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Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease variably associated with motor, nonmotor, and
autonomic symptoms, resulting from putaminal and cerebellar degeneration and associated with glial cytoplasmic inclusions
enriched with α-synuclein in oligodendrocytes and neurons. Although symptomatic treatment of MSA can provide significant
improvements in quality of life, the benefit is often partial, limited by adverse effects, and fails to treat the underlying cause.
Consistent with the multisystem nature of the disease and evidence that motor symptoms, autonomic failure, and depression drive
patient assessments of quality of life, treatment is best achieved through a coordinated multidisciplinary approach driven by the
patient’s priorities and goals of care. Research into disease-modifying therapies is ongoing with a particular focus on synuclein-
targeted therapies among others. This review focuses on both current management and emerging therapies for this devastating
disease.

Key Words Multiple system atrophy . multidisciplinary care .α-synuclein . symptomatic therapy . disease-modifying

Introduction

Multiple system atrophy (MSA) is a rare, progressive
neurodegenerative disease with estimated incidence of
0.6 to 0.7 cases per 100,000 person-years and prevalence
of 3.4 to 4.9 cases per 100,000 [1–4]. The mean age of
symptom onset is reported between 54 and 63 years, de-
pending on the study, and the estimated survival from
symptom onset is 6 to 11 years (median survival, ~
9.5 years) [5–8]. MSA comprises a variable combination
of autonomic dysfunction, parkinsonism, and ataxia, with
the predominance of one or other motor syndrome defin-
ing parkinsonian (MSA-P) or cerebellar subtypes (MSA-
C) [9]. Currently available lab tests or imaging do not

provide additional diagnostic or prognostic sensitivity or
specificity beyond that of a thorough clinical assessment.
Some fluid biomarkers and imaging findings, however,
are thought to be supportive [10, 11]. Commensurate
with the multisystem nature of the disease, effective man-
agement requires both evidence-based and off-label mul-
tidisciplinary treatment with the patient at the center of
an interdisciplinary team of well-coordinated providers
including the neurologist, consulting physicians, rehabil-
itation therapists (physical, occupational, and speech–lan-
guage), dietician, social worker, and potential research
staff. Such treatment is driven largely by personalized,
symptomatic management of the patient’s specific con-
stellation of symptoms. There are currently no approved
disease-modifying therapies, although research in a vari-
ety of mechanistically driven areas is ongoing and the
patient should be given the opportunity to participate in
clinical trials. This article provides an overview of the
pathology and pathogenesis, clinical presentation, evalu-
ation, treatment, and management, including both
evidence-based and off-label therapies. We also discuss
ongoing research efforts to develop potential symptomat-
ic and disease-modifying therapies for this complex and
devastating disease.
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Pathology and Pathogenesis

Neuropathologically, MSA exhibits putaminal, pontine, and
cerebellar atrophy [12] that is associated with shared and dif-
fering relative patterns of degeneration consistent with the
specific clinical subtype. MSA-P is typically associated with
prominent caudal putamen and caudate involvement with
preferential degeneration of GABAergic medium spiny neu-
rons, as well as substantia nigra involvement with degenera-
tion of dopaminergic striatonigral neurons [13, 14]. In con-
trast, MSA-C tends to show more prominent degeneration of
the dentate and inferior olivary nuclei, as well as the basis
pont is , cerebe l la r vermis and hemispheres , and
cerebellopontine fibers [13]. Both subtypes share involvement
of the motor and supplementary motor cortex. The pathology
of the locus coeruleus and vagus and Onuf’s nuclei, and de-
generation of the intermediolateral spinal columns, contribute
to autonomic dysfunction [15, 16].

MSA histopathology is characterized by oligodendroglial
cytoplasmic inclusions (GCIs), or Papp–Lantos bodies, that
contain abundant pathologicα-synuclein aggregates and other
proteins (Fig. 1) [13, 17–20]. Similar neuronal inclusions have
also been described in the cytoplasm (NCIs) and nuclei
(NNIs), but are much less common [17, 21]. GCI pathology
is a defining feature of “definite” MSA and correlates with
neuronal loss and disease duration [22]. Neuronal loss, axonal
degeneration, astrogliosis, and microglial activation are wide-
spread and variably involve the putamen, substantia nigra,
pons, inferior olivary nucleus, cerebellum, and brainstem de-
pending on the MSA subtype [23].

The presence ofα-synuclein aggregates in oligodendrocyte
is a notable distinguishing feature of MSA pathology as com-
pared to other synucleinopathies, such as Parkinson disease
and dementia with Lewy bodies, in which α-synuclein de-
posits are predominantly neuronal. The physiological role of
α-synuclein remains an active area of research, and evidence
suggests roles in synaptic vesicular function and

neurotransmitter release [24]. The role of α-synuclein in glial
cells has yet to be elucidated. Pathologically, α-synuclein is
phosphorylated and self-aggregates to form fibrils, aggre-
gates, and larger intracellular inclusions recognized as Lewy
bodies [25]. A wealth of evidence indicates that pathological
forms ofα-synuclein (i.e., fibrils or aggregates) are secreted or
released from neurons, extracellularly, and may propagate α-
synuclein pathology from cell to cell in a prion-like fashion
[26–28]. Further evidence suggests the presence of different
conformational “strains” of α-synuclein fibrils that result in
preferential degeneration of certain cell types and provide an
explanation for the clinical diversity among synucleinopathies
[29, 30]. Human brain homogenates from MSA patients have
been shown to “seed” pathological α-synuclein fibrils in cul-
tured cells and neuronal deposits in transgenic mice express-
ing human α-synuclein [31, 32]. Although different α-
synuclein “strains” have been shown to target distinct cellular
populations and cell types within the brain, and recapitulate
some of the selective targeting observed in human
synucleinopathies, a major limitation of these models is that
they exhibit only neuronal α-synuclein pathology.
Understanding how or why α-synuclein pathology targets
mainly oligodendrocytes has yet to be elucidated.
Nevertheless, these findings have led to significant efforts
toward disease-modifying therapies focused on reduction or
clearance of pathological α-synuclein [33].

Clinical Symptoms

Motor Symptoms

Historically, a variety of eponymous or general anatomic
terms have been used to refer to MSA, often denoting the
predominant constellation of symptoms. These terms included
Shy–Drager syndrome, striatonigral degeneration, and
olivopontocerebellar atrophy, which tended to refer to patients
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Fig. 1 (A) Glial cytoplasmic
inclusions (arrows) in oligoden-
drocytes (hematoxylin and eosin
stain). (B) α-Synuclein staining
(brown) in GCIs
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with predominant autonomic dysfunction, parkinsonism fea-
tures, or cerebellar dysfunction, respectively. The discovery
that these seemingly different syndromes shared a common
pathology of oligodendroglial cytoplasmic inclusions (GCI)
motivated efforts to modernize terminology. The first consen-
sus definitionwas established in 1998 and revised in 2007 [34,
35].

The core motor symptoms of MSA are parkinsonism and
ataxia. Modern categorization includes 2 subtypes: the MSA-
parkinsonism subtype (MSA-P) with predominant symptoms
of tremor, rigidity, and bradykinesia that are poorly responsive
to levodopa and the MSA-cerebellar subtype (MSA-C) with
predominant symptoms of gait and limb ataxia, scanning dys-
arthria, and cerebellar oculomotor dysfunction, though parkin-
sonian features are sometimes also present. Generally, symp-
tom presentation ismore symmetric and tremor less prominent
compared to that in Parkinson disease. MSA tremor has been
described as having a higher frequency and lower amplitude
as compared to Parkinson disease, with a “jerky,” stimulus-
sensitive, myoclonic component in the setting of sustained
posture holding, referred to as polyminimyoclonus [36, 37].
Initial presenting symptoms of MSA vary widely and overlap
with those of other parkinsonian disorders and sporadic adult-
onset ataxias. As such, delay in diagnosis and misdiagnosis
are common [38–40].

