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ABSTRACT
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in 
teratogenic effects and neurological disorders. ZIKV infections pose serious global public 
health concerns, prompting scientists to increase research on antivirals and vaccines against 
the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms 
of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been 
approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies 
have been used to develop antivirals, including drugs that target viral and host proteins. 
Additionally, drug repurposing is preferred since it is less costly and takes less time than 
other strategies because the drugs used have already been approved for human use. 
Likewise, different platforms have been evaluated for the design of vaccines, including DNA, 
mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live- 
attenuated virus vaccines. These vaccines have been shown to induce specific humoral and 
cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. 
Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease 
mechanism will provide better strategies for developing therapeutic agents against ZIKV. This 
review provides a comprehensive summary of the viral pathogenesis of ZIKV and current 
advancements in the development of vaccines and drugs against this virus.
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Introduction

Zika virus (ZIKV) is a mosquito-borne, single-stranded 
positive-sense, enveloped RNA virus that belongs to the 
Flaviviridae family [1]. ZIKV is closely related to other 
flaviviruses, such as Dengue virus (DENV), West Nile 
virus (WNV), Yellow Fever (YFV), and Japanese 
Encephalitis virus (JEV). Since its first isolation in 
Uganda (1947), sporadic global spread of ZIKV has 

been observed over the last 7 decades. ZIKV was first 
isolated from a sentinel rhesus monkey [2], with the first 
human isolation reported in Nigeria in 1952 [3]. Despite 
the virus’s long history and sporadic infection cases, it 
was not until 2016 that the WHO declared the virus to 
be a global public health emergency due to an expan-
sive and major outbreak in Brazil [4]. Phylogenetic ana-
lysis of ZIKV shows that the virus is spread in 3 lineages: 
West African, East African, and Asian [5]. Currently, no 
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specific vaccines or drugs are approved for ZIKV; how-
ever, some are undergoing clinical trials. Of note, the 
pandemic currently seems to be declining despite the 
absence of therapeutic measures.

ZIKV is primarily transmitted by Aedes mosquitoes; 
however, other forms of transmission exist, including 
vertical [6], sexual [7], blood, and laboratory acquired 
[8]. There is also the possibility of acquiring ZIKV 
through body fluids, such as stool [9], semen [10], 
breast milk [11], urine [12] and saliva [13]. Contrary to 
other mosquito-borne flaviviruses, ZIKV is a unique 
flavivirus because it can persist for months in 
immune-privileged sites, such as the eyes and testes 
[14,15]. The wide range of tropism of ZIKV is summar-
ized in Figure 1, which also explains the unique char-
acters of this virus. Approximately 80% of ZIKV 
infections are asymptomatic, with the 20% of sympto-
matic infections resulting in ZIKV-associated infections, 
such as microcephaly in children [16] and Guillan 
Barre` syndrome in adults. Other congenital ZIKV- 
related diseases in children include cerebral malforma-
tions, ophthalmological and hearing defects, and 
arthrogryposis [17]. Vector-borne transmission of ZIKV 
occurs in two mosquito-driven cycles: (i) a sylvatic 
cycle, in which the virus cycles between non-human 
primates (NHPs) and arboreal mosquitoes; (ii) an urban 
cycle, in which the virus cycles between humans and 
urban mosquitoes [18]. ZIKV is mostly maintained in 
the sylvatic cycle [19–21]. However, in this type of 
transmission, humans are usually incidental hosts. 
Currently, direct human to human transmission has 
become common in the urban infectious cycle as the 
virus can be spread perinatally [6], sexually [7], and 

through breastfeeding [11] or blood transfusion [8], 
as mentioned above, making ZIKV a human pathogen. 
Despite zoonotic transmission being primarily main-
tained by monkeys and mosquitoes, ZIKV antibodies 
have also been detected in other animal species, 
including water buffalo, elephants, goats, hippos, 
impala, kongoni, lions, sheep, rodents, wildebeest, 
and zebras [22,23].

ZIKV is a spherical, enveloped virus with icosahedral 
symmetry. The diameter of the mature virus is approxi-
mately 50 nm, and the diameter of the immature virus is 
closer to 60 nm [24–27]. ZIKV has a positive-sense single- 
stranded RNA genome approximately 10.7 kilobases in 
length. Located at the 5ʹ and 3ʹ ends of the genome are 
two flanking untranslated regions (UTRs), which in the 
ZIKV MR766 strain are 106 and 428 nucleotides long, 
respectively [28]. The ZIKV genome lacks a 3ʹ poly (A) 
tract and ends with CUOH, similar to other flaviviruses. 
The genome contains a single open reading frame (ORF) 
that encodes a polyprotein composed of approximately 
3400 amino acids [28], which after being processed by 
host and viral proteases, yields three structural proteins 
(C, PrM, E) and seven nonstructural proteins (NS1, NS2A, 
NS2B, NS3, NS4A, NS4B, NS5). In this review, we examine 
various studies to discuss the pathogenesis of ZIKV and 
the current development of therapeutics for treating 
infections of this virus.

ZIKV pathogenesis

Little is known about the pathogenesis of ZIKV since it 
involves complex interactions between viral and host 
factors. The molecular mechanisms of virus–host 

Figure 1. The biology of ZIKV, showing the transmission modes, tropism, and disease symptoms associated with ZIKV.
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interactions have been studied both in vitro and in vivo 
to provide more insight into the pathogenesis of ZIKV. 
The fact that ZIKV causes teratogenic effects conveys 
an urgent need for the rapid development of antiviral 
therapies [29]. WNV and Powassan virus (POWV) have 
also been shown to result in significant fetal injury in 
mice [30]. ZIKV infection begins with a single mosquito 
bite of a ZIKV-infected person. Viral replication begins 
in the epithelial cells of the mosquito midgut and 
proceeds to the salivary glands. The mosquito can 
spread the virus after a 10-day incubation period, 
when its saliva becomes infected [31]. The incubation 
period in humans is 3–12 days [32], and symptoms 
appear after 6–11 days. ZIKV is cleared within 24 days 
in 99% of patients [33].

