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Abstract

Meiotic recombination is a critical process that ensures proper segregation of chromosome homologs through DNA double-strand

break repair mechanisms. Rates of recombination are highly variable among various taxa, within species, and within genomes with

far-reaching evolutionary and genomic consequences. The genetic basis of recombination rate variation is therefore crucial in the

study of evolutionary biology but remains poorly understood. In this study, we took advantage of a set of experimental temperature-

evolved populations of Drosophila melanogaster with heritable differences in recombination rates depending on the temperature

regime inwhich theyevolved.Weperformedwhole-genomesequencingand identified several chromosomal regions that appear to

be divergent depending on temperature regime. In addition, we identify a set of single-nucleotide polymorphisms and associated

genes with significant differences in allele frequency when the different temperature populations are compared. Further refinement

of these gene candidates emphasizing those expressed in the ovary and associated with DNA binding reveals numerous potential

candidate genes such as Hr38, EcR, and mamo responsible for observed differences in recombination rates in these experimental

evolution lines thus providing insight into the genetic basis of recombination rate variation.
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Introduction

Meiotic recombination is the transfer of genetic material be-

tween homologous chromosomes during prophase I of mei-

osis and is necessary for proper segregation of homologous

chromosomes during the first meiotic division arising as a

consequence of DNA double-strand break repair. This process

is distinct from noncrossover-associated gene conversions

which are normally associated with the nonreciprocal ex-

change of genetic information from one chromosome

homolog to another (reviewed in Baudat et al. [2013];

Hughes et al. [2018]). Evolutionary and genomic consequen-

ces of recombination are many and include the shuffling of

alleles to create unique haplotypes and loss of linkage disequi-

librium (Hill and Robertson 1966; Kliman and Hey 1993).

Although recombination can be beneficial by bringing to-

gether advantageous alleles, recombination can also be dele-

terious by breaking apart certain allele combinations. Notably,

an absence of recombination can lead to aneuploidy (Hill and
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Robertson 1966; Barton 1995; Charlesworth and Barton

1996; reviewed in Barton and Charlesworth 1998; Otto

2009; Ritz et al. 2017), illustrating its vital role for chromo-

some segregation.

Recombination rate shows variation across genomes, be-

tween and within populations and among species (reviewed

in Stapley et al. 2017; reviewed in Ritz et al. 2017). Variation in

recombination rate within populations and between sexes has

been extensively demonstrated in vertebrate systems includ-

ing mice, humans, cattle, and sheep, as well as in plants such

as Arabidopsis (Dumont et al. 2009; Kong et al. 2014; Ma

et al. 2015; Johnston et al. 2016; Lambing et al. 2017;

reviewed in Wang and Copenhaver 2018). Research into

the genetic basis of recombination rate in vertebrate systems

has led to the discovery of several prominent genomic loci

with roles in mediating recombination rate within genomes

and between individuals. This includes PRDM9 which encodes

a histone methyltransferase and appears to play a critical role

in specifying recombination hotspots in the human and

mouse genome, potentially by directing DSB formation via

targeted recruitment of the SPO11–Rad50 protein complex

(Baudat et al. 2010; Berg et al. 2011; reviewed in Baudat et al.

[2013]). Allelic variation at this locus is associated with fine-

scale variation in recombination hotspots among human pop-

ulations (Hinch et al. 2011), and evidence for positive selection

for PRDM9 variants at the level of zinc-finger domains across

several taxa have been demonstrated (Oliver et al. 2009;

Schwartz et al. 2014). PRDM9 has also been shown to be

associated with individual variation in recombination rate at

the genome level (Ma et al. 2015).

Additional loci associated with variation in recombination

rate within populations and between sexes in vertebrates are

RNF212 which encodes a RING finger protein that is homol-

ogous to crossover factor Zip3 in yeast, the meiosis-specific

cohesion proteins REC8 and RAD21L, the E3 ubiquitin ligase

CCNB1IP1, and the protein kinase encoding gene NEK9

(Chowdhury et al. 2009; Fledel-Alon et al. 2011; Sandor

et al. 2012; Kong et al. 2014; Ma et al. 2015; reviewed in

Baudat et al. 2013; Stapley et al. 2017). Likewise, different

orientations of a 900-kb inversion on chromosome 17q21.31

in humans, for example, show patterns of divergence in re-

combination rate between different populations. One distinct

orientation, under positive selection in European lineages, is

associated with increased female recombination rate and fe-

cundity (Stefansson et al. 2005).

Compared with vertebrates, substantially less is known

about genomic loci responsible for variation in recombination

rate in Drosophila melanogaster. Empirical data, however,

suggest the existence of such loci. Recombination rates

show distinct patterns of heritability and variation between

different fly populations and species, individuals, and within

genomes (Brooks and Marks 1986; True et al. 1996; Ortiz-

Barrientos et al. 2006; Singh et al. 2009; Chan et al. 2012;

Manzano-Winkler et al. 2013; Smukowski Heil et al. 2015;

Brand et al. 2018). In D. melanogaster, experimental evidence

supports the existence of recombination modifiers across the

three major chromosomes, evidenced by successful direc-

tional selection on recombination rate (Chinnici 1971;

Kidwell 1972), and recombination rate has been shown to

be subject to variation in genetic background (Hunter et al.