Beyond the core motor symptoms of MSA, a variety of
additional motor symptoms are common. Dystonia affects
over 40% of patients [41] and includes limb, orofacial, cervi-
cal, and truncal dystonias. Limb dystonias can lead to signif-
icant disability, painful contractures, and early striatal hands
or toe deformities. Anterocollis, Pisa syndrome, and
camptocormia, characterized by abnormal forward or lateral
flexion of the trunk during standing or walking that is relieved
by lying down, are particularly associated with MSA, al-
though these can be seen in other forms of parkinsonism
[42, 43]. In addition, restless leg syndrome (RLS) has been
described as affecting between 5 and 30% of patients [44, 45].
Other suggestive features include hyperreflexia, Babinski
sign, early dysarthria, dysphagia, inspiratory sigh, and stridor
[9]. The speech in MSA in particular is characterized by a
mixed, spastic–hypokinetic (or ataxia, if MSA-C) dysarthria,
sometimes with a vocal “quiver” or “flutter” [46, 47].
Dysphagia occurs earlier and is more severe than that seen
in Parkinson disease.

Nonmotor, Cognitive, and Affective Symptoms

MSA has significant cognitive and affective symptoms, often
referred to as “nonmotor” symptoms, many of which play a
prominent role in patients’ quality of life and should be a
major focus of clinical assessment and therapy [48].
Although dementia is an exclusion criterion for a clinical di-
agnosis of MSA, single or multidomain cognitive impairment

is not uncommon and frank dementia is reported in up to 10 to
15% of patients [49]. Executive dysfunction is most common
and consistent with frontal–subcortical pathology seen in
MSA and other parkinsonian disorders.

Depressive symptoms and anxiety are common in MSA
and more prevalent and severe than in Parkinson disease,
and correlate with poor quality of life [50–54]. Emotional
lability or pseudobulbar affect, characterized by uncontrolled,
sudden, inappropriate laughter or crying, may also occur [55].

Autonomic Symptoms

Prominent autonomic symptoms are a key defining feature of
MSA, but have variable presentations. The clinical criteria for
MSA require the presence of either orthostatic hypotension or
significant urinary dysfunction such as urgency, increased fre-
quency, incontinence, or retention (needing catheterization)
with erectile dysfunction in males that is not otherwise ex-
plained by diseases such as diabetes or autonomic neuropathy
[35]. It is important to note that significant orthostatic hypo-
tension may be lacking in a given patient despite the presence
of other prominent autonomic symptoms. Additional auto-
nomic features may include gastrointestinal symptoms such
as gastroparesis, constipation, or diarrhea; heat and cold intol-
erance; flushing, diaphoresis, hypohidrosis, or global
anhidrosis; and acrocyanosis characterized by bluish discolor-
ation of the fingers or toes [4, 56, 57]. Urinary dysfunction, in
particular, is a prominent and common early autonomic symp-
tom in MSA with incomplete bladder emptying, urinary re-
tention, and other voiding difficulties [58, 59]. In males, erec-
tile dysfunction can be a telltale sign of early MSA even in the
absence (i.e., preceding) of orthostatic symptoms [60, 61].

Autonomic symptoms are the earliest symptom in up to
50% of patients with early or severe autonomic dysfunction
carrying a more guarded prognosis [62, 63]. Clinicians should
rule out secondary causes of dysautonomia such as diabetes or
other common maladies such as benign prostatic hypertrophy
(BPH) in males or bladder prolapse in females that may con-
tribute to urinary dysfunction. In addition, primary autonomic
failure (PAF) should only be entertained as an alternative di-
agnosis after 5 years of isolated autonomic disturbances as
some patients with presumptive PAF diagnosis will
phenoconvert to MSA in time [64]. As olfactory function is
relatively preserved in PAF compared to PD and MSA, this
may be a clinically useful distinguishing feature [65].

Sleep Issues and Disordered Breathing

A variety of sleep-related problems are common in MSA.
REM sleep behavior disorder (RBD), characterized by recur-
rent dream enactment with excessive motor behavior (i.e.,
thrashing, punching, kicking) [66], is frequent not only in
MSA but other α-synucleinopathies, Parkinson disease, and
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dementia with Lewy bodies, with over 90% of patients affect-
ed [4]. RBD contributes to poor sleep quality and, if severe,
may result in injury to self or bedpartners. RBD symptoms
may precede the onset of MSA by several years and “burn-
out” later in disease [67]. Central and obstructive sleep apnea
are also common in MSA [68, 69]. Laryngeal stridor [70, 71]
is a particularly concerning symptom that may play a central
role in survival through oxygen desaturations, respiratory fail-
ure, and sudden death during sleep [69]. Stridor may be a
presenting feature of MSA and is defined as a strained, high-
pitched, harsh respiratory sound, mainly inspiratory, occur-
ring only during sleep or during both sleep and wakefulness,
that is caused by laryngeal dysfunction leading to narrowing
of the rima glottides [70]. Diagnosis can be made clinically if
present or with the aid of a recording or bed partner, and
confirmed through laryngoscopy, sleep endoscopy, or video
polysomnography. Given the prevalence of these symptoms,
polysomnography should be considered in the initial workup
for patients with MSA even in the absence of reported
symptoms.

Diagnosis

The diagnosis of MSA is primarily clinical and based on the
most recent consensus criteria [35]. Three levels of diagnostic
certainty were established: definite, probable, and possible
(Table 1). Whereas a diagnosis of definite MSA requires post-
mortem histopathologic confirmation, probableMSA requires
autonomic failure (orthostatic hypotension defined by a drop
of 30 mmHg systolic and 15 mmHg diastolic from supine to
within 3 min of standing, or urinary incontinence/retention
and erectile dysfunction in males) and either parkinsonism
that is poorly levodopa-responsive or a predominant cerebel-
lar syndrome. Possible MSA includes less stringent criteria:
parkinsonism or cerebellar syndrome plus at least one feature
suggesting autonomic dysfunction (i.e., urinary urgency, fre-
quency, or incomplete emptying; erectile dysfunction in men,
or orthostatic hypotension, though only requiring a 20-point
drop in systolic and a 10-point drop in diastolic blood pres-
sure). At least one additional feature is required such as
hyperreflexia/Babinski sign or stridor, or imaging findings
consistent with MSA such as putaminal atrophy, FDG–PET
hypometabolism, or evidence of striatal presynaptic dopami-
nergic denervation on SPECT or PET. With the 2008 revised
criteria, improved sensitivity was achieved in early disease for
the “probable MSA” category [72]. It should be noted, how-
ever, that despite the criteria’s > 90% sensitivity in late disease
and the relative improvement in early probable disease, sensi-
tivity remains low at 41%, warranting continued efforts to
improve diagnosis for early disease [72].

