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ABSTRACT

Background: It is difficult to distinguish subtle differences shown in computed tomography 
(CT) images of coronavirus disease 2019 (COVID-19) and bacterial pneumonia patients, 
which often leads to an inaccurate diagnosis. It is desirable to design and evaluate 
interpretable feature extraction techniques to describe the patient's condition.
Methods: This is a retrospective cohort study of 170 confirmed patients with COVID-19 or 
bacterial pneumonia acquired at Yeungnam University Hospital in Daegu, Korea. The lung 
and lesion regions were segmented to crop the lesion into 2D patches to train a classifier 
model that could differentiate between COVID-19 and bacterial pneumonia. The K-means 
algorithm was used to cluster deep features extracted by the trained model into 20 groups. 
Each lesion patch cluster was described by a characteristic imaging term for comparison. 
For each CT image containing multiple lesions, a histogram of lesion types was constructed 
using the cluster information. Finally, a Support Vector Machine classifier was trained with 
the histogram and radiomics features to distinguish diseases and severity.
Results: The 20 clusters constructed from 170 patients were reviewed based on common 
radiographic appearance types. Two clusters showed typical findings of COVID-19, with two 
other clusters showing typical findings related to bacterial pneumonia. Notably, there is one 
cluster that showed bilateral diffuse ground-glass opacities (GGOs) in the central and peripheral 
lungs and was considered to be a key factor for severity classification. The proposed method 
achieved an accuracy of 91.2% for classifying COVID-19 and bacterial pneumonia patients with 
95% reported for severity classification. The CT quantitative parameters represented by the 
values of cluster 8 were correlated with existing laboratory data and clinical parameters.
Conclusion: Deep chest CT analysis with constructed lesion clusters revealed well-known 
COVID-19 CT manifestations comparable to manual CT analysis. The constructed histogram 
features improved accuracy for both diseases and severity classification, and showed 
correlations with laboratory data and clinical parameters. The constructed histogram 
features can provide guidance for improved analysis and treatment of COVID-19.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic virus 
originated in Wuhan, China in 2019, has spread rapidly to several countries.1 Reverse 
transcription polymerase chain reaction (RT-PCR) of viral nucleic acid is regarded as the 
reference standard for the diagnosis of coronavirus disease 2019 (COVID-19), but chest 
computed tomography (CT) examination is mostly recommended for evaluating severity and 
treatment efficacy given the primary involvement of the respiratory system. Also, CT imaging 
can be effective for early screening compared to RT-PCR that has shown low sensitivity for 
early detection.2-4 Therefore, there is an urgent need for fast and accurate diagnostic tests 
other than RT-PCR.

There are well-known features of COVID-19 often observed in CT imaging such as ground-
glass opacities (GGOs) distributed in the peripheral or posterior lungs.5-7 However, these 
patterns are often limited and contribute to the challenge of distinguishing COVID-19 
from other pneumonia types.8,9 Furthermore, since COVID-19 CT manifestations are often 
observed with mixed or subtle radiological differences, accurate description is challenging 
even when referencing Fleischner Society listed terms.10

Recent advances in artificial intelligence with deep learning have shown success in 
the medical imaging community given the robust feature extraction capability of deep 
networks.11 We propose a deep learning-based framework to create accurate descriptions 
of CT manifestations related to COVID-19. Herein, we analyzed chest CT scans from 73 
COVID-19 and 97 bacterial pneumonia patients from Daegu, Korea.

