave particle velocity motion 

data measured in a lateral distance from 0-6 mm (red stars in Figs. 3, 4, and 5). Results were 

estimated for the numerical tissue-mimicking viscoelastic models with assumed μ1 of (a) 1 

kPa, (b) 4 kPa, and (c) 8 kPa, with manually added white Gaussian noise, with a SNR of 35 

dB, 25 dB, 15 dB, and 5 dB.
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Figure 8: 
Boxplots computed for the phase velocity error calculated in a frequency range from 

100-900 Hz, for shear wave particle velocity motion data measured in a lateral distance from 

(a) 0-25 mm, and (b) 0-6 mm. Phase velocity errors were calculated for the numerical FDM 

data, for 30 iterations with SNR value set to 35, 25, 15, and 5 dB, respectively.
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Figure 9: 
Phase velocity dispersion curves calculated for the custom-made tissue-mimicking 

viscoelastic phantoms for shear wave particle velocity motion data measured in a lateral 

distance from 0-25 mm. Results for six different methods are presented: 2D-FT, Blackman-

Tukey (BT), MVDR, Modified Covariance, MUSIC, and Eigenvector. Results were 

calculated for two different acquisition positions for each phantom.
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Figure 10: 
Phase velocity dispersion curves calculated for the custom-made tissue-mimicking 

viscoelastic phantoms for shear wave particle velocity motion data measured in a lateral 

distance from 0-6 mm. Results for six different methods are presented: 2D-FT, Blackman-

Tukey (BT), MVDR, Modified Covariance, MUSIC, and Eigenvector. Results were 

calculated for two different acquisition positions for each phantom.

Kijanka and Urban Page 26

Ultrasonics. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11: 
Parametric studies of the (a) Blackman-Tukey, (b) MVDR, (c) Modified Covariance, (d) 

MUSIC, and (e) Eigenvector methods, respectively. Phase velocity errors were calculated for 

various controlling parameters of each method to test their influence on the data. The 

numerical FDM tissue-mimicking viscoelastic model with μ1 = 4 kPa and μ2 = 2 Pa·s, and a 

SNR of 15 dB was used for these investigations. Shear wave particle velocity motion data 

measured in a lateral distance from 0-25 mm were utilized.
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Table 1:

IQR of the phase velocity error for 30 iterations and frequency range from 200 to 900 Hz. Results for six 

different methods and three numerical phantoms are summarized. Results are presented in the unit of [m/s].

μ1 [kPa] METHOD

X = 0-25 mm X = 0-6 mm

SNR [dB] SNR [dB]

35 25 15 5 35 25 15 5

1

2D-FT 0.296 0.360 0.592 0.948 0.604 0.604 0.608 0.610

BT 0.047 0.068 0.161 0.475 0.185 0.212 0.208 0.328

MVDR 0.080 0.089 0.204 0.826 0.186 0.191 0.238 0.375

Mod. Cov. 0.129 0.134 0.215 0.836 0.192 0.204 0.209 0.337

MUSIC 0.043 0.069 0.163 0.498 0.204 0.204 0.213 0.327

EV 0.043 0.055 0.140 0.428 0.210 0.212 0.205 0.309

4

2D-FT 0.101 0.153 0.288 0.536 0.390 0.431 0.410 0.415

BT 0.034 0.039 0.071 0.209 0.070 0.075 0.068 0.169

MVDR 0.058 0.053 0.110 0.476 0.080 0.083 0.078 0.202

Mod. Cov. 0.053 0.056 0.111 0.493 0.059 0.059 0.075 0.183

MUSIC 0.025 0.037 0.074 0.205 0.070 0.070 0.068 0.163

EV 0.023 0.029 0.083 0.209 0.057 0.055 0.058 0.135

8

2D-FT 0.047 0.055 0.112 0.255 0.347 0.346 0.360 0.368

BT 0.031 0.032 0.057 0.116 0.071 0.071 0.075 0.156

MVDR 0.037 0.056 0.101 0.384 0.094 0.094 0.094 0.194

Mod. Cov. 0.047 0.053 0.099 0.387 0.097 0.097 0.113 0.198

MUSIC 0.027 0.029 0.056 0.114 0.072 0.071 0.077 0.162

EV 0.030 0.028 0.055 0.119 0.091 0.097 0.091 0.141
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