Despite an aggressive effort to identify reliable diagnostic
biomarkers for MSA, to date there are no approved serum or

cerebral spinal fluid-based tests to aid clinical diagnosis or to
assess disease progression. Neuroimaging remains a primary
diagnostic modality and is often helpful. Supportive findings
on brain imaging include MRI- or CT-based evidence of pon-
tine and/or cerebellar atrophy (Fig. 2). In MSA-C, there is
predominant olivopontocerebellar atrophy, with loss of
pontocerebellar fibers and gliosis best seen on T2-weighted
MRI imaging, sometimes producing the characteristic “hot
cross bun” sign [11]. In MSA-parkinsonism, MRI may show
evidence of putaminal atrophy with decreased T2 signal in the
posterior putamen and a hyperintense T2 rim, also known as a
putaminal rim sign [73], which is typically observed at 1.5-T
MRI strength but is unreliable with the more commonly used
3-T scanners today. These findings correlate with increased
free-water [74, 75] and iron deposition within the putamen (as
seen on MRI susceptibility-weighted imaging) [76, 77]. In
addition, FDG–PET has been shown to help with MSA diag-
nosis and shows hypometabolism of the putamen, pons, and
cerebellum [78]. Dopamine transporter (DAT) PET and
SPECT imaging, although not specific for MSA, shows re-
duced striatal binding consistent with presynaptic dopaminer-
gic denervation [79].

Cardiac sympathetic neuroimaging may also help distin-
guish MSA from Parkinson disease. In a meta-analysis, cardi-
ac iodine-123 meta-iodobenzylguanidine (MIBG) scintigra-
phy showed high sensitivity and specificity for distinguishing
PD from other forms of parkinsonism [80]. MSA patients are
usually found to have normal cardiac postganglionic sympa-
thetic innervation, although a third of patients have some de-
gree of cardiac sympathetic denervation [81, 82]. By contrast,
Parkinson disease patients have altered sympathetic denerva-
tion in virtually all cases [83–86]. As a result, a normal MIBG
scan can reliably exclude PD but not MSA [84, 85].
Additional diagnostic studies may include olfactory testing,
autonomic test such as tilt table and sweat tests (e.g.,
QSART), urodynamic testing, and anal sphincter EMG and
manome t r y , a s we l l a s g a s t r i c emp t y i n g a nd
polysomnography.

Despite a lack of clinically reliable diagnostic biopsy-based
or body fluid biomarkers, several investigational biomarkers
have shown potential value and a combination of biomarkers
may provide increased sensitivity and specificity [10]. A re-
cent meta-analysis suggests that a combination of α-synucle-
in, neurofilament light chain (NFL), and total tau may have
diagnostic value. A reduction of α-synuclein and an increase
in NFL in CSF has the potential to distinguish MSA patients
from PD and healthy controls [10]. In addition, a reduction of
total tau (t-tau) in CSF may distinguish MSA from healthy
controls, and an elevation of t-tau could distinguish MSA
from PD. Additional CSF biomarkers under study include uric
acid, homocysteine, phosphorylated tau, and coenzyme Q10.
Investigational CSF biomarkers also include microRNAs
(miRNAs), with recent data suggesting that a combination of
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increased expression of miR-19a, miR-19b, miR-24, and
miR-34c was able to distinguish MSA patients from healthy
controls [87]. In addition, serum and plasma have been inves-
tigated for potential biomarkers. Another meta-analysis found

increased plasma α-synuclein among PD patients which may
have value in MSA patients as well [88].

Finally, skin biopsy has shown promise as a potential in-
vestigational biomarker. Evidence suggests that cutaneous α-
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T1 T2 SWIFig. 2 MRI brain imaging in
MSA-P (A–C) demonstrates
putaminal atrophy (small arrow)
with hypointense T1/T2 signal
and hyperintense T2 rim sign
(large arrows). (C) SWI shows
hemosiderin dense posterior pu-
tamen. (D) Olivopontocerebelllar
atrophy in MSA-C. (E) T2 image
with pontine atrophy, gliosis, and
“hot cross bun” sign

Table 1 Clinical diagnostic criteria for MSA

MSA Parkinsonism (MSA-P) Cerebellar syndrome (MSA-C) Autonomic symptoms

A sporadic progressive, adult (> 30 years)-onset disease characterized by:

Definite Pathology proven: widespread α-synuclein inclusions in glial cytoplasm with evidence of neurodegeneration in olivopontocerebellar or
striatonigral structures

Probable Poorly levodopa-responsive parkinsonism (bra-
dykinesia with tremor, rigidity, or postural
instability)

Cerebellar syndrome:
- Gait ataxia with…
- Cerebellar dysarthria
- Limb ataxia, or
- Oculomotor dysfunction (e.g.,

hyper/hypometric saccades, nystag-
mus)

and…
Urinary incontinence or retention with erectile

dysfunction in males, or orthostatic
hypotension

(OH: drop in BP within 3 min of standing of ≥
30 mmHg systolic or 15 mmHg diastolic)

Possible Parkinsonism
and 1 of the following:
- Rapidly progressive parkinsonism
- Poor levodopa response
- Postural instability ≤ 3 years of motor onset
- Dysphagia ≤ 5 years onset
- Hyperreflexia with Babinski
- Stridor
- Cerebellar features
Imaging:
- MRI finding of atrophy of the putamen, pons,

MCP, or cerebellum
- FDG–PET hypometabolism in the putamen,

brainstem, or cerebellum

Cerebellar dysfunction and 1 of the
following:

- Hyperreflexia with Babinski
- Stridor
- Parkinsonism
Imaging:
- MRI finding of atrophy of the putamen,

pons, MCP, or cerebellum
- Presynaptic nigrostriatal dopaminergic

denervation on PET or SPECT (e.g.,
DaTscan)

and…
Urinary urgency, frequency, incomplete

bladder emptying, ED in males, or
orthostatic hypotension

(OH: drop in BP within 3 min of standing of ≥
20 mmHg systolic or 10 mmHg diastolic)

Modified from the Second Consensus Criteria for the Clinical Diagnosis of Multiple System Atrophy [19]
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synuclein deposition in unmyelinated somatosensory fibers of
the subepidermal plexus, but not in dermal autonomic fibers,
can distinguish MSA from other subtypes of synucleinopathy
[89]. In addition, several recent studies utilizing the ultrasen-
sitive real-time quaking induced conversion (RT-QuIC) assay
claim the ability to detect α-synuclein aggregation in tissues
such as olfactory mucosa [90] and the submandibular gland
[91] with high sensit ivi ty and specifici ty for α-
synucleinopathies including Parkinson disease and MSA.

Symptomatic Management

To date there are no approved disease-modifying therapies for
MSA; thus, treatment is focused mainly on symptommanage-
ment tailored to the specific patient (Table 2) and importantly
involves a multidisciplinary approach with rehab and other
allied healthcare partners. As a multisystem disorder, MSA
often requires care from several disciplines including neurol-
ogy, cardiology, gastroenterology, urology, sleep medicine,
pulmonary, psychiatry, neuropsychology, dietary, palliative
care, and hospice. Social services and support are critical
and should include engaging social work, care partners, and
discussion of life goals, end-of-life planning, and advanced
directives.

While ideal, multidisciplinary care for MSA and other neu-
rodegenerative disorders faces challenges in delivery. Current
care models are often plagued by a lack of patient-centered
care with poor continuity and delayed or reactive care delivery
[92, 93]. Two multidisciplinary models, the Canadian and
Dutch models, have been evaluated for clinical effectiveness
[94, 95]. Although both models show benefit, the Canadian
model appears more robust, although no universal standard
has yet been recognized [96]. More recent work has focused
on expanding and standardizing the Canadian Chronic Care
Model (CCM) for patients with chronic neurologic conditions
including parkinsonian disorders for the purposes of objective
evaluation and standardization, but this remains a developing
area in need of further study [97–100]. It is important to note
that much of this work has focused on dementia and Parkinson
disease, with the presumption that atypical parkinsonism
would similarly benefit. Such a presumption, however, re-
mains an untested hypothesis.