METHODS

Study design and subject
We performed a retrospective cohort study of CT scans of 73 patients with COVID-19 infection 
obtained between February 2020 to March 2020, and 97 patients with bacterial pneumonia 
between March 2012 to February 2014 at Yeungnam University Medical Center, in Daegu, 
Korea. During the study period, all consecutive adult patients (age > 18 years) with SARS-
CoV-2 infection admitted to the hospital were eligible for inclusion. SARS-CoV-2 infection 
was confirmed by real-time RT-PCR assay of nasal and pharyngeal swab samples. Severity was 
defined as a composite outcome of acute respiratory distress syndrome (ARDS), intensive 
care unit admission, or death. ARDS was diagnosed according to the Berlin definition.12 The 
National Early Warning Score (NEWS) is an early warning score, and is composed of seven 
parameters: pulse oximetry, oxygen, pulse rate, systolic blood pressure, respiration rate, 
temperature, and central nervous system status. NEWS showed excellent predictive value in 
predicting critical clinical outcomes of COVID-19. NEWS is stratified into three categories: 
low risk (0–4), medium risk (5–6), and high risk (≥ 7).13,14 Fig. 1 shows the flow chart of data 
collection, exclusion and splitting ratios applied for training and evaluation.

Imaging pattern analysis using deep learning
To analyze the COVID-19 manifestations using deep learning, the proposed framework 
consists of 3 key modules: 1) lung and lesion segmentation, 2) deep feature extraction, and 3) 
K-means clustering modules, respectively. Fig. 2A shows a diagram of the framework.
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A Mask-cascade-RCNN-ResNeSt-200 with deformable convolution neural network (DCN) 
architecture was employed in module (a) to extract the lung and lesion regions in the chest 
CT scans.15,16 The lung segmentation model was trained and evaluated on a total 51,978 
manually segmented slices (train: 50,756, test: 1,222) from two public datasets (NSCLC, 20 
cases).17,18 For the lesion segmentation task, 6,971 manually segmented slices (train: 5,854, 
test: 1,117) from three publicly available datasets were used (20 cases, MosMed, MSD).18-20 
Then, for the data from Yeungnam University Medical Center, lesions were extracted using 
the trained models. The patches smaller than 13 mm were not used to avoid misclassification 
caused by wrong segmentation or noise such as motion artifacts, as this may have a negative 
effect on subsequent analysis.

The deep neural network in module (b) employed a ResNet50 model trained to differentiate 
lesion patches of COVID-19 from those of bacterial pneumonia patients.21 The model took a 
lesion cropped patch as input and returned a label prediction. A total of 12,235 lesion patches 
(train: 6,181, test: 6,054) from 170 patients were employed. A 2048-dimensional feature 
vector extracted from the intermediate layer of the ResNet50 model used in the clustering 
phase, i.e., module (c).

In module (c), the K-means algorithm was applied to cluster the lesion features into 20 
groups.22 To profile the typical or relatively atypical imaging features of COVID-19, a total 
of 12,235 lesion patches from 170 patients were represented in two-dimensional space via 
a t-distributed Stochastic Neighbor Embedding based reduction of the 2,048-dimensional 
feature vectors.23 The lesion images in each cluster initially grouped by K-means were later 
manually described by one radiologist (Jongsoo Park) using imaging terms, wherein three 
pulmonologists (Kyung Soo Hong, Jong Geol Jang, and June Hong Ahn) evaluated the 
descriptions and reached a consensus.
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Hospitalizations for COVID-19 and bacterial pneumonia
• Age ≥ 19 years
• COVID-19 from February 2020 to March 2020 and bacterial

pneumonia from March 2012 to February 2014
• At Yeungnam University Medical Center in Daegu, South Korea

Excluded
• Transferred out
• Patients with negative CT findings

170 subjects were included

Training dataset (n = 90)

Bacterial pneumonia
(n = 57)

COVID-19
(n = 33)

Non-severe
(n = 25)

Severe
(n = 8)

Non-severe
(n = 34)

Severe
(n = 6)

Bacterial pneumonia
(n = 40)

COVID-19
(n = 40)

Test dataset (n = 80)

Fig. 1. Flow chart. 
COVID-19 = coronavirus disease 2019, CT = computed tomography.



