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ABSTRACT

Epidemiologists have used trihalomethanes (THMs) as a surrogate for overall disinfection byproduct
(DBP) exposure based on the assumption that THM concentrations are proportional to concentrations of
other DBP classes. Toxicological evidence indicates THMs are less potent toxins than unregulated classes
like haloacetonitriles (HANs). If THMs are not proportional to the DBPs driving toxicity, the use of THMs
to measure exposure may introduce non-trivial exposure misclassification bias in epidemiologic studies.
This study developed statistical models to evaluate the covariance and proportionality of HAN and THM
concentrations in a dataset featuring over 9500 measurements from 248 public water systems. THMs
only explain ~30% of the variance in HANs, whether the data is pooled in a classic linear regression or
hierarchically grouped by water system in a multilevel linear regression. The 95% prediction interval on
HANSs for the median THM concentration exceeds the interquartile range of HANs. Mean HAN:THM ratios
range from ~2.4% to ~80% across water systems, and varied with source water category, season, disin-
fectant sequence and distribution system location. The HAN:THM ratio was 265% higher in groundwater
systems than in surface water systems and declined by ~40% between finished effluent and maximum
residence times in surface water systems with chlorine-chlorine disinfection. A maximum likelihood
approach was used to estimate the misclassification bias that may result from using THMs to construct
risk-ratios, assuming that HANs represent the “true” DBP exposure risk. The results indicate an odds ratio
of ~2 estimated with THM concentrations could correspond to a true odds ratio of 4—5. These findings
demonstrate the need for epidemiologic studies to evaluate exposure by measuring DBPs that are likely
to drive toxicity.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

complex mixture in disinfected drinking waters, with over 700
species identified, and it remains unknown which classes are

Epidemiologic studies have employed the four chlorinated and
brominated trihalomethanes (THMs) as a surrogate for exposure to
total disinfection byproducts (DBPs) (Grellier et al., 2015). The
significance and magnitude of the association between high THM
concentrations and bladder cancer (Costet et al., 2011), colorectal
cancer (Rahman et al., 2010), and adverse reproductive outcomes
(Grellier et al., 2010; Wright et al., 2017) has been inconsistent,
although meta-analyses suggest that the most consistent associa-
tion is with bladder cancer (Hrudey et al., 2015). DBPs occur in a
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toxicity drivers (Li and Mitch, 2018; Richardson and Kimura, 2020).
The toxicological evidence suggests that THMs cannot explain
the magnitude of risk identified for human health outcomes like
bladder cancer (Bull et al.,, 2012). THMs were substantially less
cytotoxic and genotoxic than most unregulated classes using
in vitro Chinese hamster ovary (CHO) cell assays (Wagner and
Plewa, 2017). When concentrations of individual DBPs in drinking
waters were weighted by their CHO cytotoxicity LCsq values, hal-
oacetonitriles (HANs) consistently comprised the majority of the
toxic potency-weighted concentrations, while THMs contributed
very little (Chuang et al., 2019; Furst et al., 2019). Recent research
has demonstrated that the CHO cytotoxicity of defined mixtures of
regulated and unregulated DBPs is additive (Lau et al., 2020), sup-
porting the use of toxic potency-weighted DBP concentrations to
compare the contributions of individual DBPs to cytotoxicity.
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Despite indications that THMs are not the primary toxicity
drivers, THMs continue to be used to assess DBP exposure based on
the assumption that THMs correlate with other DBPs. There are
several reasons why this assumption may not be valid. First, dif-
ferences in precursors between source waters could change the
tendency to form THMs vs. other DBPs. For example, while humic
materials serve as THM precursors in pristine waters (Liang and
Singer, 2003), wastewater and algal-impacted waters feature
higher dissolved organic nitrogen concentrations serving as pre-
cursors for nitrogenous DBPs, including HANs (Westerhoff and
Mash, 2002; Shah and Mitch, 2012).

Second, DBP classes feature distinct formation pathways. Dif-
ferences in disinfection schemes could promote some classes over
others (Chuang et al., 2015; Furst et al., 2018). For example, chlorine
is more reactive than chloramines regarding halogen transfer to
humic materials to form THMs, and to organic nitrogen to form
HANs (Hayes-Larsen et al., 2010; Shah and Mitch, 2012). However,
HANSs can also form via a separate pathway involving chloramine
incorporation into aldehydes (Kimura et al., 2013; Vu et al., 2019).
Thus, switching from chlorine to chloramines may reduce THMs to
a greater extent than HANSs.

Third, THMs increase with distribution system residence time as
end products, while other DBPs occur as intermediates (Hua et al.,
2020). For example, HANs form as intermediates, hydrolyzing to
haloacetamides and haloacetic acids (Yu and Reckhow, 2015). Thus,
intermediate DBPs could reach steady-state concentrations or
decline while THMs continue to increase. Previous studies of the
spatiotemporal covariation of DBPs in distribution systems are
limited to analysis of THMs with haloacetic acids (e.g., Hinckley
et al., 2005; Evans et al., 2013), and qualitative observations of
THMs with unregulated classes (Weinberg et al., 2002; Wei et al.,
2010).

If THM concentrations are not reliably proportional to concen-
trations of toxicity drivers, their use to measure DBP exposure could
obscure the magnitude and significance of associations between
DBPs and adverse health outcomes (i.e., exposure misclassification
bias). Previous studies evaluating the relationship between THMs
and unregulated classes suffer from the following limitations: 1)
low sample count, with few samples from many water systems
(Furst et al., 2019; Krasner et al., 1989) and/or samples from few
water systems (Wei et al., 2010); 2) analysis conducted on pooled
data from multiple water systems and/or time points without ac-
counting for clustering and spatiotemporal dependencies (Wei
et al., 2010; Krasner et al., 2016; Furst et al., 2019); and 3) simpli-
fied methods for evaluating covariance (e.g., Pearson or Spearman
correlation coefficients; Krasner et al., 1989; Wei et al., 2010;
Krasner et al., 2016; Furst et al., 2019). The conclusions of these
studies were mixed; for HANs and THMs, Krasner et al. (1989) and
Wei et al. (2010) found high correlations (r2~0.9), while Furst et al.
(2019) found a lower correlation (r>~0.5—0.6).

