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Abstract

Background: This study aimed to isolate potent thermophilic and amylolytic bacteria from a hot spring of
Pharaoh’s bath, Sinai, Egypt, and screen its degradative activity. The amylolytic activity was further optimized using
a statistical full factorial design followed by response surface methodology.

Results: A thermophilic bacterium was isolated from the hot spring of Pharaoh’s Bath, Sinai, Egypt. The isolate
produced amylase, cellulase, and caseinase and was identified by 16S rRNA gene sequencing as Parageobacillus
thermoglucosidasius Pharon1 (MG965879). A growth medium containing 1% soluble starch was found to optimize
the amylase production. Dinitrosalycalic acid method (DNS) was used to estimate the amount of reducing sugar
produced. Statistical full factorial and response surface designs were employed to optimize physical variables
affecting the α-amylase production and determine the significant interactions of the studied variables during the
fermentation process. According to the results obtained by the response optimizer, the maximum amylase activity
reached 76.07 U/mL/ min at 54.1°C, pH 5.6 after 98.5 h incubation under aerobic conditions. Moreover, the
produced enzyme was thermostable and retained most of its activity when exposed to a high temperature of
100°C for 120 min. Maximum enzyme activity was attained when the enzyme was incubated at 70°C for 30 min.

Conclusions: This is the first report of the production of thermostable α-amylase by the potent thermophilic
Parageobacillus thermoglucosidasius. The enzyme endured extreme conditions of temperature and pH which are
important criteria for commercial and industrial applications.

Keywords: Thermostable amylase, Thermophilic, Parageobacillus thermoglucosidasius, Hot spring, Full factorial
design, Response surface optimization
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Background
Amylases are important enzymes that play a pivotal role
in biotechnology. They are produced by plants, animals,
and microorganisms. Amylases are widely used in baking
and bread industry, fermentations, textiles, alcohols,
pharmaceuticals, and detergents [1]. Moreover, they are
used in the production of corn and chocolate syrup, pro-
duction of low-calorie beer, purification of apple and
pear juice, malt production, and in removing stickiness
in the paper industry [2–4].
Microbial amylases have been generally favored over

other plant’s and animal’s amylases because they are eas-
ily produced at low cost and in a shorter time. More-
over, the production of bacterial amylase is cheaper and
faster than amylases produced by other microorganisms.
Many industrial enzymatic reactions occurring at high
temperatures have advantages in decreasing the contam-
ination risk, increasing the diffusion rate, being resistant
to denaturing agents, and proteolytic enzymes [5].
The amylases produced by different Bacillus species

differ in their types, range of pH, and temperature [6].
The hot springs are a promising source for isolation of
thermophilic bacteria producing thermo-stable α-
amylase required in many industrial applications [7, 8].
The demand for thermostable amylases in biotechnology
and industrial applications is increasing [9]. However, re-
ports about bacterial strains that could produce thermo-
stable amylase are still limited [10].
Statistical and mathematical techniques for predicting

the behavior of process variables and explaining their in-
teractions, and response surface methodology (RSM)
have been applied in the optimization of amylase pro-
duction [11–13].

Methods
Sampling and isolation of thermophilic bacteria
A soil sample from hot springs of Pharaoh’s bath (29°
12′ 24.9′′ N, 32° 57′ 35.4′′ E), Sinai, Egypt, was col-
lected in a sterile container and kept in an icebox for
isolation of thermophilic bacteria. The sample was 10-
fold diluted in sterile 0.09% saline solution, then 100 μL
from each dilution was cultured on nutrient agar plates.
The plates were incubated at 70°C for 48 h. After the in-
cubation period, bacterial colonies of distinctive morph-
ology were selected and purified on fresh sterile nutrient
agar plates.

Selection of a degradative organism
The isolates were screened to produce amylase, cellulase,
and caseinase through sub-culturing on agar plates sup-
plemented with 1% soluble starch [14], carboxy methyl
cellulose [15], and 15% skimmed milk [16], in triplicates,
respectively. The plates were incubated at 70°C for 24 h.