Verification of selected imaging patterns
Patient-level diagnosis can be achieved by aggregating the lesion-level predictions using 
majority voting. However, in this way, it is difficult to analyze what patterns the patient 
has and which combination of patterns are highly correlated with the disease or severity. 
To further quantify the diagnostic performance of the extracted imaging patterns, we 
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<Imaging pattern analysis for COVID-19 and bacterial pneumonia patients>A

<Verification of selected imaging patterns>B

73 COVID-19
97 Bacterial pneumonia

73 COVID-19
97 Bacterial pneumonia

Clusters

(a) Segmentation
networks

Segmentation
networks

(i) Diagnose patches

Majority
voting

Find closest center

(ii) Histogram constructor

(iii) Extract radiomics

Merge
feature

(b) Deep feature
extractor

(c) K-means
clustering

Analyze
each cluster

• First-order features
• 3D shape-based features
• 2D shape-based features
• GLCM features
• GLRLM features
• GLSZM features
• NDTDM features
• GLDM features

Diagnosis

COVID-19
vs.

Bacterial pneumonia

Severe
vs.

Non-severe

SVM classifier

Fig. 2. Diagram of the modeling framework. For analyzing the imaging patterns, the segmentation models were employed to extract regions of interest of the 
lung and lesions in the chest CT scans. Then, the ResNet50 model takes lesion cropped patches as input and returns a label prediction and a 2048-dimensional 
feature vector. Next, the K-means clustering algorithm was used to cluster 2D lesion features into 20 groups. To verify the usability of these patterns, (i) majority 
voting; (ii) constructed histogram with SVM; and (iii) Radiomics features (with/without constructed histogram) with SVM were employed. Disease and severity 
classification tasks were performed. 
COVID-19 = coronavirus disease 2019, CT = computed tomography, SVM = Support Vector Machine.



constructed a histogram of lesion types using the clusters obtained via module (c) for each 
CT. Fig. 2B shows a diagram of the evaluation framework. In addition, the constructed 
histograms were analyzed using an independent two-sample t-test to evaluate the 
significance of each cluster regarding: 1) COVID-19 and bacterial pneumonia patients, 
2) severe and non-severe cases. A two-tailed P < 0.05 was taken to indicate statistical 
significance. Furthermore, we compared the mean histograms to confirm cluster relevance 
using the mean of each histogram in each group; i.e., COVID-19, bacterial pneumonia, 
severe, and non-severe. The cluster which showed high statistical significance (P < 0.001) 
showed significant value differences when performing mean histogram comparison.

Furthermore, we compared the classification accuracy between majority voting of the lesion-
level predictions and Support Vector Machine (SVM) based inference which was trained on 
a combination of the proposed histogram with radiomics features. A total of 107 features 
were extracted using radiomics from each CT volume, including first-order statistics, 
shape-based features, etc. Finally, 20 features from our proposed histogram and 107 features 
from radiomics features were combined. We compared the performance with/without the 
combination of the radiomic features to verify effectiveness.

Statistical analysis
All statistical analyses were performed using Scipy (1.5.0, https://www.scipy.org/). The 
independent two-sample t-test was used to analyze the differences between groups, and 
Spearman's correlation test was used to analyze the correlation between laboratory data, 
clinical parameters and values of a cluster. The cluster which showed high statistical 
significance (P < 0.001) lead to significant value differences when performing mean 
histogram comparison. In all other analyses, P value < 0.05 was considered to indicate 
statistical significance.

Ethics statement
This study was conducted in accordance with the tenets of the Declaration of Helsinki and 
was reviewed and approved by the Institutional Review Board of Yeungnam University 
Hospital (YUH IRB 2020-05-030). The requirement for informed consent was waived due to 
the retrospective study design.