Pathogenesis in humans

Following a mosquito bite from a ZIKV-infected mos-
quito, ZIKV infects and replicates in dendritic cells, 
spreading through the blood to other parts of the 
human body. In most cases, the virus is self-limiting; 
however, infections in pregnant women result in ter-
atogenic effects [17]. In pregnant women, viral infec-
tion extends for a longer period since the virus 
replicates in the fetal brain for months with increasing 
effects during the early months of pregnancy [34].

ZIKV first binds to cellular receptors that are specific 
to different flaviviruses. ZIKV receptor members 
include DC-SIGN (dendritic cell-specific intracellular 
adhesion molecule 3-grabbing nonintegrin) and phos-
phatidylserine receptor proteins: TYRO 3, AXL, TIM, and 
TAM [35]. These receptors facilitate ZIKV entry into 
macrophages, monocytes, neural progenitor cells 
(NPCs), and fetal cells. These receptors play important 
roles in ZIKV infection, such as adhesion, migration, 
replication and evasion of the immune system, cyto-
kine release, and antigen signaling pathways [35]. 
Experimentally, knocking out receptors does not result 
in total protection from viral infection because differ-
ent flaviviruses use different receptors for entry [36].

AXL appears to play a major role in viral pathogen-
esis because it makes human skin fibroblasts permis-
sive to ZIKV infection and replication [35]. AXL is highly 
expressed in the developing human cortex throughout 
neurogenesis and is overexpressed in glial cells. 
Surprisingly, studies by Wells et al. have shown that 
AXL is not required for ZIKV infection, even if it is highly 
expressed in NPCs: genetic ablation of AXL does not 
protect human NPCs or cerebral organoids from ZIKV 
infection [36] and an anti-AXL antibody does not 
reduce ZIKV infection in NPCs [37]. Hastings et al. also 
demonstrated that TAM receptors are not essential for 
ZIKV infection [38]. Generally, these studies suggest 
the existence of redundant entry receptors for ZIKV 
infection. TIM-1 (T cell immunoglobulin mucin domain 
1) is a predominant ZIKV entry factor expressed in 

human placental cells [6]. In skin fibroblasts, ZIKV 
induces the expression of pattern recognition recep-
tors (PRRs), such as toll-like receptors (TLR3), RIG-1, and 
melanoma differentiation associated gene 5 (MDA5), 
enhancing the antiviral response against ZIKV infec-
tion [35].

Pathogenesis in animal models

Mouse models
Animal models have been used to study ZIKV infection 
in pregnant women and fetuses to optimize the devel-
opment of vaccines and antiviral therapies [39]. 
Neonatal mouse models have been used to study the 
pathogenesis of ZIKV because they are more vulnerable 
to ZIKV infection than adult mice. Immunocompetent 
adult mice also demonstrate extensive ZIKV tropism in 
the brain, blood, spinal cord, spleen, kidney, and eye. 
Male Ifnar-deficient mice show high levels of ZIKV in 
their testes, providing more insights into the persistence 
of ZIKV in immunocompromised tissues [40]. Rag-1 mice 
also exhibit pathogenesis of ZIKV in the epididymis and 
testicular cells [15].

The A129 mouse model, which is deficient in type-I 
IFN receptor, has also been used to study ZIKV patho-
genesis. Different routes of viral administration have 
been used, including intraperitoneal and intravaginal. 
Three-week old mice infected with ZIKV (FSS13025) 
exhibited neurological disease and a high fatality rate 
from 6 days postinfection. However, older mice 
(11 week old) displayed 50% mortality in the 5th week 
and no mortality in the 11th week [41]. A129 mice 
infected with the MR766 (African) strain also exhibited 
weight loss and high mortality 6 days postinfection. Viral 
titers were highest in the brain and spleen [42], and a 
similar viral tropism was observed in an Asian lineage 
strain, except that it did not cause severe disease [43].

AG129 mice, with deficiencies in both type I and II IFN 
receptors, were injected intraperitoneally with ZIKV 
(FSS13025) and displayed neurologic disease with a 
high mortality rate 6 days postinfection [41]. However, 
intravaginal administration of the virus had a delayed 
lethality that manifested 22 days postinfection [44]. The 
H/PF/2013 (Asian) strain displayed lethality at 8 days 
postinfection, with the highest virus titers quantified 
on day 2 [45]. AG129 mice injected intraperitoneally 
with the MR766 (African) strain were characterized by 
a hunched back and hind-limb paralysis and succumbed 
18 days postinfection [46]. In the same study, SCID mice 
were used in comparison with AG129 mice injected with 
the same strain. Surprisingly, lethality was delayed in 
SCID compared to AG129 mice. Mice succumbed 
40 days postinfection on average [46].

The pathogenesis of ZIKV in the central nervous 
system (CNS) was also studied in the Swiss mouse 
model. One-day-old mice injected with ZIKV (SPH 
2015) displayed paralysis and neurological disease 
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characterized by inflammation within the cerebral cor-
tex [47]. BALB/c immunosuppressed mice injected with 
ZIKV PRVABC59 (Asian) displayed widespread viremia 
and inflammation of various tissues, especially orchitis, 
which may result in male infertility; however, treat-
ment with Type 1 interferon (IFN 1) greatly reduced 
ZIKV infection [48]. Seven-week old C57BL/6 mice chal-
lenged with the ZIKV H/PF/2013 (Asian) and Senegal 
1984 (African) strains also displayed widespread virus 
dissemination to immunosuppressed tissues, such as 
the testis and epididymis. Treatment with IFN 1 greatly 
improved the clinical outcomes of the mice [15].

Six-week-old TKO mice were used to study ZIKV 
dissemination to the CNS using ZIKV FSS13025 (2010 
Cambodian isolate). Mice were more susceptible to 
ZIKV infection since they lacked 3 interferon regulatory 
factors (IRF3, IRF5, and IRF7), and ZIKV infection 
resulted in the death of neural progenitor cells [49]. 
Pregnant female mice have also been used to demon-
strate infection by ZIKV in different trophoblasts and 
fetal endothelial cells of the placenta, resulting in con-
genital malformations [34].