The isolate which produced the 3 hydrolytic enzymes
was selected and identified.

Molecular identification
Total DNA of the bacterial isolate was extracted ac-
cording to the instruction manual using DNA ex-
traction kits (Thermo, Fisher Scientifics, USA) and
stored frozen at – 20°C until PCR reaction was car-
ried out. A pair of flanking sequences, 16S-1F (5′-
AGAGTTTGATCCTGGCTCAG-3′) and 16S-517R
(5′-ATTACCGCGGCTGCTGG-3′), was used for pri-
mer binding sites to partially amplify the target gene.
Two microliters of the bacterial DNA was used as a
template for PCR reaction. PCR was carried on using
Premix Taq (MyTaq, Bioline, UK) according to the
instruction manual. PCR was performed in genius
model FGENO2TD thermal cycler (Techne, Eng-
land). The PCR conditions were adjusted to 5 min
for initial denaturation at 94°C, then 35 cycles of 1
min at 94°C, 1 min at 54°C, and 1 min at 72°C, and
finally 10 min at 72°C for amplification of genes.
The amplified genes were run on 1% agarose gel
with a size marker to determine the size and purity
of the products. The amplified bands were cleaned
using a PCR product purification kit (Thermo, Fisher
Scientifics, USA).
Sequencing of forward directions of partial 16S rRNA

gene was performed in Macrogen, Korea. The sequence
was identified using the BLAST search program, Na-
tional Center for Biotechnology Information (NCBI),
and National Library of Medicine, USA [17].
Sequence alignments were performed by Clustal W

1.83 XP software, and a phylogenetic tree was con-
structed using the neighbour-joining method using
MEGA 6 software. Then, the sequence was submitted
using Bankit tool (NCBI website; www.ncbi.nlm.nih.gov)
to obtain the accession number.

Selection of the best amylase production medium
The selected isolate was inoculated on four different
starch containing media, M1 medium of the following
composition: 2% starch, 1% yeast extract, 0.1% peptone,
0.1% beef extract, 0.05% MgSO4, and 0.04% CaCl2 [18];
M2 medium: 0.5% soluble starch, 0.5% yeast extract,
0.25% (NH4)2SO4, 0.02% MgSO4·7H2O, 0.3% KH2PO4,
and 0.025% CaCl2·2H2O [16]; M3 medium: 2% soluble
starch, 0.3% yeast extract, 0.3% tryptone, 0.03% sodium
dodecyl sulfate, 0.5% polyethylene glycol, 0.02% MgSO4
7H2O, 1.0% K2HPO4, and 1.0% NaCl (pH 7) [19]; and
M4 medium :1% soluble starch, 0.2% yeast extract, 0.5%
peptone, 0.05% MgSO4, 0.05% NaCl, and 0.015% CaCl2
(pH 7.0) [7]. Then, the flasks were incubated at 60°C for
24 h to determine highest activity.
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Detection of amylase activity
The amylase activity was assayed according to Miller
[20] using 3,5-dinitrosalicylic acid (DNS) method
through incubation of 300 μL of 1% starch in 50 mM so-
dium phosphate buffer (pH 7.5) with 200 μL cell-free
supernatant for 30 min at 60, 70, and 80°C. The reaction
was stopped by adding 500 μL DNS reagent and boiling
it in a water bath for 10 min. After cooling at room
temperature, the amount of glucose released was deter-
mined by measuring the absorbance at 550 nm using
Unico 7200 Spectrophotometer. Amylase activity was es-
timated using a calibration curve for glucose over a con-
centration range of 15 to 100 μmol. One unit of enzyme
activity was defined as the amount of enzyme that re-
leases 1 μmol reducing sugars per min [21].