RESULTS

Demographic and clinical characteristics
Hospitalized patients with confirmed COVID-19 (73 patients) and bacterial pneumonia 
(97 patients) were included in this study (Fig. 1). Baseline characteristics of all patients are 
summarized in Table 1. The patients in the COVID-19 group were older than the patients in the 
bacterial pneumonia group (58.70 ± 16.49 vs. 39.86 ± 8.69, P < 0.001). 36 patients (49.3%) of 
COVID-19 and 55 patients (56.7%) of bacterial pneumonia were male. Body temperature (37.21 
± 0.67 vs. 37.76 ± 0.92, P < 0.001), and heart rate (86.70 ± 13.94 vs. 94.37 ± 16.91, P = 0.02) were 
significantly lower in patients with COVID-19. Systolic blood pressure (128.55 ± 19.44 vs. 115.71 
± 19.42, P < 0.001), and diastolic blood pressure (80.74 ± 12.15 vs. 71.42 ± 13.52, P < 0.001) were 
significantly higher for COVID-19 patients. CURB-65 was not significantly different in patients 
with COVID-19 and bacterial pneumonia (0.69 ± 0.87 vs 0.57 ± 0.68, P = 0.314). The mean time 
from the onset of symptoms to CT scan was 7.46 ± 4.04 days.
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Deep chest CT manifestations
We summarize the deep chest CT manifestations observed in Table 2 and Supplementary 
Table 1, with lesion patches visualized in Fig. 3, respectively. Typical COVID-19 CT 
manifestations such as GGOs with interlobular septal thickening in the peripheral lungs were 
observed in clusters 4 and 17 (Fig. 4A). On the other hand, manifestations typical to bacterial 
pneumonia such as crazy-paving appearance in the posterior lungs were observed in clusters 
5 and 10, as presented in Fig. 4B. These typical clusters showed P values less than 0.001.

Notably, 15 out of the 20 clusters showed key characteristics for the discrimination of COVID-19 
from bacterial pneumonia with P values less than 0.001. Among 15 clusters, three clusters with 
P values less than 0.001 were shown to be key for severity classification. Moreover, two clusters 
could classify both COVID-19 and severe patients, with one of the clusters (#8) showing diffuse 
GGOs in the central and peripheral lungs which represents a typical severe COVID-19 CT 
manifestation. Fig. 4C presents the severe COVID-19 patient's CT manifestations.
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Table 1. Characteristics of the study participants with COVID-19 and bacterial pneumonia
Variables COVID-19  

(n = 73)
Bacterial pneumonia  

(n = 97)
P value

Age, yr 58.70 ± 16.49 39.86 ± 8.69 < 0.001
Male, sex 36 (49.3) 55 (56.7) 0.390
Vital signs on admission

Body temperature, °C 37.21 ± 0.67 37.76 ± 0.92 < 0.001
Heart rate, beats/min 86.70 ± 13.94 94.37 ± 16.91 0.002
Systolic BP, mm Hg 128.55 ± 19.44 115.71 ± 19.42 < 0.001
Diastolic BP, mm Hg 80.74 ± 12.15 71.42 ± 13.52 < 0.001

CURB-65 0.69 (0.87) 0.57 ± 0.68 0.314
Timing of CT scan 7.46 (4.04) - -

Early phase (≤ 7 days after the onset of symptoms) 47 (64.4) - -
Late phase (> 7 days after the onset of symptoms) 26 (35.6) - -

Data are presented as the mean ± standard deviation or number (%).
COVID-19 = coronavirus disease 2019, BP = blood press.

Table 2. Summary of lesion cluster with imaging description term and P value results
Cluster Color Description Typical Diagnosis  