Non-human primate (NHP) models
Rhesus macaques have been used to study ZIKV patho-
genesis in the brain using a French Polynesian ZIKV 
strain [50], a finding reported across New World and 
Old World macaque species [51]. ZIKV RNA accumu-
lates in the brain, cerebrospinal fluid, urine, and saliva 
for at least 3 weeks. This study showed that ZIKV 
infection elicited host immune responses that include 
ZIKV-specific T-cells and nAb responses. Prolonged 

detection of viral RNA in urine and saliva, even after 
viral clearance in the blood, showed that ZIKV per-
sisted in certain tissues [50]. Pigtail macaques infected 
with a Cambodian ZIKV isolate (FSS13025) were shown 
to develop fetal brain lesions during their pregnancy 
[52]. This was the first reported case of a fetal brain 
injury in a NHP after maternal infection with ZIKV 
infection. The pigtail macaque model provides a 
novel model for testing vaccines and other therapeu-
tics against ZIKV [52]. Another study involving rhesus 
and cynomolgus macaques infected with 2 ZIKV iso-
lates of Thai and Puerto Rican origin showed that ZIKV 
also persisted for more than 3 weeks in the saliva and 
semen, even after no traces of virus remained in the 
blood. This study demonstrated that ZIKV infection 
elicited rapid innate and adaptive immune responses 
in macaques, protecting them from reinfection [53].

NHPs have provided an ideal model for studying 
infections during pregnancies since they mimic 
humans in many ways, including placenta and brain 
development. These models have also shown suscept-
ibility to many other flaviviruses, making them excel-
lent models for ZIKV studies.

ZIKV protein functions and role in viral 
pathogenesis

The ZIKV genome is translated into 3 structural proteins 
(C, PrM and E) and 7 nonstructural (NS) proteins (NS1, 
NS2A, NS2B, NS3, NS4A, NS4B, NS5), which are summar-
ized in Figure 2. The structural proteins are essential for 
genomic replication and host immunity [54].

Figure 2. Subgenomic flaviviral RNA location and its roles in pathogenesis. (a) ZIKV genome scheme showing the location of sfRNA 
at the 3ʹUTR. (b) sfRNA pathogenic functions in arthropod and vector hosts. (a) and (b) are reproduced with permission and minor 
modifications from Slonchak and Khromykn [78].
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Glycoprotein E is a major target for antibodies as it is 
responsible for facilitating viral entry into the host. 
ZIKV is capable of mediating the antibody response 
by the changing amino acids that surround the Asn154 
glycosylation site in the virus E protein [55], which 
implicates glycosylation as an important player not 
only in the structure and tropism of the virus but also 
in its pathogenesis and evasion of the immune system.

The primary roles of PrM and capsid in ZIKV patho-
genesis are still not well defined. However, the PrM 
protein has a conserved region that is responsible for 
viral maturation, egression and secretion [56]. 
Therefore, inhibiting the function of PrM will interfere 
with viral infectivity and pathogenicity. The capsid 
protein has been shown to play an important role in 
viral assembly since it is the primary structural protein 
that interacts with the viral genome within the viral 
particle [57]. Generally, flavivirus capsids have been 
shown to localize in the nucleoli in addition to their 
association with the phospholipid membranes of the 
ER and lipid droplets. Localization of the capsid in the 
nucleoli may indicate that it plays a role in pathogen-
esis apart from viral packaging [57].

NS are important for entry, translation, replication 
and pathogenesis of the virus. However, little informa-
tion is known about the functional significance of ZIKV 
NS proteins or their role in ZIKV-induced pathogenesis. 
NS proteins play a major role in evading host immune 
responses specifically by interfering with the interferon 
(IFN) I response [58]. NS1 has been described as a 
pathogenicity factor and the most enigmatic protein 
of flaviviruses since it plays a major role in replication, 
as well as in immune evasion. NS1 is secreted from 
infected cells in the form of hexamers (sNS1), which are 
the hallmark of flavivirus NS1 [59]. Notably, sNS1 has 
been used as a ZIKV diagnostic marker and incorpo-
rated into vaccine development [59].

ZIKV NS1 and NS4B inhibit IFN I expression, leading 
to autophagic degradation of NS2B and NS3 through 
the autophagy pathway, inhibiting viral replication [58]. 
NS1 and NS4B suppress IFN I signaling by targeting 
TBK1, consequently inhibiting the production of inter-
ferons. NS2B3 (NS2B-NS3) has been shown to inhibit the 
JAK-STAT pathway by enhancing degradation of Jak-1. It 
is therefore clear that the co-operation among NS1, 
NS2B3 and NS4B proteins generally helps to enhance 
viral replication by evading IFN 1 responses.

The NS5 protein is the largest (approximately 900 
amino acids) and most conserved of the flavivirus pro-
teins. The NS5 protein contains a methyltransferase for 
RNA capping and a polymerase for viral RNA synthesis 
[60]. NS5 is also an IFN antagonist that degrades STAT2, 
which in turn, limits type I IFN signaling and leads to 
increased viral replication. STAT2 is a signaling molecule 
required in the IFN I pathway. The mechanism of STAT2 
degradation in ZIKV by the NS5 protein is distinct from 
that in DENV. Expression of ZIKV NS5 alone results in 

STAT 2 degradation and does not require maturation of 
the N terminus of NS5 and does not involve UBR4 [61]. 
The interaction is also host-specific since NS5 is unable 
to degrade murine STAT2, leading to susceptibility to 
ZIKV infection in immunocompetent mice. ZIKV has 
been shown to bind and degrade STAT2 through pro-
teasomal degradation. Antagonism of STAT1 and STAT2 
phosphorylation results in ZIKV disease [62].

ZIKV NS2A has been shown to play a central role in 
recruiting viral RNA, the structural protein prM/E, and 
the viral NS2B/NS3 protease to the virion assembly site 
and in engineering virion morphogenesis [63]. A single 
mutation interfering with these interactions did not 
significantly affect viral RNA replication but selectively 
abolished virion assembly, demonstrating the specific 
role of these interactions in viral morphogenesis [64].