Statistical factorial designs
The two experimental designs namely Full Factorial De-
sign and Central Composite Design (CCD) were adopted
to study the effects of four independent variables with
their interactions on amylase activity and to determine
the optimum variable level for maximum enzyme activ-
ity. The Minitab Software v. 18 program was used for
designing the involved models and statistical-analyzing
the obtained results of the response (α-amylase activity).
Experiments were performed in 250 mL flasks contain-
ing 100 mL sterile M4 medium inoculated with 100 μL
of (106 CFU per mL) of the selected bacterial isolate. All
experiments were triplicated and the mean amylase ac-
tivity was calculated.

Full factorial design
A 24 full factorial design was used to study the statistical
significance of the following variables: growth medium
pH (A), incubation temperature (B), incubation period
(C), and aeration (D) besides their interactions towards
the amylase activity. Each factor was studied at two
levels (low and high) chosen according to previous stud-
ies and literature review (Table 1). A total of 16 sets of
experiments were carried out to determine the signifi-
cant factors that affect the amylase activity.

Central composite design (CCD)
The central composite design is one of the designs in
Response Surface Methodology (RSM). Variables that

showed a significant effect in the previous full factorial
model were inserted in a three-factor CCD to study their
interactions and to determine the optimum variable level
for maximum amylase production.

Determination of amylase thermo-stability
The crude enzyme was incubated at different tempera-
tures of 60, 70, 80, 90, and 100°C for zero, 30, 60, 90,
and 120 min to determine the thermal stability using the
DNS method. Thermal stability was expressed as percent
residual activity, and the initial enzyme activity was
taken as 100 % [22].

Statistical analysis
The data obtained from both the full factorial and the
RSM on amylase activity optimization were analyzed by
analysis of variance (ANOVA) test. The regression of
tested variables and their interactions, model signifi-
cance, and the coefficient of determination (R2) of the
generated models were estimated. The results were used
to fit a polynomial model equation to represent the be-
havior of the system and correlate the relation between
the studied variables and amylase activity. All experi-
ments were triplicated, and the mean amylase activity
was calculated.

Results
Isolation, screening, and identification of degradative
bacterial isolate
The isolate growing on a nutrient agar plate, incubated
at 70°C and the production ability of amylase, cellulase,
and caseinase was selected.
The isolate was identified by partial amplification and

sequencing of 16S rRNA gene as P. thermoglucosidasius
(99% sequence similarity). The nucleotide sequence was
submitted to GenBank as P. thermoglucosidasius strain
Pharon1 under accession number MG965879. Phylogen-
etic analysis with the alignment of the obtained gene se-
quence is illustrated in Fig. 1.

Selection of the best production media
Medium containing 1% soluble starch, 0.2% yeast ex-
tract, 0.5% peptone, 0.05% MgSO4, 0.05% NaCl, and
0.015% CaCl2 (pH 7.0) [7] exhibited the highest amylase
activity by P. thermoglucogenesis Pharaon1. Moreover,
The DNS assay was carried out at different temperatures
indicated that 70°C was the optimum temperature for
the assay.

Full factorial design
Table 2 presents the full factorial design matrix for the
tested variables, given in uncoded values, plus the ex-
perimental and predicted data of amylase activity ob-
tained by P. thermoglucogenesis Pharaon1. As shown, the

Table 1 The investigated variables with their codes and levels
for the full factorial design

Variables Code Low level (-1) High level (+1)

pH A 5 8

Temperature (°C) B 50 75

Incubation period (h) C 24 96

Aeration D Aerobic conditions Anaerobic conditions
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highest enzyme activity was recorded in trial (12) when
the bacterial strain was cultured at pH 5 and incubated
aerobically at 50°C for 96 h.
The ANOVA results in Table (S1) show that all of the

tested factors of growth medium pH (A), incubation
temperature (B), incubation period (C), and aeration (D)
significantly (P<0.05) affect the amylase activity. Add-
itionally, the 2-way and 3-way interacted terms of A*B,