P value
Severe  
P value

1 Multifocal GGO in the peripheral lung, bilateral. COVID-19 < 0.001 < 0.001
2 Mixed consolidations and GGOs in the posterior lung, unilateral. Intermediate 0.006 0.713
3 Focal consolidation in the posterior lung. Bacterial < 0.001 0.068
4 GGOs with interlobular septal thickening in the peripheral lungs, bilateral. COVID-19 < 0.001 0.081
5 Crazy-paving appearance with/without consolidation, diffuse. Bacterial < 0.001 0.556
6 Consolidation or clustered micronodules along the bronchovascular bundle, bronchopneumonia pattern. Bacterial < 0.001 0.002
7 Multifocal GGO with round morphology, bilateral. COVID-19 < 0.001 0.011
8 Diffuse GGOs in the central and peripheral lungs, bilateral. COVID-19 < 0.001 < 0.001
9 Consolidation and GGO with interlobular septal thickening, unilateral. Bacterial < 0.001 0.013
10 Crazy-paving appearance in the posterior lungs. Bacterial < 0.001 0.437
11 Segmental consolidation in the unilateral or bilateral lungs. Bacterial < 0.001 0.810
12 Mixed consolidations and GGOs in the posterior lung, bilateral. COVID-19 < 0.001 0.466
13 Subtle GGO in the lower lung. Bacterial < 0.001 < 0.001
14 Extensive consolidation with air-bronchogram in the bilateral lungs. Bacterial < 0.001 0.128
15 GGO with reticular opacity in both lower lungs. Intermediate 0.097 0.806
16 Mixed consolidation with GGO in the peripheral lung, unilateral. Intermediate 0.060 0.068
17 GGOs with interlobular septal thickening in the peripheral lungs, bilateral. COVID-19 < 0.001 0.001
18 Consolidation or clustered nodules along the bronchovascular bundle. Bacterial < 0.001 0.534
19 Consolidation or GGO along the bronchovascular bundle. Intermediate 0.005 0.009
20 Multifocal GGO with interlobular septal thickening, bilateral. Intermediate 0.163 0.714
The t-test were performed for diseased and severe groups, respectively.
GGO = ground-glass opacity, COVID-19 = coronavirus disease 2019.



In principle, the observed relative differences between lesion clusters are key to better 
understand the entire lesion distribution. As shown in Fig. 4D, extensive consolidation with 
air-bronchogram was observed in severe bacterial pneumonia patients. Compared with the 
severe COVID-19 patients who mainly showed diffuse GGOs, we could easily distinguish the 
difference in patterns observed in the later stages of disease onset.

To confirm cluster relevance, we compared the mean histograms of different tasks as presented 
in Fig. 5. The clusters which showed high significance (P < 0.001) in Table 2 also showed 
significantly different values in mean histogram comparison. Notably, the mean histogram 
of COVID-19 can be discriminated from bacterial pneumonia by comparing the relatively 
increased values in cluster 1, 4, 7, 12, and 17. On the other hand, the mean histogram of bacterial 
pneumonia can be discriminated from COVID-19 by comparing the significantly increased values 
of clusters 3, 6, 9, 11, 13, 14, and 18. In addition, the mean histogram of the severe COVID-19 
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A B

Fig. 3. Visualization of the lesion patches from 170 patients into two-dimensions. (A) K-means clusters (20 groups) were used for distinction. Different color edge 
represents different groups. (B) True diagnosis was used for distinction. Purple color represents non-severe COVID-19, magenta represents severe COVID-19, and 
green for bacterial pneumonia. 
COVID-19 = coronavirus disease 2019.

A B C D

Fig. 4. (A) Typical COVID-19 CT manifestations—GGOs with interlobular septal thickening in the peripheral lungs—were observed in cluster 4 and 17. (B) 
bacterial pneumonia CT manifestation—crazy-paving appearance in the posterior lungs—observed in cluster 5 and 10. (C) Cluster 8 showed the lowest t-test 
P value < 0.001 for diseased and severe groups which is the typical pattern for severe COVID-19 patients (i.e., diffuse GGOs in the central and peripheral lungs). 
(D) Bacterial pneumonia CT manifestation—extensive consolidation with air-bronchogram—was observed in cluster 14. These clusters showed a t-test P value < 
0.001. Lesions were colored based on K-means clustering result. 
COVID-19 = coronavirus disease 2019, CT = computed tomography, GGO = ground-glass opacity.



patients showed consistently increased values in cluster 8 compared to the mean histogram 
of the non-severe COVID-19 patients. This indicates that the diagnosis is highly relevant to 
the presence of a lesion in a certain cluster, and the patient with a lesion in cluster 8 can be 
considered as a more severe COVID-19 patient than patients with lesions in other clusters. In 
summary, the cluster interpreted by the radiologist as being highly relevant to typical COVID-19 
and bacterial pneumonia patterns showed high correlation with P value significance in statistical 
analyses, with notable differences observed in mean histogram comparison.