The goal of this study is to evaluate the assumption that THMs
are sufficient exposure surrogates for other DBP classes. HANs are
used as a test case for two reasons: 1) previous research suggests
HANSs are more geno- and cytotoxic than THMs (Wagner and Plewa,
2017); 2) the concentrations of both the four THMs and four HANs
(dichloroacetonitrile (DCAN), bromochloroacetonitrile (BCAN),
dibromoacetonitrile (DBAN) and trichloroacetonitrile (TCAN)) are
available in the U.S. Environmental Protection Agency’s Information
Collection Rule (ICR) database (USEPA United States Environmental
Protection Agency, 2000). The ICR database encompasses 296 large
US public water systems, most consisting of multiple water treat-
ment plant/distribution system pairs (WTPs). Samples were
collected quarterly between July 1997 and December 1998 (i.e., up
to six sampling events per WTP) from the finished effluent and four
distribution system locations, providing over 10,000 sample
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records. The database is extensively described in McGuire et al.
(2002).
This study has 3 objectives:

1) Evaluate the assumption that THM concentrations are propor-
tional to HAN concentrations, between water systems as well as
within individual water systems.

2) Examine how the HAN:THM ratio varies with source water type,
season, disinfectant sequence, and distribution system resi-
dence time.

3) Estimate the odds ratio bias that may be incurred through
misclassifying HAN exposure with THMs as a surrogate, and
evaluate the implications for detecting associations between
DBPs and adverse health outcomes.

The results have important implications for the use of THM
concentrations as an exposure surrogate for other DBP classes in
epidemiologic studies.

2. Materials and methods
2.1. Data preparation

The ICR AUX1 database was retrieved from the EPA data re-
pository (USEPA United States Environmental Protection Agency,
2000); details regarding the initial processing and are provided in
Text S1. Sample records missing values for any THM or HAN species
were excluded. In many records, concentrations of certain species
were left-censored, i.e., below the method reporting limits (MRL) of
1.0 pg/L for each THM and 0.5 pg/L for each HAN. Seven WTPs with
only left-censored data for all species were excluded. Remaining
left-censored concentrations were replaced by half of the MRL; for
a record with left-censored concentrations for all four HANs or
THMs, the cumulative replacement value was 1.0 pg/L or 2.0 pg/L,
respectively. The replacement values for left-censored concentra-
tions could affect the outcome of models (Francis et al., 2009). A
sensitivity analysis was conducted by replacing left-censored con-
centrations with the full MRL value and repeating key analyses; the
conclusions were unchanged (Text S2). The final fraction of left-
censored records was 15.4% for HANs and 7.6% for THMs.

Records were included for samples collected from finished
effluent (FINISH), three intermediate distribution system locations
(AVG1, AVG2, and DSE, or “distribution system equivalent,” selected
for comparison with simulated distribution system experiments),
and the maximum retention time (MAX). Seven WTPs with only
finished effluent records were excluded. Systems that blended
treated effluents from multiple WTPs were excluded. Nearly 19% of
records (n = 1835) had no entry for the primary disinfectant field;
14 records were filled based on WTP process train information. 25
records with erroneous entries were corrected. Less than 1% of
records were affected. The secondary (residual) disinfectant field
was empty for 1.2% of records (n = 115); these were filled with
chlorine or chloramines following evaluation of 1) other records for
that WTP, 2) relative concentrations of free and total chlorine, and
3) utility process information. Lastly, records from one of five
quarters for one WTP were excluded due to unrealistic TCAN con-
centrations (~40 pg/L) at all sampling locations; all TCAN concen-
trations were below the MRL for the other four quarters, with no
observable change in water quality or treatment. The final dataset
consisted of 9587 records from 412 WTPs representing 248 public
water systems.

2.2. Selection of water system features included in the final models

We evaluated the impact of four categorical variables on the
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HAN:THM ratio: source water type, distribution system location,
season, and disinfection sequence (Table S1A). Source water types
include surface water, groundwater, mixed source waters where
none exceeds 80% of the flow, groundwater under the influence of
surface water, and purchased/wholesale waters. Following
screening, 71% of records (n = 6772) represented surface water, 25%
represented groundwater (n = 2405), and the remaining categories
each represented 1-2% of records (Text S1). Records were sorted
into season by sampling month: summer (June—August), autumn
(September—November), winter (December—February), and spring
(March—May). The ICR database included distribution system
residence time estimates, but these estimates are imprecise (Text
S1). Instead, the location category was used to indicate relative
residence time: FINISH < [DSE, AVG1, AVG2] < MAX (Table S1B).
Primary disinfectants used were chlorine, chloramines, chlorine-
chloramines, chlorine dioxide, ozone, or no entry. Residual disin-
fectants were either chlorine or chloramines. Primary and residual
disinfectants were concatenated to create the disinfectant
sequence variable (Table S1A).

2.3. Multilevel model development

Prior statistical evaluations of the ICR database were developed
by pooling measurements from multiple WTPs with the assump-
tion that data were generated by independent, random sampling
(e.g., Obolensky et al., 2008; Francis et al., 2009). However, the ICR
data is hierarchically grouped by WTP; model errors are correlated
for measurements within each WTP such that pooling the data
produces overconfidence in model estimates. In this study, multi-
level/hierarchical regression models (MLMs) were used to accom-
modate the hierarchical data structure and to estimate the variance
between and within groups. The MLMs developed have a 2-level
hierarchical structure, with level-1 units (9578 sample records)
nested within level-2 groups (412 WTPs). The 412 WTPs have a
median of 25 records (25th percentile of 20; 75th percentile of 29,
range 3—30).

In this study, the classic and multilevel regression models were
designated in two ways. For Objective 1, we first regress HAN
concentrations on THM concentrations (i.e., [HANs] = §[THMs] + «)
to estimate the variance in HAN concentrations explained by THMs.
For the remainder of Objective 1 and for Objective 2, we use the

ratio of HAN to THM concentrations as the outcome variable (i.e.,

% = a) to directly evaluate whether HAN and THM concentra-

tions are proportional, i.e., maintain a constant ratio. The variance
estimates for the multilevel model fit to the HAN:THM ratio are
more robust to left-censoring than the equivalent bivariate multi-
level model regressing HANs against THMs (Supplemental Text S2).