The flavivirus NS4A and NS4B proteins have also 
been shown to inhibit JAK/STAT and RLR signaling 
through multiple mechanisms [65]. In ZIKV, overex-
pression of NS4A and NS4B in fetal neuronal stem 
cells (fNSCs) reduces neurosphere formation and inhi-
bits differentiation [66]. The effects of these two pro-
teins were further linked to increased mediated Akt- 
mTOR signaling and were ZIKV-specific because DENV 
failed to show a similar effect [66].

sfRNA functions and role in viral pathogenesis

Subgenomic flavivirus RNA (sfRNA) is a highly struc-
tured 0.3–0.7 kb long noncoding RNA and is said to be 
the most abundant viral RNA species in infected cells. 
sfRNA is produced in all arthropod-borne flaviviruses 
during viral infection and represents the 3ʹ-terminal 
highly conserved region of the 3ʹ UTR (untranslated 
region) [67]. sfRNAs have many isoforms with different 
5ʹ ends, including sfRNA-1, sfRNA-2, sfRNA-3, sfRNA4, 
and other new isoforms yet to be described.

ZIKV-infected cells produce sfRNAs in their 3ʹ- 
untranslated regions that accumulate during infection 
and resist degradation by host 5ʹ-3ʹ exonucleases in 
infected cells, such as XRN1. ZIKV-infected cells have 
been suggested to play a role in the replication cycle of 
the virus and in evasion of the immune system [68,69].

Flavivirus sfRNAs contain stem-loop (SL) and dumb-
bell (DBL) structures made up of nucleotides that form 
pseudoknots (PK). During ZIKV infection, two XRN1 
resistant RNA are produced, xrRNA1 as a result of 
XRNA stalling at SL1 and xrRNA2 as a result of XRNA 
stalling at SL2 [68,70]. These two RNAs form three-way 
junctions of coaxial stacking of helices P1 and P2, while 
P3 is located at the acute angle of P1. Three-way junc-
tions are highly structured elements of nucleic acids, 
such as rRNA, and have a unique topology in ZIKV. 
These two different resistant RNAs can occur as the 
result of cellular mechanisms [70].

sfRNAs have several functions in flavivirus infec-
tions, as summarized in Figure 2. First, these RNAs are 
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directly linked to cytopathic effects (CPEs). In a cell 
culture experiment of the pathogenicity of WNV and 
DENV, genomes harboring mutations that interfered 
with the formation of full-length sfRNA produced no 
visible plaques, and replication was inefficient in both 
insect and mammalian cell lines [67]. Funk et al., 
demonstrated the role of sfRNA in pathogenesis both 
in vitro (Vero cells) and in vivo (mice). All mutant viruses 
that did not produce sfRNA1 were highly attenuated in 
mice and can be used as potential vaccine candi-
dates [71].

The second function of sfRNAs is suppression of IFN 
responses in vertebrates. ZIKV sfRNA functions both as a 
RIG-1 and MDA-5 agonist and has stronger activity than 
DENV serotype 2, which only affects RIG-1 [68]. In WNV, 
sfRNAs directly antagonize IFN- stimulated gene (ISG) 
products, such as protein kinase R and RNase L, which 
bind RNAs [69]. DENV sfRNA antagonizes proteins that 
modulate viral infection, which include G3BP1, G3BP2, 
and CAPRIN1, colocalizing with them. Most flaviviruses 
produce and use this type of RNA in their mechanisms 
of interacting with the host. sfRNA was first character-
ized in Murray Valley Viral infections [72] and was later 
found in Japanese Encephalitis Virus (JEV) [73] and WNV 
[74]. sfRNAs help flaviviruses evade the innate immune 
system [69,75,76]. Mutations in sfRNA, such as deletions, 
lead to significant effects on the viral replication and life 
cycle of DENV and WNV in cells that exhibit IFN I 
responses [69,77]. These mutations may also be the 
cause of the emergence of new pathogenic viral strains 
as a result of viral evolution [78].

Third, sfRNAs have been shown to induce apoptosis 
in cells through the Bcl-2 mediated PI3k/Akt signaling 
pathway [79]. However, overexpression alone did not 
induce apoptosis, indicating that its action requires 
flavivirus replication.

Fourth, several studies have shown that sfRNA also 
plays an important role in the flaviviral life cycle and 
dissemination in infected insects [80–82]. sfRNAs also 
determine the infection and transmission rates of WNV 
and DENV in mosquitoes [80,83]. Their fifth function 
entails the ability of sfRNAs to suppress RNAi and 
miRNA pathways [82].

The sixth function includes the generation of sfRNA 
by XRN1, which represses the activity of the exoribo-
nuclease that plays a major role in cellular mRNA 
decay, dysregulating host mRNA stability. During flavi-
virus infections, changes in the half-life of mRNA have 
a significant effect on the expression of normal short- 
lived mRNAs that encode cytokines compared to long- 
lived transcripts. Flaviviruses can therefore escape cel-
lular-mediated immunity by taking advantage of this 
dysregulation [84].

Lastly, sfRNAs play a role in the replication of flavi-
viruses through downregulation of RNA synthesis and 
translation [85]. Transfection of JEV infected cells with 
a -sfRNA to counter effect of +sfRNA elevated the 

antigenome levels implicating that sfRNAs inhibits 
antigenome synthesis.

Development of ZIKV vaccines

Following the emergence of ZIKV, rapid and promising 
vaccine development has been ongoing by incorporat-
ing the lessons learned from the design of other flavi-
virus vaccines. Despite the development of several ZIKV 
vaccines, a few challenges have arisen considering the 
possibility of crossreactivity and adverse effects in 
immunocompromised individuals. Therefore, develop-
ment of a safe and efficacious ZIKV vaccine is of great 
importance. Currently, multiple vaccine platforms are 
being incorporated to create new vaccines, such as 
DNA, mRNA, peptide, protein, viral vectors, virus-like 
particles (VLPs), inactivated-virus, and live-attenuated 
virus. These platforms and the current vaccines are 
briefly discussed below and summarized in Table 1.