Disease and severity classification
In Table 3, we present disease classification accuracy across several metrics under different 
settings. First, the baseline method based on majority voting of predictions achieved 
87.5% accuracy for COVID-19 patient classification. For the SVM classifier, we consider two 
scenarios, (i) with histogram features only or (ii) with radiomic features only. Notably, the 
classifier trained under the first setting achieved 88.7% accuracy; a minor improvement over 
the baseline, whereas in setting (ii)—81.25% was reported, a considerable decrease from 
the other models. However, when the SVM classifier was trained with both radiomics and 
histogram features, accuracy significantly improved to 91.2% from 87.5%. This further shows 
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Fig. 5. Mean histograms. (A) Mean histogram of COVID-19; (B) Mean histogram of bacterial pneumonia; (C) Mean histogram of severe COVID-19 patients; and (D) 
Mean histogram of non-severe COVID-19 patients. 
COVID-19 = coronavirus disease 2019.



that the features learned by deep learning are highly robust for accurate patient diagnosis. In 
addition, the constructed histograms can accurately express the correlation of lesion features 
observed in each patient and/or can represent some combination of patterns that could lead 
to a severe outcome of a disease diagnosis. In comparison to the naïve aggregation method 
baseline i.e., majority voting, often highly limited in patient-level representations; the 
proposed deep feature representation highlights several key advantages.

Table 4 shows the severity classification accuracy. In terms of accuracy alone, SVM classifiers 
that only use either histogram or radiomics only achieved the same performance, i.e., 82.5% 
for both, with key differences noted in the sensitivity and specificity of the models. On 
the other hand, when the features were combined considerable improvement (+10%) was 
noted i.e., 95% accuracy, surpassing previous models. This may be attributed to the fact 
that the histogram is not able to represent the absolute size difference of lesions, thus the 
combination mitigates the issue. Rather than using a single feature alone, the combination of 
features proved to be invaluable for diagnosis.

Lung and lesion segmentation
The lung and lesion segmentation model achieved a dice coefficient score of 97.18%, and 78.06%, 
respectively. Fig. 6 shows the lesion segmentation results around the average dice coefficient score 
of 78.06%, which helps to qualitatively understand the accuracy of lesion segmentation.
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Table 3. Test accuracy of COVID-19 diagnosis
Model Accuracy (%) Sensitivity (%) Specificity (%)
Majority voting 87.5 (70 of 80) 92.5 (37 of 40) 82.5 (33 of 40)
Radiomics only 81.25 (65 of 80) 87.5 (35 of 40) 75 (30 of 40)
Histogram only 88.7 (71 of 80) 85 (34 of 40) 92.5 (37 of 40)
Histogram with radiomics 91.2 (73 of 80) 85 (34 of 40) 97.5 (39 of 40)
COVID-19 = coronavirus disease 2019.

Table 4. Test accuracy of severity classification.
Model Accuracy (%) Sensitivity (%) Specificity (%)
Radiomics only 82.5 (33 of 40) 66.67 (4 of 6) 85.29 (28 of 34)
Histogram only 82.5 (33 of 40) 50 (3 of 6) 88.24 (30 of 34)
Histogram with radiomics 95 (38 of 40) 83.3 (5 of 6) 97.06 (33 of 34)

A B

Fig. 6. Representative slices which showed an average dice coefficient score (78.06%) for lesion segmentation. 
(A) Slice showed a dice coefficient score of 77.08%. (B) Slice showed a dice coefficient score of 78.31%. Red color 
represents a manual segmentation by human and green color represents an automated segmentation by the 
trained segmentation model. Due to the ambiguity of lesion boundaries, an average dice score of 78.06% showed 
satisfactory lesion segmentation results for the deep feature extractor.