Parkinsonism

Tremor, rigidity, bradykinesia, and postural instability are
core features of MSA-P and are observed irrespective of sub-
type in nearly 90% of cases [2]. A poor or unstained response
to levodopa is common and among the core diagnostic fea-
tures of MSA, helping to differentiate MSA-P from Parkinson
disease [35, 101]. Nearly a third of MSA-P patients benefit
from levodopa therapy, but temporarily with mean duration of

3.5 years in one study [6]. Levodopa remains a first-line ther-
apy with trial up to 2 g total daily dose of levodopa (titrated
from 100 to 300 mg 3-4 times daily) recommended for at least
3 months [102]. Clinically significant improvement is charac-
terized as 30% decrease in the Unified Multiple System
Atrophy Rating Scale (UMSARS) [101]. Levodopa may
worsen orthostatic hypotension or cause other more severe
side effects less common among Parkinson disease patients.
Reports of deterioration with withdrawal of the medication
even in the context of apparent nonresponse are common
and may justify continuation of treatment [4].

Dopamine agonists may be used as a second choice, but
lack supporting evidence and are generally not preferred be-
cause of their increased side effect profile relative to levodopa
[61, 102]. Amantadine, up to 300 mg in 3 divided doses, is a
reasonable alternative treatment option (including as an add-
on), though there are no controlled studies to date [2, 103,
104].

Nonpharmacological approaches such as physical, occupa-
tional, and speech therapy are both complementary and essen-
tial therapies in MSA. Randomized controlled trials support
occupational therapy in mild to moderate MSA [105], and
although there are no such trials supporting physical therapy
inMSA specifically, given the strength of the evidence for the
motor symptoms of Parkinson disease [106], the assumption
is that parkinsonian MSA symptoms will similarly benefit.

Deep brain stimulation for parkinsonism in MSA is not
recommended as symptoms often poorly respond and rapidly
progress relative to Parkinson disease. Case studies and series
suggest it is ineffective and, as a result, should not be consid-
ered a therapeutic option [107–109].

Dystonia and Spasticity

Focal dystonia such as anterocollis or blepharospasm is a
common feature of MSA with prevalence reported between
12 and 46% [16, 41]. Medical therapies for dystonia including
benzodiazepines and anticholinergics are not commonly used
because of cognitive and respiratory risks. As is true with
other causes of dystonia, botulinum toxin injections can be
quite effective for dystonic symptoms in MSA, especially
for blepharospasm and limb dystonia [110]. Treatment of cer-
vical dystonia, in particular anterocollis, may confer substan-
tial risk because of the potential for exacerbating underlying
dysphagia often associated with disease, and abundant caution
is advised [111].

Ataxia

There are currently no medications available that provide
evidence-supported improvement in ataxic symptoms in
MSA. Similar to parkinsonism, however, evidence supports
intensive physical therapy for gait, balance, and overall
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Table 2 Symptomatic therapies in MSA

Symptom Pharmacologic therapy Nonpharmacologic therapy

Parkinsonism Carbidopa/levodopa commonly to 200 to 300 mg × 3-4 times daily, 2000 mg
daily max

Amantadine up to 100 mg × 3 times daily

Physical therapy (PT)
Occupational therapy (OT)
Regular activity, exercise

Dystonia Trihexyphenidyl, botulinum toxin PT and OT

Spasticity Muscle relaxants (e.g., baclofen, tizanidine)
Botulinum toxin

PT and OT

Dysarthria – Speech therapy

Dysphagia – SLP swallow evaluation, therapy

Autonomic failure

Orthostatic hypotension Fludrocortisone 0.1-0.4 mg daily
Midodrine 2.5 to 10 mg × 3 times daily
Droxidopa 100 to 600 mg × 3 times daily
Pyridostigmine 60 mg × 3 times daily
Atomoxetine 18 mg daily
Caffeine

Hydration, fluid intake
Increased dietary salt
Abdominal binders
Waist-high compression stockings

Postprandial hypotension Octreotide 25–50 mcg before meals
Acarbose 25–50 mg before meals

Eat smaller, more frequent meals
Avoid high-carbohydrate meals
Avoid alcohol
Remain seated (or lie down) after

eating

Supine hypertension Nightly clonidine 0.1-0.3 mg
Hydralazine 25-50 mg, minoxidil 2.5 mg
Losartan 25 mg
Nifedipine 10-20 mg
Nitroglycerin TD (wipe off in AM)
Sildenafil 25 mg

Assess scheduled medications
Elevate head of bed
Bedtime snack (postprandial effect)

Urge incontinence Solifenacin, trospium
Mirabegron

Timed urination
Intermittent self-catheterization
Suprapubic catheter placementIncomplete bladder

emptying
Tamsulosin 0.4 mg daily
Prazosin 0.5-1 mg twice daily

Sialorrhea Botulinum toxin Sugar-free lozenges, gum
Papaya or grape seed extract

Nocturia Desmopressin 0.2-0.6 mg nightly No fluids 3-4 h before bed

Constipation Stool softeners
Senna, laxatives, enemas
Polyethylene glycol 3350
Magnesium citrate
Linaclotide
Lubiprostone

Increased fluid, fiber intake
Activity/exercise

Erectile dysfunction Sildenafil 50-100 mg prn
Tadalafil 5-20 mg prn
Vardenafil 5-20 mg prn
Apomorphine subq injections
Prostaglandin E1 or paperverine intercavernous injections

Implants

Sleep disorders

REM-behavior disorder Melatonin extended release 3-15 mg nightly
Clonazepam 0.25-2 mg nightly

Restless leg syndrome
(or RLS/PLMS)

Dopamine agonists:
Pramipexole 0.125-0.5 mg, ropinirole 0.25-4 mg, or rotigotine TD 2-6 mg/24 h
Gabapentin versus gabapentin enacarbil
Benzodiazepines (i.e., clonazepam)—relative contraindication in sleep apnea

Nocturnal stridor Botulinum toxin injection (dystonic stridor)*

Minimally invasive procedures*†
First line—ventilation with CPAP
Persistent/severe—consider

tracheostomy

Sleep apnea – Change in sleep position, weight loss
Oral appliance therapy
CPAP versus AutoPAP (if central)
Uvulopalatopharyngoplasty
Neurostimulation
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coordination, as well as speech therapy for ataxic dysarthria
[112–116].

Sleep Disturbance

Sleep disorders are common in MSA and include insomnia,
daytime somnolence, restless legs syndrome (RLS), REM
sleep behavior disorder (RBD), and sleep disordered breathing
[117]. Up to 71% of MSA patients report insomnia and have
problems falling or staying asleep, or early morning awaken-
ings. The causes are multifactorial and include nocturnal dis-
comfort (due to rigidity or dystonia), urinary dysfunction (e.g.,
nocturia), anxiety and depression, and other parasomnias
[118]. Good sleep hygiene is important and include maintain-
ing consistent bed and wake times (avoid also prolonged in-
bed time) and avoiding caffeine and excessive daytime naps.
For those who get out of bed or are unable to fall asleep, having
a planned relaxing activity such as reading a book, listening to
music, or a warm bath can help. Consider also a referral to
psychology for brief behavioral therapy. Treat anxiety and
depression, if present. If discomfort is causing sleep difficulty,
inquire about specific symptoms such as rigidity, dystonia,
RLS, or tremors and treat accordingly. Mild pain relievers
may be necessary and appropriate for some patients.