Inactivated virus and live-attenuated virus 
vaccines

Traditionally, the development of vaccines has 
involved the use of inactivated and attenuated organ-
isms. A similar approach has been used to design 
vaccines for several flaviviruses, including DENV, 
TBEV, JEV, and YFV.

For ZIKV, Shan et al developed a vaccine using an 
infectious cDNA clone with 10 nucleotide deletions 
within the 3`untranslated region of the viral genome. 
The vaccine was immunogenic and protected both 
immunodeficient AG129 and CD-1 mice, causing 
higher T-cell responses than the wild-type virus. 
Mechanistically, the attenuated vaccine also elicited 
increased sensitivity to type-I IFN and downregulated 
RNA synthesis. The attenuated 10-del ZIKV did not 
infect mosquitoes after oral feeding with spiked- 
blood meals, representing an additional safety feature 
of the vaccine [86]. Sumathy et al. designed an alum- 
absorbed inactivated virus vaccine using the Ugandan 
ZIKV strain MR766. The inactivated vaccine was shown 
to protect AG129 and BALB/c mice from viral infection. 
Two doses of the vaccine-elicited high titers of neutra-
lizing antibodies in BALB/c mice. Importantly, vaccine 
antisera were able to protect passively immunized 
mice against virus challenge [87].

Xie et al. used a reverse genetics approach to 
develop two chimeric viruses (CHV) by swapping the 
prM-E (premembrane and envelope) structural genes 
between DENV-2 and ZIKV, incorporating a full-length 
cDNA clone. Chimeric ZIKV with DENV-2 prM-E 
(Chimeric Virus 1) and Chimeric DENV-2 with ZIKV 
prM-E genes (Chimeric Virus 2) were highly attenuated 
in AG129 mice and were immunogenic as indicated by 
their decreased viremia and weight loss. These chi-
meric viruses also protected mice against DENV-2 and 
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ZIKV challenge. Notably, this study demonstrated that 
the PrM-E genes are major determinants of DENV and 
ZIKV thermostability and that the hydrogen-bond 
interaction between Q350 and T351 in the CD loop of 
the ZIKV E protein is not required for virion thermo-
stability. Additionally, the conformation of the 
extended CD loop is important for viral assembly or 
release. Potentially, these viruses can be developed 
into effective vaccines against ZIKV [88]. Currently, 5 
of 7 inactivated virus vaccines have completed phase 1 
clinical trials. ZPIV is a purified, formalin-inactivated 
ZIKV vaccine candidate that has been completed and 
has been demonstrated to be well-tolerated and 
immunogenic in a phase 1 human clinical trial [89]. In 
all the vaccines, formalin was used to inactivate the 
virus [87,89,90].

DNA-based vaccines

DNA-based vaccines offer several advantages com-
pared to other vaccine platforms. DNA-based vaccines 
are easy to manufacture, transport, and store. 
Importantly, DNA-based vaccines have been shown 
to produce both antibody and T-cell immune 
responses, exhibiting an added advantage over other 
protein based-vaccines [91]. However, DNA-based vac-
cines have a major disadvantage with respect to 
administration, requiring special equipment for elec-
troporation to facilitate DNA entry into the cell [92].

Larroca et al. designed a vaccine expressing full- 
length prM-E genes using a Brazilian strain, 
BeH815744. The vaccine elicited high Env-specific neu-
tralizing antibodies and good T cell immune responses. 
A single-dose immunization provided complete pro-
tection in BALB/c, SJL and C57BL/6 mice [93]. Dowd et 
al. developed a DNA vaccine candidate, VRC 
ZKADNAO85-00-VP, using a vector (VRC 5288) incor-
porating a full-length prM-E gene from the ZIKV strain 
H/PF/2013 with a JEV stem and transmembrane 
regions to facilitate protein expression. This vaccine is 
currently undergoing phase 1 and 2 clinical trials [94]. 
Gaudinski et al. compared two vectors, VRC5288 and 
VRC5283, which differ in their final 98 amino acids of 
the envelope protein. VRC5283, which encodes the 
wild-type ZIKV sequence, showed higher immunogeni-
city and was more efficient thanVRC5288. Nonetheless, 
both vaccines were tolerable in healthy individuals. 
Currently, VRC5283 is in Phase 2 investigation under-
going clinical trials to optimize its safety, immunogeni-
city, and dose delivery regimens [95].

Tebas et al. evaluated the safety and immunogeni-
city of a DNA vaccine, GLS-5700, which is currently 
under development. The vaccine is composed of a 
prM-E sequence from an infectious ZIKV clone and 
was tested in 40 participants with no adverse effects. 
Inoculated individuals developed ZIKV specific antibo-
dies, and this trial successfully demonstrated the safety 

and efficacy of the vaccine [96]. Development of a 
synthetic DNA vaccines is appropriate for emerging 
infectious diseases such as ZIKV since they can be 
manipulated for the rapid design of novel antigens. 
This platform can be used for the rapid development of 
vaccines, using relevant antigens expressed in the 
emergent pathogen [97].

Adenovirus vector-based vaccines

Recombinant adenoviral vectors have been widely 
used in the development of vaccines, offering several 
advantages, including safety, ease of manufacturing, 
and broad and strong immune responses. Human and 
chimpanzee adenoviruses have been extensively 
explored in the design of vaccine vectors.

Abbink et al. designed a rhesus adenoviral vector 
(RhAd52) expressing prM-Env using a ZIKV Brazilian 
strain and tested its efficacy by intramuscular immuni-
zation in monkeys. A single dose of immunization- 
induced neutralizing antibodies protected monkeys 
against ZIKV [98]. Similar work with chimpanzee ade-
novirus vectors (ChAd) has demonstrated protective 
immune responses in the A129 mouse model [99].