Correlation between laboratory data, clinical and CT quantitative parameters
The correlation between laboratory data, clinical parameters and CT quantitative parameters 
are shown in Table 5. The values of cluster 8 were strongly correlated with NEWS (P < 0.001), 
and positively correlated with neutrophil percentage, procalcitonin, ARDS, and extracorporeal 
membrane oxygenation (ECMO) (P < 0.05). On the other hand, a negative correlation with 
lymphocyte percentage and lymphocyte count (P < 0.05) was noted. Comparisons between 
values of cluster 8 versus NEWS (Fig. 7A) and disease severity (Fig. 7B) in COVID-19 patients 
are shown. Notably, values were significantly higher among NEWS ≥ 7 patients than in NEWS 
0–4 (P < 0.001), with severe COVID-19 patients also showing higher values than non-severe 
COVID-19 patients (P < 0.05), respectively.

DISCUSSION

Our deep chest CT analysis is in accordance with various CT findings of COVID-19 patients 
reported in literature. Chung et al. reported that typical CT findings of COVID-19 include 
bilateral pulmonary GGO and consolidative opacities which sometimes have a rounded 

10/14https://jkms.org https://doi.org/10.3346/jkms.2021.36.e46

Quantitative Assessment of COVID-19 and Bacterial Pneumonia

Table 5. Correlation between laboratory data, clinical parameters and CT quantitative parameters
Laboratory data and clinical parameters Correlation between values of cluster 8 P value
White blood cell count, ×109/L 0.113 0.341
Neutrophil percentage, % 0.284 0.014
Neutrophil count, ×109/L 0.195 0.098
Lymphocyte percentage, % −0.302 0.009
Lymphocyte count, ×109/L −0.258 0.027
Hemoglobin, g/dL 0.105 0.376
Platelet, ×109/L −0.021 0.863
C-reactive protein, mg/dL 0.018 0.880
Procalcitonin, ng/mL 0.262 0.025
NEWS 0.392 < 0.001
ARDS 0.299 0.010
Septic shock 0.229 0.051
ICU admission 0.209 0.075
IMV 0.229 0.051
ECMO 0.282 0.015
Death 0.110 0.354
CT = computed tomography, NEWS = National Early Warning Score, ARDS = acute respiratory distress syndrome, 
ICU = intensive care unit, IMV = invasive mechanical ventilation, ECMO = extracorporeal membrane oxygenation.
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Fig. 7. Comparisons between values of cluster 8 versus NEWS (A) and disease severity (B) in COVID-19 patients. 
NEWS = National Early Warning Score, COVID-19 = coronavirus disease 2019.



morphology and are distributed in the peripheral lung.24 Song et al.5 reported that pure 
GGO or GGO with reticular and/or interlobular septal thickening with predominant 
distribution in the posterior or peripheral lung involvements were observed in COVID-19 
patients. Caruso et al.25 highlighted the presence of the peripheral GGOs associated with 
multilobe and posterior lung involvement in COVID-19 patients in Italy. Similar patterns 
were also observed in our research i.e. GGO distributed in the peripheral lungs in cluster 
4 and 17, with multifocal GGOs with round morphology in cluster 1 and 7, respectively. 
Regarding the common findings of severe COVID-19, Pan et al.26 report that an increase in 
GGO, consolidative opacities, and interstitial septal thickening was noted, and Song et al.5 
reported that a significantly more GGOs including pure GGO and a GGO with reticular and/
or interlobular septal thickening was observed in the later stages of COVID-19. An increase in 
GGOs in the central and peripheral lung was observed in our study in cluster 8, therefore, the 
published CT findings of severe COVID-19 patients show high consistency with our study.