Regression coefficients for MLMs can either vary by group or are
fixed for the population of groups. Equations (1.1) and (1.2)
comprise the bivariate MLM used to evaluate the variance in HAN
concentrations explained by THMs. Equation (1.1) describes level-1,
where outcome variable y;; is the HAN concentration (log-nM) in
sample i from WTP j, explanatory variable x;; is the THM concen-
tration (log-nM) in sample i from WTP j, coefficient §; is the slope
for WTP j, coefficient q; is the intercept, and e;; is the residual error
of sample i in WTP j. Equation (1.2) describes level-2 of the model,
in which coefficients «; and g; consist of a fixed population
parameter fit to all WTPs in the dataset (¢ and g, respectively),
and parameters that are fit to each WTP j (u; and v;, respectively); u;
and v; were assumed to be uncorrelated. Because the HAN and THM
concentrations are log-normally distributed, they were log-
transformed prior to modeling for precision in the variance
estimates.
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Level 1 : Yij =aj+6jxij+e,-j (1.1)

Level 2 : o = ag + Uj, ﬂj:60+vj (1.2)

Equations (2.1) and (2.2) describe the univariate model (i.e., a
model with no explanatory variables), with the intercept allowed to
vary by WTP to model the variance in the HAN:THM ratio between
and within WTPs. Equation (2.1) describes level-1 of the model, in

HAN (nM)
THM (nM)

which outcome variable y;; is defined as Iog( ) in sample i

from WTP j, coefficient ; is the intercept, and e;; is the residual
error of sample i in WTP j. Level-2 (Equation (2.2)) shows that ;
consists of population parameter «g, a fixed value fit to all WTPs,
and u;, fit to each WTP j.

Level 1: y; = aj +€j (2.1)

Level 2 : aj = ag + u; (2.2)

To evaluate the effect of key water system features on the
HAN:THM ratio, Equation (2.1) was modified to include four cate-
gorical explanatory variables (Equation (3.1)): source water type
(SRC), sample location (EVNT), season (SEAS), and disinfectant
sequence (DIS) (coefficients gy, v, 6, and my, respectively). Inter-
cept ag; is allowed to vary by WTP as in the previous model
(Equation (3.2)). Interaction terms are included for source water
type with disinfectant sequence and with season (coefficients ¢,
and n,,, respectively) to capture differences in the effect of season
on different source types, and dependencies between the choice of
disinfectant and the source water type.

Yi=0;+ > BkSRCy+ > YiEVNT + > 6, SEASy + > mnDISp+
k 1 m n

> > CkmSRGSEASm + > > “ninSRC(DISy + €; (3.1)
kK m k n
Q=g + Uj (3.2)

2.4. Estimating odds ratio bias

We used logistic regression to estimate the potential odds ratio
bias that may be incurred from misclassifying exposure with THMs
as a proxy for more toxic DBPs, with HANs as an illustrative
example. Epidemiologic studies often designate a threshold THM
concentration as a binary indicator of low or high DBP exposure. For
each ICR record, the “proxy” exposure variable was set to one for
THM concentrations above 543 nM (the 90th percentile ICR con-
centration) and zero otherwise. The “true” exposure was set to one
for HAN concentrations above the 90th percentile concentration,
62.4 nM, and zero otherwise.

The probability of a given health outcome Y, P(Y), as a function
of the binary THM exposure surrogate, Z, is given by:

exp (a + N+ Zjijj>

= 4.1
1+ exp (oz + N+ ijjo>

P(Y)

Where 1 estimates the odds ratios for Y with exposure surrogate Z,
and W; is a set of covariates (i.e., source water and distribution
system location). For the “true” DBP exposure X and the unbiased
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odds-ratio estimate \":

exp <a +NX+ Zj’ijj>
1+ exp (a +NX+ Zﬂjo)

P(Y)= (42)

Using equations (4.1) and (4.2), we fit the relationship between
exposure proxy Z and “true” exposure X to estimate the true odds
ratio (1) values corresponding to odds ratio estimates (1) deter-
mined in epidemiologic studies that used THM as the exposure
indicator. A maximum likelihood approach was used to estimate
the true odds ratios (1*). This required several assumptions: 1) that
HANSs, not THMs, affect health outcomes, 2) that the prevalence of
congenital anomalies and bladder cancer in the general population
is low, and 3) that exposure misclassification is unrelated to the
likelihood of a health outcome or to covariates Wj, (i.e., it is non-
differential). Further details regarding the methods and assump-
tions are provided in Text S3.

3. Results and discussion
3.1. THMs as a simple linear predictor of HAN concentrations

By using THMs as a surrogate for overall DBP exposure, epide-
miologic studies implicitly assume that THMs are proportional to
more toxic DBPs such as HANs. For studies within single water
systems, this assumption requires that THMs are highly correlated
with HANs, and the intercept (i.e., the HAN concentration projected
for a THM concentration of zero) is small such that the HAN:THM
ratio does not vary substantially with THM concentration. For
studies that pool data from two or more water systems, this
assumption further requires a low variance in slopes and intercepts
between water systems, such that THM concentrations are
consistently representative of HAN concentrations. If these condi-
tions are not met, the use of THMs as a surrogate may cause
exposure misclassification resulting in odds ratio bias.

Fig. 1 shows the ordinary least squares (OLS) linear regression of
HANs on THMs, where data from 9587 records is pooled without
accounting for hierarchical clustering by WTP. The correlation co-
efficients (%) on a weight (0.31) and molar basis (0.29) indicate that

T 1 T
400 . .
% y=0.064x + 14.1
° rsq = 0.29
300 - . g
s
8=
2 200 -
<
I
100
0"
T T T
0 1000 2000
THMs (M)

Fig. 1. Scatter plot (center) and distributions (margins) of THM and HAN nM con-
centrations measured in finished effluent and distribution system samples (n = 9587).
The OLS line of best fit is y = 0.064x + 14.1 (ug/L: y = 0.066x + 1.8) with Pearson’s
correlation coefficient (r?) of 0.29 (ug/L: 0.31).
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THM s account for only ~30% of total variation in HANSs, substantially
lower than the ~0.9 r>-values reported for smaller datasets (Krasner
et al., 1989; Wei et al., 2010). For this pooled regression, the error in
the predicted HAN concentration for a given THM concentration
(errorypeq) is calculated by Equation (5), where @ is the standard
deviation of the residuals, xq is a measured THM concentration, and

var(f) is the variance of the slope estimate.