Kim et al. designed a recombinant E1/E3-deleted 
adenoviral vector (pAd.ZIKV-Efl) from the ZIKV strain 
BeH815744 that expressed a codon-optimized Env- 
antigen. The extracellular region of the ZIKV envel-
ope was linked to the T4 fibrin trimerization domain, 
facilitating protein expression. Additionally, the vec-
tor was designed with a polyhistidine tag and a 
Tobacco Etch Virus (TEV) to increase protein folding 
and facilitate purification. The vaccine was shown to 
protect C57BL/6 mice from lethal challenge with the 
ZIKV DAKAR41542 strain [100]. Notably, in these vac-
cine studies, the ZIKV E subunit protein production 
yield was very low, a finding that has also been 
highlighted by Larroca et al. [93]. The low yield of 
the E protein was probably due to the absence of 
preM, which is important for protein stability. 
Therefore, preM is an indispensable factor in the 
development of ZIKV E protein-based vaccines.

Virus-like particles

Virus-like particles (VLPs) have emerged as a powerful 
platform for the development of vaccines due to their 
ability to produce broad and strong immune responses. 
VLPs are self-assembling platforms that resemble viruses 
but are noninfectious and nonreplicating. Boigard et al. 
used VLPs to develop a ZIKV immunogenic vaccine by 
coexpressing the C-prM-Env with the NS2B/NS3 protease 
to test their efficacy. The ZIKV VLP immunogen was 
tested in BALB/c mice and elicited high antibody titers 
against ZIKV FSS13025 and MR-766 strains; however, VLP 
immunization did not enhance DENV infection when 
ADE tests were conducted [101].
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Peptide-based vaccines

Immune-informatics approaches are becoming an inter-
esting platform for the development of vaccines as they 
can allow the manipulation of conformational or linear 
epitopes to optimize epitope-based vaccines. The avail-
ability of information in the genome sequence has sim-
plified the prediction of T-cell epitopes in developing 
ZIKV epitope-based vaccines, which elicit immune 
responses. Dikhit et al. used this in silico approach to 
predict 9 promiscuous epitopes in 5 proteins by combin-
ing human leukocyte antigen-binding specificity and 
population coverage [102]. These epitopes consisted of 
capsid (MVLAILAFL), Env (RLKGVSYSL and RLITANPVI), 
NS2A (AILAALTPL), NS4B (LLVAHYMYL and LVAHYMYLI), 
and NS5 (SLINGVVRL, ALNTFTNLV and YLSTQVRYL). 
Altogether, these epitopes elicited immune responses 
from human CD8 + T cells and bound to at least one 
HLA molecule from the majority of the population. 
Moreover, further research needs to be performed both 
in vitro and in vivo to understand the immunological 
relevance of these epitopes in the development of vac-
cines against ZIKV [102].

RNA-based vaccines

RNA provides a good platform for developing ZIKV 
vaccines since it can be easily modified and incorpo-
rated into vaccines to improve their immunogenicity 
and eliminate side effects. RNA vaccines have an added 
advantage over DNA vaccines in that they have no risk 
of possible integration into the human genome. 
Specifically, mRNA has proven to be a highly effective 
platform in the design of ZIKV vaccines.

Pardi et al. developed a novel anti-ZIKV vaccine in 
which the prM-E proteins were encoded by mRNA. The 
mRNA was encapsulated using lipid-nanoparticles 
(mRNA-LNPs), which subsequently enhanced protein 
expression. The vaccine-elicited antibodies that pro-
tected C57BL/6 mice from a lethal ZIKV H/PF/2013 
challenge [103].

Richner et al. also used this approach to develop a 
full-length prM-E RNA sequence of ZIKV into LNPs to 
increase shuttling between cells. The immunodominant 
fusion loop in domain II (DII-FL) was mutated, crippling 
the reactivity of the antibodies targeting this region and 
resulting in no ADE in response to DENV infection. The 
vaccine protected immunodeficient AG129 and BABL/c 
mice, as well as immunocompetent C57BL/6 mice, with 
the production of high and durable neutralizing anti-
bodies [104].

Chahal et al. also employed RNA nanotechnology in 
designing an RNA vaccine candidate expressing prM-E 
as an open reading frame using the Asian ZIKV isolate 
Z1106033. Immunization through intramuscular injec-
tion elicited ZIKV E protein-specific IgG responses and 
protected C57BL/6 mice. Additionally, immunization 

also resulted in good CD8 + T cell responses against 
the peptide (IGVSNRDFV) derived from the envelope 
protein [105].

ZIKV drug development

Currently, there are no specific drugs to treat or pre-
vent ZIKV infections, and treatment involves the 
administration of fluids and plenty of rest by infected 
individuals. Painkillers (e.g., Paracetamol) are used to 
alleviate headaches, fever, and myalgia. Four strategies 
have been employed in the development of ZIKV anti-
viral drugs, including targeting viral proteins (Table 2), 
targeting host proteins (Table 3), repurposing of clini-
cally approved drugs, and using reverse genetic sys-
tems, such as infectious cDNA clones and replicons.

Drug(s) repurposing has rapidly emerged as a strat-
egy for developing ZIKV drug(s) from clinically 
approved drug(s). Drug repurposing is faster and 
most cost-effective than other platforms of drug 
design. These drugs include the antibiotic azithromy-
cin [106], the antiparasitic drug nitazoxanide [107], the 
antimalarial drug chloroquine [108], the antiprotozoal 
drug emetine [109], the antiviral drug ribavirin and 
favipiravir [110], and many other FDA-approved 
drugs. High-throughput screening has also been 
extensively performed for both repurposed drugs and 
compound screening.

Importantly, the reverse genetic system has also 
been incorporated into the design of antivirals by 
using infectious cDNA clones, ZIKV replicons, and 
VLPs. The use of reporter genes, such as luciferase 
and EGFP, in designing recombinant ZIKV has provided 
a novel platform in determining the mechanisms of 
drug inhibition. The flavivirus replicon has been pro-
ven to be safe when working with the virus since it is 
not infectious. VLPs have also been used in drug and 
vaccine development for several flaviviruses, such as 
WNV, JEV, YFV, DENV, and ZIKV [111].