A*D, A*C, B*D, and A*B*D showed significant effects on
the enzyme activity, while the interacted terms of
B*C*D, B*C, A*B*C, C*D, and A*C*D showed non-
significant effects on the same response under the same
conditions.
Results also indicated that the regression model for

this experimental design was highly significant (P<0.05).
The coefficient of determination (R2) value was 0.9997
indicating a high correlation between the experimental
and the predicted data at a confidence level of 95%.
The obtained results were fitted in a linear polynomial

equation as the following:

Enzyme activity ¼ 95:6 − 11:94 pH − 1:285 Temp:þ 1:585 Period

− 104:10 Aeration þ 0:1607 pH�Temp:

− 0:1981 pH�Period þ 13:279 pH�Aeration
− 0:01667 Temp:�Period þ 1:4512 Temp:

�Aeration − 0:2606 Period�Aeration
þ0:002083 pH�Temp:�Period − 0:1857 pH

�Temp:�Aeration þ 0:02813 pH�Period
�Aeration þ 0:000569 Temp:�Period�Aeration

Response surface optimization
Factors of growth medium pH, temperature, and incuba-
tion period were represented in a CCD to determine
their exact optimum levels for maximum amylase activ-
ity, while the aeration factor was categorical, and thus, it
was kept at its optimum level, aerobic conditions as ob-
tained from the tested full factorial model.
The design matrix of CCD is shown in Table 3. The

results of amylase activity obtained in the CCD trials
were evaluated through analysis of variance ANOVA re-
sults showed the significant effect (P<0.05) of each tested

Fig. 1 Neighbor joining phylogenetic tree of 16S rRNA genes. The numbers at the nodes are bootstrap values recovered from 100 trees, the bar
indicates 0.2% nucleotide substitution

Table 2 The full factorial design matrix showing the observed
amylase activity of P. thermoglucosidasius Pharon1 exerted by
the design trails

Run Coded parameters Mean amylase activity (U/mL/min)

A B C D Observed Expected

1 8 50 96 Aerobic 0.0 0.3

2 5 50 96 Anaerobic 18.2 18.5

3 8 50 24 Anaerobic 0.0 0.3

4 5 75 96 Anaerobic 6.1 5.8

5 8 50 24 Aerobic 0.0 − 0.3

6 5 75 24 Anaerobic 2.1 2.4

7 8 75 96 Anaerobic 0.0 0.3

8 5 50 24 Anaerobic 5.0 4.7

9 8 75 96 Aerobic 0.0 − 0.3

10 5 75 96 Aerobic 17.4 17.7

11 5 50 24 Aerobic 32.0 32.3

12 8 75 24 Aerobic 0.0 0.3

13 8 75 24 Anaerobic 0.0 − 0.3

14 5 50 96 Aerobic 59.4 59.1

15 8 50 96 Anaerobic 0.0 − 0.3

16 5 75 24 Aerobic 3.3 3.0

P. thermoglucosidasius Pharon1 was inoculated in M4 medium [7] containing
1% soluble starch. Runs were triplicated, and the mean amylase activity
was calculated
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variable, A, B, and C in addition to all the squared vari-
ables, A2, B2, and C2 on the amylase activity by P. ther-
moglucosidasius. It was also noticed that all of 2-way
interacted variables, A*B, A*C, and B*C showed a non-
significant effect on amylase production. This model has
a high F value and low P value (P < 0.05) that represent-
ing a good predictor for the responses (Table S2).
The coefficient of determination (R2) was 0.9081

reflecting 0.1% of the total differences in the responses
could not be explained by this model. The quadratic
model for predicting the optimal point was expressed ac-
cording to a second-order polynomial equation as
following:

Enzyme activity ¼ − 574þ 88:7 pH þ 9:63 Temp:þ 2:775 Period

− 9:57 pH�pH − 0:1101 Temp:�Temp:

− 0:00729 period�Period þ 0:605 pH�Temp:

− 0:1454 pH�Period − 0:0095 Temp:�Period

The maximum amylase activity achieved was 76.08 U/
mL/min at pH 5.6, incubation temperature of 55°C for
98.5 h with a desirability of 94.27% as demonstrated by
the response optimizer in Fig. 2. The 2D contour and
3D response surface plots showing the optimum level
for each tested variable were represented in Fig. 3.