~2
erToTyreq = m’ var(B) = m )
i-1(Xi —

For the median THM concentration of 31.4 pg/L (223 nM)
(Table 1), the predicted HAN concentration is 3.89 pg/L (28.5 nM)
with a 95% confidence interval of 0 pg/L to 9.5 pug/L (0 nM—76 nM).
For perspective, this interval is 2.6 times the interquartile range of
HAN concentrations (3.8 pg/L, 29 nM), indicating that THMs are an
imprecise predictor of HANs across multiple water systems.

The fan-shape evident in Fig. 1 suggests that the prediction er-
rors increase with increasing THM concentrations (i.e., the model
errors are heteroscedastic), which was confirmed by a Breusch-
Pagan test for heteroskedasticity significant at the 0.1% level
(Breusch and Pagan, 1979). Heteroscedasticity is often a feature of
hierarchically-grouped data where each group has a distinct line of
best fit, as would be the case if the HAN:THM relationship varies
systematically between water systems.

3.2. Variance in the linear relationship of THM and HAN
concentrations between water systems

To evaluate the variance between and within the 412 WTPs,
Equation (1) MLM was fit to the ICR dataset with HANs (log-nM) as
the outcome and THMs (log-nM) as an explanatory variable to
obtain intercept « and slope § for each WTP. The total variance in
the regression is decomposed into two components: the level-2
variances, i.e., the systematic variance between the 412 WTP in-
tercepts (¢2 = 0.087) and slopes (a§ = 0.008), and the level-1 re-

sidual variance within WTPs (¢2 = 0.128) (Table S2A). The
proportion of variance in HANs explained by THMs (R? = 0.322) can
be calculated by comparing the total variances in this model with
and without THMs as an explanatory variable (Table S3). Thus, even
after considering clustering by WTPs, THMs only explain ~32% of
the total variance in HANs.

Table 1
Percentiles of THM and HAN concentrations in the ICR dataset.

Statistic THMs HANs HAN:THM ratio

pg/l oM pg/l oM ug/L/ug/L  nM/nM
mean 36.5 265 4.2 31.1 0.182 0.199
standard deviation 29.1 223 35 26.7 0.159 0.184
Percentile
0%* 2.0 11.6 1.0 6.9 0.00560 0.00490
10% 34 194 1.0 6.9 0.0476 0.0466
20% 11.6 74.6 14 10.1 0.0745 0.0758
25% 15.2 102 1.8 12.6  0.0856 0.0876
30% 18.5 128 2.0 146  0.0958 0.0987
40% 253 176 2.6 192  0.115 0.121
50% 314 223 33 244  0.136 0.143
60% 382 276 40 29.7  0.158 0.166
70% 46.6 335 5.0 36.7 0.188 0.201
75% 511 376 5.6 41.2 0.212 0.227
80% 56.8 418 6.3 46.1 0.244 0.265
90% 743 543 8.5 624 0451 0.500
100% 323 2680 52.1 398 1.95 217

Table notes: *The minimum values are ; of the MRLs, which replaced left-censored
entries for the main analyses in this study.



K.E. Furst, J. Bolorinos and W.A. Mitch

Across 412 WTPs, the intercepts «; (mean 1.33; 0.295 standard
deviation (SD)) and slopes §; (mean 0.349; 0.088 SD) obtained from
modeling the log-transformed HAN and THM concentrations
exhibited substantial variability (Table S2A). The slopes represent
the percent increase in HAN concentration for each 1% increase in
THM concentration. 95% of the WTP slopes fall between 0.206 and
0.479; thus, for a 1% increase in THMs, the mean increase in HANs is
between ~0.21% and ~0.48% for most WTPs. To isolate the potential
implication of this variability in slopes, we translate to HAN con-
centrations with the equation [HANs] = e“*[THMs]ﬁ ; for the mean
intercept (e!-33 = 3.78 nM HANSs) and median THM concentration
(223 nM), the mean HAN concentration is between 11.5 and
50.7 nM for 95% of WTPs. This interval spans the 20th and 85th
percentile HAN concentrations, and easily exceeds the interquartile
range (28.6 nM). Therefore, the high variability in slopes relating
HAN and THM concentrations between water systems has practical
implications for the use of THMs as an exposure surrogate for HANSs.
The relative standard deviation of the intercepts (0.221) is almost as
great as for the slopes (0.252), indicating that variation in baseline
HAN concentrations between WTPs may be substantial enough to
violate the assumption of proportionality between THMs and
HANS.

3.3. Evaluation of the assumption of proportionality of HANs and
THMs between and within WTPs

The use of THMs as a proxy for total DBP exposure assumes that
concentrations of THMs and other DBPs are proportional, i.e., that
they maintain a constant ratio as concentrations increase or
decrease. Section 3.2 demonstrated that for many WTPs, the in-
tercepts representing baseline HAN concentrations unassociated
with THM formation can be substantial, which suggests that the
assumption of proportionality could be violated within water sys-
tems. However, the simultaneous variation in both slopes and in-
tercepts among WTPs makes the proportionality of THMs and
HANSs difficult to evaluate. To test whether the assumption of pro-
portionality results in inaccurate estimations of exposure to HANS,
Equation (2) MLM was fit with the ratio of log-transformed HAN
and THM concentrations as the outcome variable.