ZIKV infections are usually characterized by mild 
illness and uneventful recovery; therefore, when 
designing anti-ZIKV strategies, the primary target 
population should be highly considered, namely, 
immunocompromised individuals, pregnant women 
and their fetuses [112]. Currently, five pregnancy cate-
gories for anti-ZIKV drugs have been defined: Category 
A, B, C, D and X, all of which have considerations for 
use in pregnancy [113]. For Category A, adequate and 
well-controlled studies have failed to demonstrate a 
risk to fetuses in the first trimester or later of preg-
nancy. In Category B, animal reproduction studies have 
failed to demonstrate a risk to fetuses, but there are no 
adequate or well-controlled studies in pregnant 
women. For Category C, animal reproduction studies 
have shown an adverse effect on fetuses, and while 
there are no adequate or well-controlled studies in 
humans, their potential benefits may warrant use of 
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these drugs in pregnant women, despite the potential 
risks. In Category D, there is positive evidence of a 
human fetal risk based on adverse reaction data from 
investigational or marketing experience or studies in 
humans, but the potential benefits of these drugs may 
warrant their use in pregnant women, despite these 
potential risks. For Category X, studies in animals or 
humans have demonstrated fetal abnormalities, and/ 
or there is positive evidence of a human fetal risk 
based on adverse reaction data from investigational 
or marketing experience. Therefore, the risks involved 
in the use of these drugs in pregnant women clearly 
outweigh their potential benefits. In this section, we 
summarize drug development using host and viral 
proteins as targets for drug design.

Antivirals targeting viral proteins

Flavivirus host proteins (E, NS1, NS2B-NS3, NS3 and 
NS5) have been used as targets for developing thera-
peutics against ZIKV. Different compounds act directly 
by binding to the E protein and impairing E-mediated 
membrane fusion. Most of these compounds have 
been effective in vitro; however, only a few of them 
have reached clinical trials. These compounds include 
Crotoxin, a venom from Crotalus durissus terrificus, and 
epigallocatechin gallate (EGCG), a polyphenol that 
inhibits ZIKV entry into host cells [114,115]. Co-proto-
porphyrin IX (CoPPIX) and Sn-protoporphyrin IX 
(SnPPIX) have also been shown to exhibit anti-ZIKV 
activity by interfering with viral morphology and 
entry into host cells [116]. Pinocembrin (natural flavo-
noid) evidenced efficacy against ZIKV and is now in 
Phase 1 trials [117]. Suramin and Ivermectin have also 
shown anti-ZIKV activity both in vitro and in vivo 
[118–121].

The ZIKV NS2B-NS3 protease and NS3-helicase play 
a major role in viral replication. Consequently, several 
compounds have been developed to target these two 
proteins. Natural flavonoids, including myricetin, quer-
cetin, luteolin, isorhamnetin and apigerin, have been 
shown to noncompetitively inhibit ZIKV protease [122]. 
Lopinavir-ritonavir and novobiocin have also been 
shown to exhibit anti-ZIKV effects [123]. Novobiocin 
was shown to protect mice against a lethal ZIKV chal-
lenge, reducing viremia and histopathological damage 
[123]. Erythrosin B, a category B drug, was found to 
noncompetitively inhibit DENV2 and ZIKV NS2B-NS3 
proteases [124] and was also shown to reduce viral 
titers in YFV, JEV, and WNV, with low cytotoxicity and 
a micromolar potency [124]. In a screening of 2816 
approved drugs, 3 potent drugs, temoporfin, niclosa-
mide, and nitazoxanide, were identified as inhibitors of 
ZIKV protease [107]. Moreover, temoporfin was shown 
to inhibit ZIKV replication in human placental cells and 
protected mice from succumbing to ZIKV infection 
[107]. Aprotinin, used to reduce bleeding during 

complex surgery [125], and bromocriptine [126] were 
found to be potent inhibitors of ZIKV NS2B-NS3. In 
both, molecular models were developed to predict 
binding with the NS2B-NS3 protease.

NS5 is an RNA-dependent RNA polymerase that 
plays an important role in viral genome replication. 
Several inhibitors have been developed using NS5 as 
a therapeutic target. BCX4430, an adenosine analogue, 
has broad-spectrum activity against a wide range of 
RNA viruses with potent in vivo activity against YFV, 
WNV, Tick-borne Encephalitis virus (TBEV), Marburg 
and Ebola viruses [127–129]. The compound is now in 
clinical trials and is a promising antiviral agent against 
ZIKV infection [130]. Other compounds tested in mice 
(AG129) include 7-deaza-2ʹ-C-methyladenosine, a 
potent inhibitor of ZIKV replication, which was shown 
to delay ZIKV pathogenesis in a robust mouse model 
(AG129) [46]. Emetine and cephaeline also inhibited 
ZIKV polymerase both in vitro and in AG129 mice 
[109]. Favipiravir and ribavirin also inhibited ZIKV NS5 
in both Asian and African strains [110]. Finally, sofos-
buvir protected ZIKV-infected mice from mortality by 
decreasing viral RNA levels in different tissues, prevent-
ing acute neuromotor and long-term memory seque-
lae [131]. Flavivirus NS5 methyltranferases are also 
central players in viral replication and have also been 
used as targets for drug design. Methltransferase inhi-
bitors include S-adenosyl-L-methionine (SAM) and/or 
S-adenosyl-L-homocysteine (SAH) analogues. Other 
NS5 inhibitory compounds include F3043-0013, 
F0922-0796, F1609-0442, and F1750-0048 [132].