Daytime sleepiness is a frequent complaint and may lead to
naps or more problematic “sleep attacks” that interfere with
meals. Factors that contribute to fatigue and excessive daytime
somnolence include sleep deprivation (from insomnia), sleep
disordered breathing, circadian rhythm disruption, and drug
side effects (e.g., pain medications, benzodiazepines, and
change in dopaminergic medications). A baseline sleep study
can help check for other sleep disorders such sleep apnea,
RBD, RLS, or periodic limb movements in sleep. RLS occurs
more frequently in MSA-P than in MSA-C, and may be asso-
ciated with iron deficiency, although studies are conflicting
[45]. Physicians should review medications that may exacer-
bate RLS such anticholinergics and antihistamines, and con-
sider typical therapies such as dopaminergic agents,
gabapentin (regular or enacarbil forms), pregabalin, or low-
dose benzodiazepines.

History of REM behavior disorder (RBD) is a common risk
factor for synucleinopathies and almost ubiquitous inMSA [4,
66]. Symptoms should be elicited in clinical history with a
referral to polysomnography for objective assessment. If
RBD is present, safety is foremost and includes securing the
bedroom environment and sleeping partner. Patients with
RBD often sleep alone, in a separate bed, or with a divider
in place. Consider also padding for hard edges, a railing, or
putting the mattress directly on the floor to prevent falls and
injury. Despite the frequency of RBD in MSA, no specific
treatment trials are available to guide pharmacotherapy and
general guidelines for RBD are usually followed. First-line
therapy for RBD is clonazepam 0.5 to 2 mg at night with
lower doses often quite effective [119]. Given the frequency
of respiratory dysfunction amongMSA patients in sleep, how-
ever, clonazepam should be avoided in the context of apnea.
In these situations, melatonin at a starting dose of 3 mg is an
effective second-line agent, but higher doses (10-20 mg) are
often needed and well-tolerated. Additional agents such as
gabapentin and pregabalin have been reported as potentially
effective alternatives [120].

Sleep disordered breathing such as obstructive sleep apnea
is common and occurs in 37 to 65% of MSA patients.
Continuous positive airway pressure (CPAP) or bilevel posi-
tive airway pressure provides benefit [121–123], but some
patients experience central sleep apnea and require
AutoPAP, or positive airway pressure machines that can au-
tomatically sense snoring, apneas, and hypopneas, and in-
crease pressure until these disturbances stop. Nocturnal stridor
is a particularly concerning and common symptom, with up to
13% of patients affected in one report, and is associated with
oxygen desaturations, respiratory failure, and sudden death
during sleep [69, 124]. In small studies, both CPAP and non-
invasive positive pressure ventilation (NPPV) have shown
efficacy in eliminating oxygen desaturations and stridor
[121, 122], with these treatments generally well tolerated
[123]. In more severe cases, tracheostomy may be considered
to address vocal cord paralysis but may worsen sleep disor-
dered breathing [125]. Because of the absence of therapeutic
trials for RBD in MSA, management relies on the standard of

Table 2 (continued)

Symptom Pharmacologic therapy Nonpharmacologic therapy

Neuropsychiatric symptoms

Depression SSRIs/SNRIs Psychotherapy
Cognitive behavioral therapyAnxiety Anxiolytics, benzodiazepines

Buspirone

Pseudobulbar affect Dextromethorphan/quinidine

* Insufficient evidence to support treatment
†E.g., airway dilation, arytenoidectomy, cordectomy
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care for RBDwith some consideration for MSA-specific med-
ication side effects and risks. Although low-dose clonazepam
is often trialed (0.5-2 mg) [126], comorbid obstructive respi-
ratory symptom may preclude this therapy. Sustained-release
melatonin is a common and likely effective alternative, with
doses ranging from 3 to 15 mg nightly. Gabapentin,
pregabalin, and sodium oxybate are additional second-line
alternatives [120]. Although noninvasive continuous positive
pressure ventilation has shown some benefit here as well,
tracheostomy may be required in advanced MSA patients to
prevent fatal obstruction from vocal cord paralysis [124, 127,
128].

Dysarthria, Dysphagia, and Aspiration Risk

No medical therapies have proven effective for dysarthria,
dysphagia, or aspiration. Evaluation of speech and swallow
by a speech–language pathologist should be considered at the
initial clinical presentation and targeted therapy established as
appropriate. Speech–language pathologists are an integral
member of the multidisciplinary team and work closely with
clinicians, patients, and their caregivers to communicate the
importance of speech and swallow interventions and ap-
proaches to optimize long-term outcomes. Speech therapy
can be helpful to improve both articulation and volume.
Dysphagia occurs earlier in MSA than in Parkinson disease
and is more severe [129, 130]. Although therapeutic swallow
measures and changes in diet consistency can help, many
patients aspirate (often silently) and are at risk for choking
or pneumonia. Swallow difficulty, and poor appetite, can lead
to failure to thrive. Percutaneous gastrostomy tube placement
(PEG) and enteral feeds may be an option for patients who
need supplemental nutrition, hydration, and medication deliv-
ery, but does not change disease outcome or fully protect
against aspiration. Discussion of nutritional support via PEG
should be done early as part of advanced directives and should
involve a team approach.

Depression

Despite the frequency and severity of depression and anxiety
in patients with MSA [53] with up to half of patients reporting
symptoms and evidence they play a major role in quality of
life, randomized controlled trials providing therapeutic guid-
ance are lacking [50, 51]. Treatment is largely based on
Parkinson disease and other parkinsonisms. Smaller studies
have suggested that paroxetine may improve motor symp-
toms, but without affecting depressive symptoms [131]. The
combination of selective serotonin reuptake inhibitors, which
have a lower risk of hypotension as compared to other classes
of antidepressants, with psychotherapy is a common clinical
approach and recommended for MSA patients with depres-
sion or anxiety based on evidence in Parkinson disease [132].

Cognitive Impairment

Although historically thought to have limited cognitive im-
pairment compared to other atypical syndromes and
Parkinson disease, recent evidence indicates the presence of
cognitive dysfunction and dementia estimated in 14 to 16% of
MSA patients causing significant impact on quality of life
[133]. Empiric therapy is based on data from other
Parkinson disorders, and acetylcholinesterase inhibitors such
as donepezil or rivastigmine are often employed with modest
benefit [119].

Orthostatic Dizziness

Three of every 4 MSA patients will suffer from orthostatic
dizziness and hypotension [7, 61]. The management of ortho-
static hypotension begins with behavioral or lifestyle changes
including increased fluid and salt intake (i.e., volume expan-
sion), wearing compression stockings or an abdominal binder,
and being mindful of exacerbating conditions such as activity
in hot, humid weather. When these are not enough, pharma-
cological therapy is needed. Both midodrine, an α-1 adrener-
gic agonist, and the mineralocorticoid fludrocortisone have
demonstrated efficacy for symptomatic orthostatic hypoten-
sion and are used with good effect in MSA [134–136].
Although ephedrine also functions as a sympathomimetic, ev-
idence from placebo-controlled trials or head-to-head compar-
i sons is lacking [137] . Droxidopa (L- threo-3,4-
dihydroxyphenylserine or L-DOPS) is a synthetic amino acid
precursor that is converted by dopa decarboxylase to norepi-
nephrine, resulting in peripheral vasoconstriction [138]. The
effect of droxidopa in symptomatic neurogenic orthostatic hy-
potension has been studied in multicenter trials involving pa-
tients with Parkinson disease and related disorders including
MSA, pure autonomic failure, and nondiabetic autonomic
neuropathy. An initial trial involving an open-label dose opti-
mization phase, followed by 7-day washout, and 7-day dou-
ble-blind, drug-versus-placebo phase demonstrated increased
blood pressure and decreased orthostatic symptoms such as
weakness, fatigue, dizziness, and vision disturbance with
droxidopa [139]. Based on 2 subsequent multicenter trials
over a 2-week treatment period, droxidopa received FDA ap-
proval for short-term treatment of neurogenic orthostatic hy-
potension [140–142]; however, long-term efficacy has not
been shown [138, 143].