The mean of the 412 WTP log-HAN:THM ratios is —1.98 with a
between-WTP variance (i.e., the systematic variance, ¢2) of 0.480

and within-WTP variance (i.e., residual variance, ¢2) of 0.249
(Table S4A). The portion of the total variance attributable to sys-
tematic variance is computed by the Intraclass Correlation (ICC), p
(Equation (6)), which ranges from 0 (no systematic variance) to 1
(all variance is systematic).

it
r= 02 + g2 ()

The ICC for the Equation (2) MLM is 0.66, indicating that
epidemiologic studies spanning multiple WTPs while employing
the assumption of proportionality between THMs and unregulated
DBPs like HANs may be particularly vulnerable to exposure
misclassification bias.

The geometric mean HAN:THM ratio for the population of WTPs
is 0.138, while the 412 WTP geometric mean HAN:THM ratios range
from 0.0239 to 0.795 (Fig. 2). Thus, depending on WTP, typical HAN
concentrations could be anywhere between ~2.4% and ~80% of THM
concentrations. Even if we exclude outliers by only considering
ratios within the 2.5th and 97.5th percentiles [0.0364, 0.563], the
median THM concentration (223 nM) corresponds to mean HAN
concentrations between 7.7 and 123 nM, an interval four-fold wider
than the interquartile range (28.6 nM HANs). Thus, THMs are not
proportional to HANs across ICR WTPs, and the variance in the
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60

Counts

20 +

T T T T
0.0 0.2 0.4 0.6 0.8

Mean HAN:THM ratio

Fig. 2. Histogram of geometric mean HAN:THM ratios estimated for 412 WTPs using
the multilevel regression model described by Equation (2). The black solid line in-
dicates the mean, with grey dashed lines indicating the 95% confidence interval for the
mean. The green dashed lines indicate the 2.5 and 97.5 percentiles. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web version
of this article.)

HAN:THM ratio is sufficient to introduce substantial misclassifica-
tion bias in epidemiologic studies that span multiple water
systems.

Considering only within-WTP variance in the HAN:THM ratio
(~34% of the total variance), the HAN:THM ratio ranges from 0.051
(2.5th percentile) to 0.374 (97.5th percentile). For the median THM
concentration (223 nM), this translates to a range of 11.3—83.6 nM
HANSs, which is 2.5-fold larger than the interquartile range of HAN
concentrations. Thus, there is substantial variance in the HAN:THM
ratio within many water systems, and the assumption that THMs
are proportional to HAN concentrations may introduce non-trivial
misclassification bias in epidemiologic studies, even when the
assumption is employed within one water system.

3.4. Evaluation of the contribution of water system features to
systematic variance in the HAN:THM ratio

To evaluate whether key water system features can explain the
between-WTP and within-WTP variance observed in the HAN:THM
ratio, Equation (2) was adapted to include the following explana-
tory variables: source water type, season, disinfectant sequence,
distribution system location, and the interactions of source water
type with season and disinfectant sequence (Equation (3)). The
variances and coefficients estimated by this model are presented in
Table S5 and Fig. S1. To evaluate the portion of variance explained
by water system features, we compare these variances to those
estimated with the univariate model (Section 3.3). The between-
WTP variance (u;), 0.283, is lower than the univariate model
(0.480) by 41%, indicating that these water system features explain
a substantial portion of the systematic variance. The within-WTP
variance (e;;), 0.212, is reduced compared to the univariate model
(0.249) by ~15%. The total variance in the HAN:THM ratio was
decomposed into the variance explained by each variable and the
residual variance with ANOVA (Analysis of Variance). The water
system features and interaction terms each explain a statistically
significant share of the total variance in HAN:THM ratios (Table S6).

The mean HAN:THM ratio ag is —2.133 in log-nM units; expo-
nentiating, the conditional geometric mean ratio is 0.119 (nM/nM).
Thus under “base-case conditions”, i.e., in finished effluent of WTPs
utilizing surface water with chlorine-chlorine disinfection in
summer, HAN concentrations are ~12% of THM concentrations.
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Table 2
Effects of categorical variables as percent increase or decrease of the mean
HAN:THM ratio estimated for surface water.

Category % Effect (2.5%, 97.5% CI) Adjusted mean ratio Sig.
Base-case: SW, FINISH, Summer, CL2-CL2 0.119 ok
Source water (FINISH, Summer, CL2-CL2)

GW 165 (122, 217) 0315 okok
MIX 72.9 (314, 128) 0.205 ekok
GI 52.7 (7.5,117) 0.181 *
PUR 24.1 (-30.6, 122)

Sampling location (SW, Summer, CL2-CL2)

DSE —20.9 (-23.2, -18.6) 0.094 ook
AVG1 —26.4 (-28.5, —24.2) 0.087 ok
AVG2 —27.0(-29.1, —24.9) 0.086 Hokok
MAX —40.0 (—41.7, -38.2) 0.071 ook
Season (SW, FINISH, CL2-CL2)

Autumn 11.9(8.7,15.2) 0.133 ook
Winter 38.1(33.6,42.8) 0.164 okok
Spring 19.7 (15.7, 24.0) 0.142 ook
Disinfectant sequence (SW, FINISH, Summer)

CL2-CLM 1.0(-11.8,15.7)

Cl2-CLM-CLM 19.3 (61, 24.1) 0.141 ook
CLM 22.3 (1.1, 48.0) 0.145 *
CLX-CL2 —28.5(—45.0, -7.2) 0.085 *
CLX-CLM -11.8 (-27.3,6.9)

CL2 —4.0 (-27.8,27.7)

03-CL2 11.9 (-8.6, 37.0)

03-CLM 29.2 (3.7, 61.0) 0.153 *

Table key: Sig.: significance to the * 95%, ** 99%, or *** >99.9% confidence level.
Disinfectant sequence abbreviations: chlorine (CL2), chloramines (CLM), chlorine
dioxide (CLX), ozone (03).

Table notes: Effect estimates in Table S5A were converted to percent effect by
exponentiating, subtracting one, and multiplying by 100. To calculate the adjusted
mean ratio for a particular category, add 100% to the percent effect and multiply by
the conditional mean ratio (i.e., the intercept, the base-case, 0.119).