Radiomic features are considered a useful general purpose analysis technique, i.e., for 
distinguishing the lung nodules (malignant versus benign) or hospital stay (severity) 
prediction.27,28 However, several limitations exist and features alone are often insufficient to 
distinguish between diseases when subtle radiological differences are observed in the image. 
Discriminating COVID-19 from bacterial pneumonia is regarded as one of the exemplars of 
such challenges. Here, our method shows the benefit of using deep learning to obtain more 
robust representations that are more clinically relevant to key imaging characteristics for 
COVID-19 diagnosis. We quantitatively show that the constructed histogram better captures 
the overall statistics of the lesion features. Moreover, the SVM classifier can diagnose diseases 
or patient's severity more accurately than the radiomics features alone.

Our method has two notable advantages compared to common deep learning algorithms; 
interpretability and a generalized representation. Common deep learning methods are 
limited in interpretability even though they can visualize the important regions using 
heatmaps.29,30 Our method can explain the reasons of diagnosis by checking the presence 
of specific patterns represented in the patient's histogram. We verified the key patterns 
with mean histograms for each disease and severity group, and found the important key 
diagnostic imaging patterns in accordance with published literature. This indicates that 
our method is safer and more transparent for medical assistance. Moreover, although the 
proposed feature learning model was not trained to classify severity among patients, the 
obtained features are fairly generalized for severity classification. The imaging features were 
divided into 20 clusters and verified by radiologists using imaging terms i.e., an independent 
representation of a specific diagnosis. The constructed histogram can be used for general 
diagnosis regardless of the trained diseases, and thus showed considerable diagnostic 
accuracy for severity classification.

This study has several limitations. First, the proposed framework was only trained on a 
single institute cohort, therefore current models may fail to accurately represent unobserved 
cohort CT manifestations. External validation on a large cohort would be required to address 
this issue. Second, though age is significantly different between the two target groups 
(i.e., COVID-19 and Bacterial pneumonia); severity in pneumonia patients was more of an 
important factor affecting the CT patterns rather than age. Further, characteristic analysis 
based on the CURB-65 score revealed little to no differences between the groups, thus we 
infer the severity of pneumonia in the groups is also not expected to differ. Third, CT scan 
timing or disease course spectrums were not considered for analysis in this study. We mainly 
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focused on cluster analysis to compare COVID-19 and bacterial pneumonia characteristics. 
Future studies analyzing CT patterns according to the timing of CT scans or disease course 
using deep learning are imperative. Fourth, the K-means algorithm requires an arbitrary 
number of groups to be chosen, we empirically selected 20 groups in this study though it 
may be beneficial to further analyze varied cluster groups to draw well informed conclusions 
across different settings. Applying better clustering algorithms and selecting an optimal 
number of clusters will be the subject of future research.

In conclusion, the CT images of COVID-19 patients in Daegu, Korea were grouped into 
20 clusters. These groups were analyzed and compared with the patterns described in 
literature. Crazy-paving was extracted as a major pattern for bacterial pneumonia, while 
GGOs in the peripheral lungs and diffuse GGOs were observed for COVID-19 and severe 
COVID-19 patients, respectively. To verify the effectiveness of these clusters, we performed 
two classification tasks by constructing histograms from the clusters. We confirmed the 
correlations of the image patterns extracted by the proposed method are more relevant to 
the clinical setting than common methods which use radiomics or naïve deep features. 
The constructed histogram features improved accuracy for both disease and severity 
classification, and showed correlations with laboratory data and clinical parameters, thus can 
provide guidance for improved analysis and treatment of COVID-19.

SUPPLEMENTARY MATERIAL

Supplementary Table 1
Zoomed visualization of the lesion patches from 170 patients with descriptions

Click here to view
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