Additionally, there is emerging evidence supporting the
use of atomoxetine, a norepinephrine transport inhibitor, for
neurogenic orthostatic hypotension, especially in those with
central autonomic failure [144–146]. Atomoxetine in one re-
port showed comparable results (and safety) to midodrine for
treatment of neurogenic orthostatic hypotension [147], sug-
gesting potential use as an alternative agent. Ampreloxetine,
another norepinephrine reuptake inhibitor (NRI), developed
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by Theravance Biopharma (South San Francisco, CA), is cur-
rently under investigation in a phase 3 trial for symptomatic
orthostatic hypotension in subjects with MSA, PD, and pure
autonomic failure (NCT03750552). CERC-301 (rislenemdaz;
developed by Cerecor, Inc., Rockville, MD) is another inves-
tigational drug developed for the treatment of symptomatic
orthostatic hypotension but targets the NMDA receptor 2B
subunit.

Urinary Dysfunction

Urinary dysfunction is the most common autonomic symptom
of MSA and is recognized as a diagnostic criterion. There are
several types of dysfunction and associated medical therapies;
therefore, patients benefit from care coordinated with a urol-
ogist familiar with MSA. Sphincter detrusor dyssynergy and
detrusor hyperreflexia result in urge incontinence that may
respond to antispasmodics, including anticholinergics [104,
116, 148]. Conservative dosing and close monitoring are im-
portant as MSA patients can easily develop urinary retention
as well. Anticholinergics such as oxybutynin may also cause
confusion or delirium; thus, newer agents such as solifenacin,
trospium, or fesoterodine may be preferred, though definitive
evidence of superiority compared to other drugs is lacking
[149]. By contrast, mirabegron is an antispasmodic that stim-
ulates β3-adrenoceptors resulting in detrusor muscle relaxa-
tion and decreased afferent bladder signaling, and has compa-
rable safety and efficacy for control of urinary urgency and
incontinence [150]. Hypertension is the most common side
effect but comparable to anticholinergics, though
antimuscarinic effects appear less common (2% vs 25%)
[151, 152]. Detrusor muscle overactivity may also be ad-
dressed with botulinum injections in coordination with urolo-
gy [153, 154]. In addition, excessive nocturnal polyuria (in
which more than 33% of the 24-h urinary volume is secreted
at night) is a common complaint among MSA patients and
evidence supports the use of desmopressin (oral or intranasal
spray) before bed without clear side effects in several case
series [155, 156]. Finally, neurogenic urinary retention is seen
in MSA and can lead to complicated or intractable urinary
tract infections and impairment in kidney function. Alpha-
adrenergic antagonist medications such as tamsulosin or
prazosin may be helpful [58] but increase the risk of orthostat-
ic hypotension. As a result, intermittent self-catheterization is
thought to be the first-line therapy for urinary retention in
MSA [157].

Erectile Dysfunction

Erectile dysfunction is a key criterion for diagnosis of proba-
ble MSA in men and, given the social stigma and patient
embarrassment, is likely underreported. As a result, questions
about sexual dysfunction are an essential component of the

clinical evaluation in MSA. Randomized placebo-controlled,
crossover studies support efficacy in sildenafil citrate (50 mg)
[6, 158]. Treatment of sildenafil should be initiated with cau-
tion, however, because of the potential for sildenafil to exac-
erbate orthostatic hypotension [119].

Disease-Modifying Therapies and Trials

A relatively limited number of trials to date have failed to
identify an effective disease-modifying therapy. This failure
likely results from an incomplete understanding of the under-
lying pathophysiology as well as limitations in preclinical an-
imal models of disease and, at clinical levels of research, a
lack of early and accurate assessments of diagnosis and pro-
gression of disease. Table 3 summaries current and past efforts
to develop disease-modifying therapies in MSA.

Targeting α-Synuclein

Although GCIs containing α-synuclein aggregates are associ-
ated with clinical and pathological MSA, oligodendrocytes do
not produce synuclein, leaving obscure how a protein with a
purported synaptic localization and function is found in oligo-
dendrocytes. Research pursuing the possibility of oligoden-
drocyte expression has found little evidence to support glial
expression [177–180]. Given the lack of endogenous oligo-
dendroglial synuclein expression, the field has explored the
hypothesis that there may be cell-to-cell transmission of synu-
clein from neurons to glia, with preclinical evidence demon-
strating trans-synaptic transmission of α-synuclein between
neurons, as well as transfer to glia specifically [181–186].
Clinical evidence supporting this hypothesis includes GCIs
found in patients with SNCA triplication [187]. Synuclein ex-
pression in the brains of purportedly sporadic MSA patients,
however, has failed to show increased neuronal SNCA gene
expression [177, 179, 180]. Recent work suggests that α-
synuclein can produce a variety of potentially pathogenic con-
formations or “strains” which may explain the variety of pa-
thology and localization seen among α-synucleinopathies. In
the case of MSA, it may be that a particular strain is
predisposed to cell-to-cell transfer from neurons to oligoden-
drocytes [188, 189], although no such MSA-specific synucle-
in strain has yet been described. Impaired protein processing
or degradation has also been implicated [12, 26]. In this mod-
el, either pathologic conformations of synuclein induce pro-
tein processing impairments in a feed forward mechanism or a
primary impairment in autophagic or proteasomal dysfunction
leads to synuclein accumulation [26, 190, 191]. Additional
work has proposed not that pathologic synuclein itself is path-
ologic but that abnormal glial proteasomal function results in
synuclein accumulation that glia bear the burden of [12, 192].
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The focus on synuclein has resulted in several trials
targeting synuclein pathology through inhibition of

aggregation, enhancement of degradation, or immunotherapy.
The European Artemis Consortium, a collaborative effort

Table 3 Summary of recent and current therapeutic trials

Therapeutic drug Target/mechanism Phase Outcomes Reference

Targeting α-synuclein (inhibition αSyn aggregation and toxicity)

EGCG (green tea
extract)

Inhibition αSyn aggregation III No effect on progression of disease (NCT02008721)

Lithium Inhibition αSyn aggregation II Trial terminated because of severe side effects [159]

Rifampicin Inhibition αSyn aggregation II No effect on progression of disease [160]

Sirolimus/rapamycin mTOR inhibitor II Phase II ongoing (NCT03589976)

AFFITOPE® PD01A,
PD03A

Vaccines against αSyn II Evidence of safety, tolerability, and immunogenicity [161]

Anle138b Modulates αSyn
oligomerization

I Ongoing (MODAG) [162]
(NCT04208152)

NPT200-11 Small molecule inhibitor of
αSyn misfolding

I Pending phase Ib UCB/Neuropore
(NCT02606682)

PBT434 (orphan drug) Inhibition αSyn aggregation I Safety, tolerability, crosses BBB (Alterity Therapeutics) Unpublished

Anti-miR-101 Inhibition αSyn aggregation
(target microRNA-101)

PreClin Human αSyn mouse shows decreased GCIs and increased
autophagy

[163]

CLR01 Inhibition αSyn aggregation,
“molecular tweezer”

PreClin Human αSyn mouse model shows decreased GCIs,
synuclein oligomers, microglial activation, cell death, and
motor impairment

[162, 164]

Monophosphoryl lipid
A (MPLA)

TLR4 agonist, potent inducer
of phagocytosis—clearance
αSyn aggregates

PreClin Human αSyn mouse shows decreased GCIs, cell death,
motor impairment

[165]

Nilotinib c-Abl tyrosine kinase inhibitor PreClin Phase IIa study (NILO-PD) in PD negative (NCT03205488) [160]

VX-765 (Belnacasan) Inhibition αSyn aggregation
(CASPASE 1 inhibitor)

PreClin Human αSyn mouse shows decreased GCIs, synuclein
oligomers, microglial activation, cell death, and motor
impairment

[166]

Passive immunization
(PRX002, BIIB-054)

Monoclonal αSyn antibodies PreClin Human αSyn mouse shows decreased GCIs, synuclein
oligomers, increased microglia activity

[167]

Neuroprotection

MPO inhibitor
(AZD3241,
verdiperstat)

Neuroprotection III Phase III ongoing based on phase II improvements in PET
biomarker of neuroinflammation, improved clinical
scores. Given fast track designation

Biohaven 2019
(NCT03952806)

Riluzole Neuroprotection III No effect on progression of disease [168]

Mesenchymal stem cells Neuroprotection (trophic
support?)