3.4.1. Source water

Compared to the base-case of surface water, mean HAN:THM
ratios for all source water categories were significantly different
(p < 0.05), with the exception of purchased/wholesale (Table 2,
Fig. 3A). Relative to surface water (0.119), the mean HAN:THM ratio
for groundwater (0.315) represents a 165% mean increase in HANs
relative to THMs (in finished waters treated with chlorine-chlorine
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disinfection in the summer). On a molar basis, HAN concentrations
are ~12% of THM concentrations in surface water, but ~32% of THM
concentrations in groundwater. Estimated mean HAN:THM ratios
for mixed source water and groundwater under the influence of
surface water represent a 73% and 53% increase over surface water,
respectively, consistent with their intermediate status as blends of
surface water and groundwater. To evaluate whether these effects
are primarily driven by differences in HANs or THMs, Equation (3)
MLM was fit with either HAN or THM concentrations (log-nM) as
the outcome variable (Fig. S2; Table S7; Table S8). For both HANs
and THMs, mean concentrations were lower in groundwater
compared to surface water. However, HANs were only 46% lower in
groundwater (15 nM) compared to surface water (28 nM) while
THMs were 79% lower in groundwater (50 nM) than surface water
(237 nM), on average. Thus, the discrepancy in HAN:THM ratios
between different source water types is driven by greater differ-
ences in THMs relative to HANs. The reasons for the different
behavior of HANs and THMs with respect to source water categories
is beyond the scope of this model, and warrants further
investigation.

3.4.2. Seasonal impacts

Statistically significant variation was observed in the HAN:THM
ratio across all seasons for the base-case of finished water dis-
infected with chlorine-chlorine associated with surface water
(Table 2, Fig. 3B). The geometric mean HAN:THM ratio is lowest in
summer (0.12) and peaks in winter (0.16), a 38% increase. The
interaction effects between season and source water type indicate
that the HAN:THM ratio does not seasonally vary in groundwater
(Table 3). Seasonal variation of THMs in surface waters has been
demonstrated, accompanied by the assumption that the changes
are representative of the overall DBP mixture (Symanski et al.,
2004; Rodriguez et al., 2004). To determine whether seasonal ef-
fects on the HAN:THM ratio are due to changes in THMs or HANSs,
Equation (3) was refit with either THMs or HANs as the outcome
variable. A significant (p < 0.001) reduction in THMs was observed
in winter by ~35% relative to summer for finished surface waters
disinfected with chlorine-chlorine (Table S8), while HANs were
only ~10% lower in winter (p < 0.001) (Table S7). Additional
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Fig. 3. Point plots showing estimated geometric mean HAN:THM ratios for each category of A) source water, B) season, C) disinfectant sequence, and D) distribution system location.
Error bars represent 95% CI; all plotted effects were significant (p-value<0.05 or less) with the exception of four disinfectant sequences (Table 2).
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Table 3

Effects of categorical variables as percent increase or decrease of the mean HAN:THM ratio; interactions of groundwater with season and disinfectant sequence.
Explanatory variables Percent effect (2.5%, 97.5% CI) Adjusted mean ratio Sig.
GW, FINISH, Summer, CL2-CL2 165 (122, 217) 0.315 Hkk
Season (GW, FINISH, CL2-CL2)
Autumn —-11.0 (-15.8, —-5.8) 0313 HkE
Winter ~26.6 (~31.3, -21.7) 0.319 ok
Spring 143 (-19.9, -8.4) 0.323 ok
Disinfectant sequence (GW, FINISH, Summer)
CL2-CLM 21.0 (~58.8, 255)
CI2-CLM-CLM —27.8 (—46.3, -3.0) 0.271 *
CLM ~22.0 (—45.0, 10.6)
CL2 39.5(-1.4,97.4) 0.421
03-CLM ~34.5(-78.0,94.7)

Table key: Sig.: significance to the *95% confidence level, **99% confidence level, and ***>99.9% confidence level (".” indicates near significance at the 95% confidence level).
Table notes: Values for adjusted mean ratios are only provided if the effect was significant. Effect estimates from Table S5B are converted to percentages by exponentiating,
subtracting one, and multiplying by 100. To calculate the adjusted mean ratio for a category with groundwater, refer to Table 2 for the adjusted mean ratio of that category
with surface water, multiply by 265% (the percent effect for groundwater plus 100%), and finally multiply by the percent effect of that category with groundwater plus 100%.

research is needed to isolate the causes responsible for the
observed seasonal differences in HAN and THM formation.

3.4.3. Disinfectant sequence

The choice of disinfectant sequence is dependent on the source
water type, quality, and treatment train (Obolensky et al., 2007). Of
412 WTPs, 146 (35%) used chloramines for secondary and/or pri-
mary disinfection during the study period. Some WTPs used chlo-
rine dioxide (21, 5.1%) and ozone (18, 4.4%) for primary disinfection.
The ANOVA results show that overall, the portion of the variance
due to disinfectant sequence type is statistically significant yet
small relative to other predictors (Table S6). Of eight disinfectant
sequences used by surface water WTPs, four exhibit statistically
significant differences in mean HAN:THM ratios compared to
chlorine-chlorine WTPs for finished waters in the summer (Table 2,
Fig. 3C). WTPs that used chlorine dioxide-chloramines and ozone-
chloramines exhibit 28.5% and 29.2% lower HAN:THM ratios than
chlorine-chlorine WTPs. WTPs that used chlorine-chloramines-
chloramines or chloramines-only exhibit 19.3% and 22.3% higher
HAN:THM ratios, respectively. At groundwater WTPs, the effects of
most disinfectant sequences were statistically indistinguishable
from surface water WTPs. However, groundwater WTPs that used
chlorine-chloramines-chloramines had a 14% lower adjusted mean
HAN:THM ratio (0.271) relative to chlorine-chlorine.

To determine whether these effects correspond to trends in
individual THM and HAN concentrations, the model was refit with
THM or HAN (log-nM) concentrations as the outcome variable
(Tables S7 and S8). For surface water WTPs, mean HANs are ~30%
lower and mean THMs are 20—45% lower for WTPs that used four of
five chloramine-based disinfectant sequences (chlorine-chlora-
mines, chloramines, chlorine dioxide-chloramines, and ozone-
chloramines) compared to chlorine-chlorine. However, mean
HAN and THM concentrations at chlorine-chloramine-chloramine
WTPs are not significantly distinct from chlorine-chlorine WTPs.
These models compare concentrations between WTPs that used
chlorine-chlorine and other disinfectant sequences, which is
distinct from comparing concentrations between different disin-
fectants used within the same water system. WTPs that used a
chloramine-based disinfectant sequence may not have had the
same THM or HAN concentrations with chlorine as WTPs still using
chlorine at the time of ICR data collection, particularly as WTPs
with higher THMs are more likely to implement chloramines.