Antivirals targeting host proteins
Antivirals acting on host proteins interfere with differ-
ent parts of the ZIKV life cycle, impairing viral replica-
tion. The first step in the ZIKV life cycle is binding of the 
virus to receptors (DC-SIGN, TYRO 3, AXL, TIM, and 
TAM) [35], followed by internalization by endocytosis 
to reach endosomes [37]. Different compounds have 
been developed using this target. Endocytosis and 
endosomal fusion (EEF) inhibitors include 25-hydroxy-
cholesterol (25HC), a natural product of lipid metabo-
lism shown to reduce viremia in mice and monkeys. 
Moreover, 25HC protected infected fetal mice from 
microcephaly [134]. Chloroquine, an antimalarial and 
anti-inflammatory drug, reduced ZIKV titers in ZIKV- 
infected cells and protected mouse neurospheres 
from morphological damage [108]. Arbidol, also 
known as umifenovir, an approved drug both in 
Russia and China, was shown to reduce viral titers in 
ZIKV with a micromolar effect [135]. Additionally, the 
drug also reduced viral multiplication in WNV and tick- 
borne encephalitis virus (TBEV) with a strong cell- 
dependent effect [135]. K22, a small compound inhibi-
tor with potential activity against a broad range of 
coronaviruses, was also shown to inhibit ZIKV. K22 
efficiently interfered with the replication of other 
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flaviviruses, including JEV, WNV and, to a certain 
extent, Usutu virus (USUV), Wesselsbron virus 
(WESSV), hepacivirus (HCV), and bovine viral diarrhea 
virus (BVDV) [136]. Another EEF inhibitor is Tenovin-1, 
which inhibits ZIKV multiplication in primary fibro-
blasts [137]. A venom peptide, Ev37, from the scorpion 
Euscorpiops validusin inhibited ZIKV, DENV-2, hepatitis 
C virus (HCV) and herpes simplex virus type 1 (HSV-1) 
infections in a dose-dependent manner. The drug 
showed low cytotoxic effects in vitro; however, it had 
no effect on Sendai virus (SeV) or adenovirus (AdV) 
[138]. Finally, Amodiaquine, an antimalarial drug, was 
shown to exhibit antiviral activity in both ZIKV and 
DENV at a micromolar concentrations in vitro [139].

Different drugs have been developed by targeting 
lipid metabolism, the endoplasmic reticulum (ER), and 
nucleoside biosynthesis, impairing ZIKV replication. 
Pyrimidine synthesis inhibitors include cyclosporine A, 
which inhibits ZIKV in different cell lines [120]. 
Cyclosporin A was also shown to be effective against 
the WNV NS5 protein [140]. Purine synthesis inhibitors 
include 6MMPr, which decreases ZIKV infectious titers by 
more than 99% in a dose and time-dependent manner 
[141]. Methotrexate (MTX) decreases ZIKV titers in a dose- 
dependent manner in Vero and hNSCs cells by antagoniz-
ing dihydrofolate reductase (DHFR) [142]. Cholesterol 
metabolism inhibitors include GW4869, a neutral sphin-
gomyelinase-2 (nSMase2) inhibitor that effectively inhi-
bits ZIKV propagation in human astrocytes and decreases 
extracellular vesicle (EV) levels [143]. 7-Ketocholesterol (7- 
KC) inhibited ZIKV replication specifically in viral budding, 
release from the host, and viral integrity [144]. 
Nordihydroguaiaretic acid (NDGA) and its methylated 
derivative tetra-O-methyl nordihydroguaiaretic acid 
(M4N) were shown to inhibit ZIKV and WNV infections 
by interfering with the sterol regulatory element-binding 
protein (SREBP) pathway [145]. In the same line, fatostatin 
was also shown to inhibit the SREBP pathway in ZIKV 
[145]. Caspase-3 activity inhibitors include PHA-690509, 
which reduces ZIKV multiplication in vitro [146]. Bithiniol, 
a broad spectrum compound, also inhibited ZIKV caspase 
activity, hence inhibiting ZIKV pathogenicity [147]. 
Additionally, metformin was shown to inhibit ZIKV repli-
cation by inactivating adenosine monophosphate-acti-
vated protein kinase (AMPK), a regulator of lipid 
metabolism [148]. Other inhibitors include compounds 
that inhibit the NMDA receptor, such as memantine, a 
blocker of the N-methyl-D-aspartate receptor (NMDAR) 
that was shown to inhibit neuronal damage as a result of 
ZIKV infection [149]. Finally, the innate immune response 
has been used as drug target in the case of GSK-126, 
which is currently in clinical trials [150].

Currently, a few drugs, including Pinocembrin and 
BCX4430, also known as Galidesivir, have completed 
phase 1 clinical trials performed by Biocryst 
Pharmaceuticals. Galidesivir was administered intrave-
nously in 24 healthy volunteers. In trials, this drug was 

shown to be safe and tolerable. Intramuscular administra-
tion and animal models have also been used to show that 
this drug has survival benefits against several pathogens, 
including Ebola [129], Marburg, YFV, WNV [127] and ZIKV 
[129]. Additionally, Galidesivir has shown broad-spectrum 
activity in vitro against more than 20 RNA viruses in nine 
different families, including filoviruses, togaviruses, 
bunyaviruses, arenaviruses, paramyxoviruses, corona-
viruses, and flaviviruses [151]. Nevertheless, this drug 
has been shown to confer resistance as a result of an 
E460D substitution in the NS5 protein of TBEV [128], 
which represents a major challenge in the development 
of viral replication inhibitors since the viruses are rapidly 
evolving.

In summary, many ZIKV antiviral drugs have been 
developed despite the fact that most of them never 
reach clinical trials. As an RNA virus, ZIKV is prone to 
rapid evolution as a result of mutations in both struc-
tural and nonstructural proteins, possibly leading to 
drug resistance. Therefore, additional research is needed 
to understand this hypothesis. Drug combinations 
should be considered for effective treatment of ZIKV.

Conclusions and future perspectives

Since the reemergence of ZIKV, several studies have been 
performed to understand the pathogenesis of the virus, 
including the use of mice and other animal models, such 
as macaques. However, questions remain to be answered 
concerning the different mechanisms through which the 
virus escapes the immune system and causes disease in 
mammalian hosts. Having many routes of transmission 
and a wide range of tropism, ZIKV has become a crucial 
human pathogen in need of quick therapeutic measures 
and vaccines that convey long-term immunity. 
Understanding ZIKV interactions with the host will give 
more insights into the development of these therapeutic 
measures. Despite the rapid development of ZIKV vac-
cines, more research is needed to complete clinical trials 
for ZIKV therapeutics. Importantly, more studies should 
be performed on the development of vaccines that are 
safe, especially for pregnant women, unborn fetuses, 
infants, and elderly individuals. The role of sfRNAs is still 
not well-defined in ZIKV pathogenesis and disease; there-
fore, future studies in this field will be of novel 
importance.
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