II/III Delayed progression of disease [169, 170]

CoQ10 Mitochondrial function II Phase II ongoing [171]

Exendin-4 Neuroprotection (GLP-1
analogue; reduces αSyn
levels)

II Human αSyn mouse shows decreased synuclein oligomers,
insulin resistance, and cell death

[172]

Fluoxetine Neuroprotection (increases
GDNF/BDNF)

II No effect on progression of disease (NCT01146548)

[227]NMBI (Irminix) Chelator and antioxidant II Phase II ongoing NCT04184063

Rasagiline Neuroprotection II No effect on progression of disease [173]

KM-819 Neuroprotection (FAF1
inhibition)

I Completed, well tolerated Kainos Medicine
(NCT03022799)

GDNF Neuroprotection PreClin Human αSyn mouse shows decreased cell death and motor
impairment

Ubhi K et al. 2010

Neuroinflammation

Minocycline Neuroinflammation, inhibition
microglia

III No effect on progression of disease [174]

IVIg Neuroinflammation – Pilot study showed improved clinical scores [175]

Fingolimod (FTY720) Neuroinflammation, reduces
αSyn, increases GDNF

PreClin Positive results in Tg mouse model MSA [176]
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funded by the EuropeanUnion to develop treatments forMSA
named after the Greek goddess of the hunt, is evaluating α-
synuclein therapies in several transgenic mouse models, in-
cluding an increasing number of small molecule modulators
of α-synuclein.

Anle138b is a small molecule that targets and inhibits α-
synuclein oligomerization and aggregation in MSA mouse
models, slowing of disease progression and cell death [162].
These data have motivated a phase I trial in MSA sponsored
by MODAG neuroscience solutions (http://www.modag.net/
images/pressrelease_modag_ series_a.pdf). An additional
small molecule, CLR01, has been shown in preclinical
studies to reduce the formation of synuclein oligomers
[164]. The small molecule PBT434 has also shown potential
to reduce glial aggregates in an MSA mouse model through
modulation of reactive iron species, and a phase I trial is
currently ongoing for this agent as well [193, 194].
Precl in ical data suggests that PBT434 media tes
transmembrane reactive iron distribution, sequestering these
reactive species away from intracellular proteins and thus
reducing aggregation and oxidative stress. Based on this
evidence, a phase I trial (U1111-1211-0052) is ongoing. The
small molecule NPT200-11 has similarly shown multiple
synuclein-related benefits in animal models [195], including
reduced synuclein pathology burden and astrogliosis, and im-
proved motor function. Finally, the repurposed epilepsy drug
and caspase-1 inhibitor VX-765 has own some potential to
limit synuclein aggregation, progression of motor deficits,
and neuronal death in MSA animal models [196]. Along with
phase II tolerability data in patients with epilepsy, further clin-
ical trials inMSA patients are currently being pursued for VX-
765.

Despite promising preclinical data and ongoing clinical
trials in this area, caution is warranted given previous failed
trials of drugs claiming a similar ability to affect α-synuclein
aggregation. Rifampicin showed similar promise in MSA
mouse models [197] as well in reducing β-amyloid aggrega-
tion in Alzheimer disease [198, 199]. However, a large
double-blind trial in MSA patients failed to show effects on
progress ion of disease . In addi t ion, polyphenol
epigallocatechin-gallate (EGCG) found in green tea showed
modulation of synuclein aggregation in in vitro and cell
models, but phase III randomized studies (NCT02008721)
and (2012-000928-18) were negative.

Further preclinical evidence has implicated impairment of
protein processing and autophagy in the pathogenesis of α-
synuclein aggregation, spurring several clinical trials. Lithium
was shown to enhance autophagy in in vitro and in vivo
models [200–202]. A randomized, double-blind, placebo-
controlled study (NCT00997672) was terminated, however,
because of adverse effects [159]. Another autophagy enhanc-
er, sirolimus (or rapamycin), showed similar preclinical ben-
efits, and a clinical trial is ongoing in MSA patients

(NCT03589976). The c-Abl tyrosine kinase inhibitor nilotinib
has also been proposed as an autophagy enhancer in α-
synucleinopathies with promising evidence in animal models
of Parkinsonism, but discouraging results thus far in clinical
trials of PD and an unclear path forward in MSA patients.
Finally, toll-like receptors and antisense oligonucleotides have
been explored as possible additional therapies but remain in
the preclinical phase.

Monophosphoryl lipid A (MPLA), a TLR4 selective ago-
nist and inducer of phagocytosis, is thought to aid in the deg-
radation of pathologic protein aggregates, reduction of GCIs,
neuroprotection, and improvements in motor deficits in a
mouse model of MSA [165]. In addition, TLR4 appears in-
creased in MSA brains, suggesting it may participate in an
endogenous reactive process of glial protein clearance in
humans [203, 204], all of which support future testing in clin-
ical trials.

Both passive and active (i.e., vaccines) immune therapies
targeting α-synuclein with the goal of reduction or clearance
are ongoing. Several studies in animal models have shown
efficacy of both passive and active immunization against α-
synuclein [167, 205–210]. AFFiRiS (Vienna, Austria) recent-
ly completed phase I studies (2018) on the active vaccine
immunotherapies AFFITOPE® PD01A and PD03A that tar-
get α-synuclein in both MSA and PD, showing safety, toler-
ability, and immunogenicity. Using a passive immunotherapy
approach, Prothena (South San Francisco, CA) designed a
humanized monoclonal antibody against α-synuclein
(PRX002) that in phase I studies resulted in over 96% reduc-
tion of serum α-synuclein levels and appeared safe and well-
tolerated [161]. A phase 2 randomized and double-blind clin-
ical trial, led by Roche, is now underway (NCT03100149).
Similarly, Biogen (Cambridge, MA) is investigating passive
immunotherapy with the antibody BIIB-054 directed against
α-synuclein early PD (NCT03716570).

Antisense oligonucleotides (ASO) are increasingly being
explored and used clinically to knockdown gene products in
neurodegenerative diseases from Alzheimer disease to
spinomuscular atrophy [211–213]. ASOs targeting the
SCNA gene product in preclinical models of synucleinopathy
have demonstrated some success [52, 214–216], suggesting
they may have a role in treating MSA, although current work
in this area remains in the preclinical phase. MicroRNA-101
has been found to upregulate oligodendroglial α-synuclein
pathology in MSA mouse models and to be overexpressed
in MSA brains [163]. Anti-MiR-101 is currently in preclinical
evaluations as a potential disease-modifying therapy.