3.4.4. Distribution system location

The ANOVA results show that distribution system location ex-
plains a notable share of the variance in the HAN:THM ratio, indi-
cated by the high sum of squares (Table S6). Under base-case

conditions (surface water disinfected with chlorine-chlorine in
the summer), the geometric mean HAN:THM ratio decreased by an
average of 40% between FINISH (0.119) and MAX (0.071) sampling
locations, and by ~20—27% between FINISH and the three inter-
mediate sampling locations (Table 2, Fig. 3D). A decline in the
HAN:THM ratio with distance from the WTP is consistent with
findings that THMs tend to increase with distribution system
retention time (Rodriguez et al., 2004), while HANs may peak early
and decline with time due to hydrolysis (Yu and Reckhow, 2015).
These trends were confirmed by fitting the model with either HANs
or THMs as the outcome variable (Tables S7 and S8). Under base-
case conditions, THMs increase by ~35—45% between FINISH and
intermediate sampling locations, and ~64% between FINISH and
MAX sampling locations, on average (Fig. S3A). The average change
in HANs is small or negligible, with a 7.4% increase between FINISH
and AVG2, and no significant difference (p > 0.05) between FINISH
and MAX (Fig. S3B).

3.4.5. Practical importance for epidemiological studies

To understand the implications of the effects of these four water
system features on the HAN:THM ratio, consider a hypothetical
epidemiologic study which uses THMs as an exposure surrogate for
more toxic DBPs like HANs. This study encompasses one surface
water and one groundwater system, both using chlorine-chlorine in
the summer, with mean HAN:THM ratios corresponding to the
model estimates (Table 2). We measure 235 nM THMs in the surface
water system and 89 nM THMs in the groundwater system, rep-
resenting a 62% reduction in the exposure surrogate for the
groundwater system customers. However, HAN concentrations are
28 nM for both the surface water (0.119 HAN:THM) and ground-
water (0.315 HAN:THM) systems. Epidemiologic studies often
bracket THM concentrations into tertiles or quartiles. Say the data
distribution in our study is identical to the ICR (Table 1); we
therefore classify 89 nM in the first tertile or quartile, and 235 nM in
the second tertile or third quartile. We also try classifying exposure
with a binary contrast, assigning the low (reference) dose to cus-
tomers of the groundwater system and the high (treatment) dose to
customers of the surface water system. Either way, if HANs are the
main driver of the health outcome of interest, our study would
likely result in a false negative.

Similarly, consider a study within one water system disinfecting
with chlorine-chlorine in the summer. Say we measure 235 nM
THMs in the finished effluent (or nearest customer location) and
394 nM THMs at the maximum residence time location. We
therefore classify exposure as ~68% higher at the maximum resi-
dence time location, but actual HAN concentrations are 28 nM at
both locations (FINISH: 0.119, MAX: 0.071 HAN:THM). Say
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235-394 nM THMs represents the range of concentrations
measured in the study, and we classify exposure by bracketing THM
concentrations into tertiles or quartiles. Thus, we assign the nearest
customer to the lowest exposure bracket and the maximum resi-
dence time customer to the highest bracket. If HANs are the main
driver of the health outcome of interest, our study would likely
result in a false negative. Say we conduct another study in this
system to consider seasonal contrasts. In finished effluent, we
measure 235 nM THMs in summer and 171 nM THMs in winter,
representing a 38% reduction, but HAN concentrations were 28 nM
in both summer (0.119 HAN:THM) and winter (0.164 HAN:THM). If
HANSs are the main driver of the targeted health outcome, we would
accurately find no effect of season on exposure risk, but we would
miss-attribute the reason to an insufficient contrast in THM
concentrations.

Finally, consider a study of surface water systems using different
disinfectant sequences. We measure 235 nM THMs at a facility
using chlorine-chlorine disinfection, and 193 nM THMs at a facility
using chloramines, and therefore classify exposure as ~20% lower
for the chloramine facility. But HAN concentrations were 28 nM at
both the chlorine-chlorine (0.119 HAN:THM) and chloramines
(0.145 HAN:THM) facilities. Although the largest effect identified
for a disinfectant sequence, 29% (chlorine-chlorine versus ozone-
chloramines), is smaller than the maximum effect for the other
three water system features, combinations of categorical effects
could compound differences in the HAN:THM ratio. For example, if
223 nM THMs were measured in the finished effluents of a surface
water facility using chlorine dioxide-chlorine (0.085 HAN:THM)
and a groundwater facility using chlorine-chlorine (0.315
HAN:THM), the HAN concentrations would be 19.0 nM (~40th
percentile) and 70.2 nM (>90th percentile), respectively, repre-
senting a 270% increase.

3.5. Odds-ratio bias from DBP-exposure misclassification

The final objective of this study is to estimate the odds ratio bias
that could result from using THMs as a surrogate of exposure to
other DBPs in epidemiologic studies, with HANs as an example. If
THMs do not accurately measure exposure to HANS, this could
result in misclassification of exposure, which could in turn result in
systematic biasing of odds ratio estimates. Table 4 presents a
confusion matrix in which high THMs (>90th percentile concen-
trations) are used as an indicator of high HAN exposure (>90th
percentile concentrations). Eighty-four percent of ICR records
represent true negatives, with low THMs accurately identifying low
HAN exposure. Of the high-HAN observations, only 41% were
correctly classified as high-exposure by the THM indicator, while
59% were incorrectly classified as low-HAN exposure (false nega-
tives). Conversely, 59% of high-THM observations correspond to
low-HAN exposure (false positives). This demonstrates that using
high THMs as an indicator of high HAN exposure can introduce
exposure misclassification in the form of both false negatives and
false positives.