Thermal stability
The thermo-stability of the crude enzyme was deter-
mined. It was found that the enzyme activity at room
temperature was relatively low (100 %); but the highest
activity (286 ± 4.65 %) was recorded after heating the
enzyme at 70°C for 30 min, and the crude showed ther-
mal stability as it was active even after exposure to

Table 3 Central composite design (CCD) matrix by the three
tested variables besides the observed and expected amylase
activity exerted by the model trials

Run Coded parameters Mean amylase activity (U/mL/min)

A B C Observed Expected

1 8.0 50.0 96.0 0 12.9

2 6.5 62.5 60.0 65 63.3

3 6.5 41.4 60.0 24.4 30.8

4 6.5 62.5 60.0 65.5 63.3

5 3.9 62.5 60.0 0 19.1

6 6.5 62.5 60.0 62.3 63.3

7 5.0 50.0 96.0 80.7 71.2

8 5.0 75.0 24.0 3.9 − 12.5

9 5.0 50.0 24.0 32.2 20.9

10 8.0 75.0 24.0 0 6.1

11 5.0 75.0 96.0 18.2 20.6

12 9.0 62.5 60.0 0 − 14.2

13 8.0 50.0 24.0 0 − 5.9

14 6.5 62.5 120.5 68.3 58.5

15 6.5 62.5 60.0 62.2 63.3

16 8.0 75.0 96.0 0 7.8

17 6.5 62.5 0.0 0 14.7

18 6.5 62.5 60.0 62.9 63.3

19 6.5 83.5 60.0 0 − 1.6

20 6.5 62.5 60.0 62.9 63.3

P. thermoglucosidasius Pharon1 was inoculated in M4 medium [7] containing
1% soluble starch under aerobic condition. Runs were triplicated, and the
mean amylase activity was calculated

Fig. 2 Predicted solution for the maximum amylase activity by P. thermoglucosidasius using the response optimizer of Minitab Software v. 18
defining the optimum levels of the selected three variables, growth medium pH, temperature, and incubation period. (Cur) is the curvature value
(optimum), y is the amylase activity predicted, and D is the desirability value
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100°C for 120 min and lost about 13% from its activity
(Fig. 4).

Discussion
Thermophilic microorganisms with an optimum growth
temperature of 50°C or above are sources of thermo-
stable enzymes such as amylases, cellulases, chitinases,
pectinases, xylanases, proteases, lipases, and DNA
polymerases.
In this study, a thermophilic isolate was recovered

from the hot springs region, Pharaoh’s Bath, Sinai, Egypt.
Previous work by Saeed et al. [23] reported the isolation

of thermophilic bacteria from the same site. Mohammad
et al. [24] illustrated the isolation of closely related ther-
mophiles from hot springs and deep sea in Jordon. Ther-
mophiles exhibit maximum growth at 75°C [25];
therefore, the isolated bacteria recovered from this study
are considered an extreme thermophile.
In this study, the isolate was screened for the produc-

tion of amylase, cellulase, and caseinase production. The
isolate showed its ability to produce the three enzymes
which have significant biotechnological applications.
The selected isolate was identified by 16S rRNA gene

sequencing as P. thermoglucosidasius strain Pharon1

Fig. 3 2D contour (on the left) and 3D surface (on the right) plots show the interaction effect and the optimum levels of the three significant
factors on amylase activity
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(MG965879). P. thermoglucosidasius is a facultative an-
aerobic thermophilic bacterium which is frequently iso-
lated from high-temperature environments including hot
springs and compost [26]. The genus Geobacillus and its
members have become potential for applications in bio-
technology and bioremediation [27, 28] with a continu-
ally increasing industrial interest for their thermostable
gene products [29, 30]. Thermophilic microorganisms
with an optimum growth temperature of 50°C or above
are sources of thermostable enzymes such as amylases,
cellulases, chitinases, pectinases, xylanases, proteases, li-
pases, and DNA polymerases. These enzymes are appro-
priate for performing biotechnological processes at
elevated temperatures [31].
Four different starch-containing media were inocu-