Neuroprotective Therapies

Glutamatergic excitotoxicity is an important contributor and
a well-known trigger for neuronal death. Several glutamate
antagonists have been studied in CNS disorders for their
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potential neuroprotective effect, in particular riluzole, current-
ly approved for amyotrophic lateral sclerosis as a disease-
modifying therapy. Riluzole has an indirect effect on gluta-
mate receptors via blockade of sodium and potassium chan-
nels. Riluzole was shown to reduce behavioral deficits and
striatal degeneration in a rat model of MSA-parkinsonism
[217]. These promising findings spurred clinical trials of
riluzole in MSA (and progressive supranuclear palsy). The
NNIPPS trial compared riluzole to placebo for 3 years with
survival as the primary outcome. Despite recruiting 400 pa-
tients to a trial of such a rare disease, survival was unchanged
[168]. Other antiglutaminergic drugs have also been explored
including estrogens, but with disappointing results [218].
Tllsh-2910, a specific NMDA receptor modulator, is one ex-
ception and is currently in phase III trials to evaluate efficacy
for symptomat ic management of ataxia in MSA
(NCT03901638).

Rasagiline is a monoamine oxidase (MAO) B inhibitor
with symptomatic benefit and suggested disease-modifying
effect in PD [219]. The putative neuroprotective effects of
rasagiline are thought to be related to mitochondrial metabo-
lism rather than its MAOb effects [220]. A trial of rasagiline in
a transgenic MSA mouse model showed evidence of de-
creased synuclein oligomers and improved motor function
[221]. However, a subsequent phase II randomized, placebo-
controlled trial in MSA patients failed to show benefit [173].

Neuroprotective strategies include also increasing levels of
neurotrophic factors in the brain such as GDNF and BDNF.
Both GDNF and neurturin have been explored as a potential
therapeutic for PD [222, 223], but so far not in MSA. The
SSRI fluoxetine has been shown to increase GDNF and
BDNF and to rescue hippocampal neurogenesis in a transgen-
ic mouse model of synucleinopathy [224, 225]. These preclin-
ical findings spurred a clinical trial of fluoxetine in MSA
(NCT01146548) that failed to show benefit.

Research has focused on the role of mitochondria in path-
ogenesis as well, with mitochondrial mutations and toxins
playing a key role in striatonigral degeneration and parkinson-
ism in both animal models and patients [226–230]. Specific to
MSA, both fibroblasts and induced pluripotent stem cells de-
rived from MSA patients have shown a variety of mitochon-
drial impairments. Recent descriptions of mutations in the
COQ2 gene, which contributes to the mitochondrial electron
transport protein coenzyme Q10 (CoQ10) biosynthesis,
among possible MSA patients, have focused the field on mi-
tochondrial pathophysiology. Clinical trial testing of CoQ10,
however, has not been successful [171].

Exendin-4, an FDA-approved antidiabetic drug, is a
glucagon-like peptide-1 (GLP-1) analogue that has been
shown to reduce dopaminergic cell loss and monomeric α-
synuclein levels in a mouse model of MSA [172].
Additional clinical evidence in PD patients [172, 231] has
motivated a phase I trial in MSA.

AZD3241 is an orally bioavailable inhibitor of
myeloperoxidase, a key enzyme in the production of reactive
oxygen species. Treatment with AZD3241 has shown neuro-
protective efficacy in the MPTP model of Parkinsonism and
the proteolipid protein (PLP)–α-synuclein transgenic mouse
model of MSA, delaying progression of disease [232]. As a
result, inhibition with AZD3241, verdiperstat, is being ex-
plored in clinical trials as a potential therapy, currently in
p h a s e I I I ( N C T 0 2 3 8 8 2 9 5 ) , s p o n s o r e d b y
Biohaven Pharmaceuticals (New Haven, CT) .

Some preclinical work has identified agents that have ef-
fects across mechanisms. For example a derivative of the
FDA-approved multiple sclerosis immunosuppressive
FTY720 has shown effects both in mitochondria and GDNF
expression as well as synuclein pathology in MSA mouse
models [176].

Recently, autologous mesenchymal stem cells (MSC) treat-
ment has been examined as a possible neuroprotective thera-
py, driven by the hypothesis that these cells can differentiate
into a variety of supportive cell types which secrete neuropro-
tective and immunomodulatory agents [233, 234]. Studies in
animal models provide support for this hypothesis [235, 236],
and early clinical trials showed evidence for delayed disease
progression but raised concern about interarterial delivery and
ischemic lesions [169, 237]. A more recent trial involving
intrathecal MSC administration showed that it was safe and
well-tolerated, but may be associatedwith implantation pain at
higher doses [170]. Larger controlled trials are needed to as-
sess the safety and efficacy of MSC treatment, as well as
further elucidate the mechanism.

Reducing Neuroinflammation

Increasing evidence suggests that the inflammatory response to
abnormal α-synuclein accumulation and aggregation plays a
key role in the pathogenesis of MSA (and other
synucleinopathies). This neuroinflammatory response is medi-
ated by activated microglia that respond to neuronal damage by
secreting proinflammatory cytokines, stimulating further im-
mune reaction, and phagocytosis of injured/diseased cells. A
consequence of chronic microglial activation in neurodegenera-
tive disorders like MSA is the perpetuation of the
neuroinflammatory response and release of cytotoxic molecules
that may promote further neuronal injury. Suppression of
microglia-associated inflammation has thus been proposed as
a potential therapeutic strategy in MSA. Minocycline is a tetra-
cycline antibiotic that crosses the blood–brain barrier and has
additional effects including inhibition of microglia, apoptosis,
and proteolysis [238]. Despite conflicting preclinical evidence
[203, 239, 240], minocycline was pursued clinically through the
MEMSA trial which randomized 63 MSA-P patients to
minocycline or placebo with a small subgroup receiving PET
scans to assess microglial activation. Despite evidence for
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decreased microglial activity, as measured by PET, after 1 year
of treatment, the study failed to show clinical improvement and
reported premature loss of 22 of 32 subjects in the minocycline
group alone, primarily because of adverse events [174].

Although its mechanism remains poorly understood, intra-
venous immunoglobulins (IVIg) have been widely used in a
number of immune-mediate neurological disorders. IVIg con-
tains pooled antibodies from human plasma and is thought to
reduce circulating inflammatory proteins that may mediate
neurological disease. Based on this theory, IVIg was trialed
in a single-center, 6-month, open-label pilot study in 7 MSA
patients [175]. The study reported tolerability and improve-
ment in clinical scores (both UMSARS I and II), but lacked
controls, raising concern for potential placebo effects.

Conclusions

Treatment of MSA remains a challenge and requires a multi-
disciplinary approach including allied healthcare providers,
rehabilitation, and supportive care. Although there are a num-
ber of effective symptomatic therapies, these treatments are
limited by the multisystem nature of the disease, potential side
effects, drug interactions, and relentless disease progression.
These factors underscore the pressing need for disease-
modifying therapies in MSA. A growing number of potential-
ly disease-modifying agents are currently in preclinical devel-
opment and include clinical trials focusing on α-synuclein
modulation, neurotoxicity, neuroinflammation, trophic cell
support, and even genetic modulation, among others. The
success of these agents remains limited, however, by the num-
ber and validity of preclinical animal models, clinical diagno-
sis (especially early in disease), and the sensitivity and spec-
ificity of clinical fluid and imaging biomarkers to help with
diagnosis and to monitor disease progression. In addition, an
incomplete understanding of the underlying pathophysiologic
mechanisms ofMSA is a fundamental limitation. Specifically,
the role of α-synuclein in oligodendrocyte-mediated neurode-
generation remains unclear. Despite these limitations, it is en-
couraging that recent research and clinical trials in MSA are
increasing, raising hope for new discoveries and therapeutic
developments for this devastating disease.

Required Author Forms Disclosure forms provided by the authors are
available with the online version of this article.
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