Odds ratio bias was estimated using the confusion matrix in
Table 4 and Equation S(8). Fig. 4 provides the estimated mean odds
ratios and 95% CI corresponding to “true” DBP-exposure odds ratios

Table 4
Confusion matrix showing the percentage of sampling events (n = 9586) with false
negatives and false positives in the ICR dataset.

THM Exposure = 0 THM Exposure = 1

HAN exposure = 0 84% 5.9%
HAN exposure = 1 5.9% 4.1%

Water Research X 11 (2021) 100089

FINISH

5 T =1

2

3

2

1

5 —==T

2 S

3 //
—~ 21
o R
‘< Source Water Type
Q5 ——— — Ground
© 4 Surface
e
3 % Prior Estimates
8 Bladder Cancer
35 — Reproductive anomalies
4

11.#

MAX

5 et

3

2

11 £2 e

1 2 3 4 5
Estimated odds ratio (Arg)

Fig. 4. Risk ratio estimates resulting from true risk-ratios between 1 and 5 and esti-
mated exposure misclassification, by source water type and sampling location. Note:
dotted line plots y = x (i.e., no risk ratio estimation bias); sampling locations are or-
dered (top to bottom) by sample point distance from WTP; grey points on bottom
panel give odds-ratio estimates from prior meta-analyses of DBP exposure and bladder
cancer (Hrudey et al., 2015) and reproductive anomalies (Nieuwenhuijsen et al., 2009).

for each distribution system location for WTPs treating ground-
water or surface water with chlorine during the summer. The re-
sults indicate that misclassification of HAN exposure from the use
of THMs as a surrogate could lead to significant downward bias in
odds ratio estimates for WTPs utilizing both surface water and
groundwater, across each of the five sampling locations. The points
in the bottom panel of Fig. 4 show selected odds-ratio estimates for
DBP exposure’s effects on bladder cancer (Hrudey et al., 2015) and
reproductive (i.e., congenital) anomalies (Nieuwenhuijsen et al.,
2009). Prior odds ratio estimates are generally between 1 and 2,
although values as high as 3.7 were found for certain subgroups at
risk of bladder cancer (additional details provided in Text S3 and
Table S9). Across the entire study sample, our estimates indicate
that an estimated odds ratio of 2 may correspond to a true odds
ratio of 4.6 and will be above 4.2 in 98% of cases.

The variation in odds ratio bias by source water type suggests
that bias is often larger in surface water WTPs than groundwater
WTPs. In finished effluent, an estimated odds ratio of 2 could
correspond to a real odds ratio of 3.1-5.0 (95% CI) in surface water
compared to 2.1-2.5 (95% CI) in groundwater. For surface water,
bias also increases with distance from the water treatment plant. In
the case of surface water sampled from the furthest (“MAX")
location category, a measured odds ratio of just 2 could correspond
to a true odds ratio of 5.3—10.1.

4. Conclusions

Using THMs to measure DBP exposure implicitly assumes that
THM concentrations are proportional to concentrations of more
toxic DBPs in the mixture, and that this proportionality is robust to
variables within water systems, such as distribution system resi-
dence time, and between water systems, such as differences in
source waters. Using HANs as an example, this study employed
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statistical models to evaluate the assumption that THMs are pro-
portional to more toxic DBP classes using a dataset of 9578 records
from 412 large US water systems. Whether the data is pooled in a
classic linear regression or hierarchically grouped by WTP in a
multilevel regression, THMs only explain ~30% of the variance in
HANs and are poor predictors of HAN concentrations. The multi-
level regression on the HAN:THM ratio demonstrated that THMs
are not proportional to HANs within or between water systems,
though much of the variance in the HAN:THM ratio (~66%) was due
to effects between water systems.

Four water system features (source water type, season, disin-
fectant sequence and distribution system location) accounted for
41% of the between-WTP variance in the HAN:THM ratio. Source
water type had the largest magnitude effect, with groundwater
exhibiting a 165% higher HAN:THM ratio than surface water under
base-case conditions (chlorine-chlorine, finished effluent, sum-
mer). HAN:THM ratios were 38% higher during summer compared
to winter in chlorinated surface water. Some disinfectant sequences
were associated with a 20—30% change in the HAN:THM ratio
relative to chlorine-chlorine disinfection. In chlorinated surface
water during summer, HAN:THM ratios declined by 40% between
finished effluents and maximum distribution system locations. In
most cases, changes in THM concentrations drove differences in the
HAN:THM ratio, while HANs were less affected by water system
features.

A quantitative analysis of misclassification bias found that using
high THM concentrations as an indicator for high HAN concentra-
tions was associated with a 5.9% probability of false negatives and
5.9% probability of false positives. Across the study sample, an
estimated odds ratio of 2 constructed based on THM concentrations
may correspond to a “true” odds ratio of 4.6. The estimated odds
ratio bias is greater in surface water than in groundwater, and in-
creases with distance from the treatment plant. The results
demonstrate that THMs are not a reliable surrogate for HANs, and
the misclassification bias associated with the use of THMs to
measure overall DBP exposure may significantly reduce the ability
to discern associations between DBP exposure and adverse health
outcomes.

As the >700 known DBPs account for less than half of the total
organic halogen (TOX), identifying which DBPs drive adverse health
effects is a significant challenge. Epidemiologic studies could aid
this effort by targeting the analysis of more DBP classes, particularly
high-toxicity classes such as HANs, through the use of existing
datasets like the ICR and in new sampling campaigns. Measuring
semi-volatile unregulated classes like HANs should not add
excessive analytical burden to sampling efforts, as they can be
extracted and analyzed using the same method as THMs. Further-
more, strategic data collection efforts are needed to identify
whether HANs or other easily measured DBP classes are effective
surrogates for exposure to a wide array of DBP classes. While pre-
vious survey efforts have focused on measuring unregulated DBPs
in multiple water systems, this study demonstrates the need for
better spatiotemporal resolution within water systems to evaluate
the covariance of multiple classes with hydraulic residence time.
Future DBP data collection efforts should be designed to achieve
statistical significance with multilevel modeling techniques to
accurately estimate variance between and within water systems for
as many co-occurring DBP classes as possible.
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