lated with P. thermoglucosidasius strain Pharon1. After
incubation for 24 h, the highest amylase activity was re-
corded using M4 medium as measured using the DNS
assay method. The M4 medium was selected for the
optimization of amylase production.
To optimize the physical conditions of the enzyme pro-

duction, statistical approaches namely full factorial and
central composite design were applied. Statistical
optimization allows quick screening of large experimental
domain and explains accurately the role of each tested
variable and the combined effects of tested factors. The
full factorial approach confirmed the significance of the
four tested physical variables (pH, temperature, incubation
period, and aeration) on the production of amylase en-
zyme. The obtained significant and numeric variables (pH,
temperature, and incubation period) were used to design
the central composite model which is an accurate tool in
determining the optimum level for each factor with re-
spect to the effect of the other factors [12, 32].
The maximum enzyme activity (80.6 U/mL/min) was ac-

complished when the bacterial strain was grown at a
temperature at 54.1°C. This agreed with Arfah et al. [33]
and Tiwari et al. [34] who reported that the optimum

temperature of amylase production was at 55°C by Bacillus
sp. RSII-1b and Bacillus tequilensis RG-01, respectively.
However, other studies reported the production of amylases
at a wider range of temperatures as mentioned and re-
ported by Bekler et al. who obtained the maximum level of
amylase from Bacillus paralicheniformis at 60°C [13].
Commercially, the interest has been focused on

thermophilic amylase capable of functioning at a low pH
range of 4.5–5.5 [35]. A similar result was obtained by
Antrim et al. [36] who reported a thermostable α-
amylase with activity at pH 5.5. Uguru et al. [37] isolated
a strain of Thermoactinomyces thalpophilus which pro-
duced an extracellular amylase with optimum pH of 5.0.
The thermostable amylases have extensive applications
in a number of industrial processes [38].
The incubation of the crude enzyme preparation at

70°C for 30 min before adding the substrate resulted in
2.86 fold increase in its amylase activity compared to the
enzyme preparation kept at room temperature, which
means that the enzyme required thermal activation en-
ergy to exert its full activity. Thermostable amylase pro-
duced from P. thermoglucosidasius strain Pharon1
continued to be active over a temperature range. The
thermostable enzyme produced in this study lost only
13% of its activity after 120 min of incubation at 100°C.
Previous studies on Bacillus subtilis showed that 67% of
the original activities were lost at 90°C [39].
It was also reported that α-amylases from B. subtilis

KIBGE and B. subtilis, 65 showed optimal activities at
50°C and 60°C, respectively, and 28% reduction in enzyme
activity was observed at 70°C, whereas incubation at 80°C
resulted in complete inactivated of the enzyme [40].
Thermostable amylolytic enzymes are of great import-

ance in modern biotechnological applications. They are
used to produce many valuable products in different in-
dustries such as glucose, dextrose syrup, crystalline dex-
trose, maltose, and maltodextrins [41–43].
In conclusion, the enzyme produced by the novel local

isolate, P. thermoglucosidasius strain Pharon1 (MG965879)
showed strong degradative ability under extreme environ-
mental conditions mark it as a potential candidate for bio-
technological applications. Further characterization of the
produced enzymes needs to be carried on.

Conclusions
The novel bacterial strain P. thermoglucosidasius strain
Pharon1 can be used in amylase production because it
could be considered a cost-effective source for the en-
zyme. Where it requires a relatively low incubation
temperature (55oC) to produce the thermophilic amylase
at acidic pH of 5.6 within about 98 h of incubation; also,
the enzyme produced showed thermostability after ex-
posure to 100°C for 120 min.

Fig. 4 Thermo-stability of the produced amylase enzyme at different
time intervals. Error bars represent SE (n = 3)
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