2016).

Previous work has identified a small number of candidate

loci associated with recombination rate variation. The meiotic

gene mei-1 was previously associated with localized changes

in recombination on the X-chromosome (Valentin 2009).

Several loci were implicated in recombination rate variation

among a set of inbred D. melanogaster lines over a limited set

of chromosomes including: lola, CG10864, Eip75B, and

Ptp61F (Hunter et al. 2016). Transcriptome analysis of ovarian

germaria cells undergoing early meiosis likewise reveals sev-

eral candidates associated with proteolysis undergoing high

levels of transcription that are both associated with, and the

target of DSB events (Adrian and Comeron 2013).

Furthermore, variation within the mei-217/mei-218 locus

has been linked to recombination rate variation as demon-

strated by differences in crossover events per tetrad between

two closely related Drosophila species (Brand et al. 2018).

In order to identify additional candidate loci that potentially

mediate recombination rate variation, we took advantage of

several experimentally evolved D. melanogaster lines that

were maintained for multiple generations in either a warm,

cold, or fluctuating temperature regime (Yeaman et al. 2010;

Cooper et al. 2012). These strains have diverged in recombi-

nation rate based on the corresponding temperature regime

in which they previously evolved (Kohl and Singh 2018).

When recombination rates were measured in these popula-

tions using a classic two-step backcrossing protocol utilizing

visible recessive markers, the warm-regime populations exhib-

ited the highest recombination rate as measured by quantify-

ing the proportion of recombinant offspring. The fluctuating-

regime populations exhibited an intermediate recombination

rate, whereas the cold-regime populations had the lowest

recombination rates. These differences were observed regard-

less of rearing temperature, although recombination rates

were significantly higher at warmer temperatures in all three

populations (Kohl and Singh 2018).

We therefore used whole-genome sequencing on these

lines to identify candidate loci underlying divergence in re-

combination rate. Such loci would be expected to show differ-

ences in single-nucleotide polymorphism (SNP) allele

frequency between populations based on the temperature

regime in which they evolved. We note that these populations

are also likely to have experienced selection on other traits

associated with adaptation to thermal regime. Indeed, diver-

gence in several additional traits has been documented in

these populations across temperature regimes (Cooper et al.

2012; Condon et al. 2014, 2015; Adrian et al. 2016; Le Vinh

Thuy et al. 2016; Alton et al. 2017). Given these findings, it is
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likely that many loci we identify in this manner include poten-

tial candidates that underlie evolutionary responses to selec-

tion on traits other than recombination. However, narrowing

our dataset to genes with particular functions can partially

overcome this limitation. Therefore, to identify the candidates

most likely related to divergence in recombination rate, we

focused almost exclusively on genes with annotated expres-

sion in the ovaries. We then further narrowed our results to

genes associated with DNA binding and those that functioned

as zinc finger transcription factors as direct interaction with

DNA is likely a factor in regulating recombination rate varia-

tion. Our results highlight a set of candidate genes underlying

population divergence in recombination rate.

These candidates included loci previously identified as me-

diating population level variation in recombination rate

(Hunter et al. 2016). In addition to identifying novel candi-

dates for the genetic basis of recombination rate variation, our

data suggest the loci associated with variation in recombina-

tion rate within populations also contribute to variation in

recombination rate between populations.

Materials and Methods

Experimentally Evolved Populations Used in This Study

Experimental populations utilized in this study have been pre-

viously generated and described (Yeaman et al. 2010). Mated

D. melanogaster females were captured near Cawston, British

Columbia, Canada and used to establish a set of reciprocally

crossed isofemale lines which were allowed to expand for six

generations, resulting in a population of at least 64,000 indi-

viduals. Three groups of five replicate populations were estab-

lished from this initial population and each group was

maintained in one of three environments that differed by

temperature regime. A “Cold” group was maintained con-

tinuously at 16 �C, a “Warm” group at 25 �C, and finally, a

“Temp” group was maintained in a temporally fluctuating

environment by switching between both the Warm and

Cold temperature regimes every four weeks (Yeaman et al.

2010). After three years, 225 isofemale lines representing 15

replicate strains from each of the 15 populations were estab-

lished (Cooper et al. 2012). We maintained these lines under

standard laboratory conditions (20.5 �C, 12 h:12 h light/dark

cycle) for approximately 30 months prior to experimentation.

Experimental Crosses

Following previous studies (Langley et al. 2011), we generated

haploid embryos for whole-genome sequencing. We took

advantage of a male-sterile mutation, ms(3)K81, in which

the majority of the progeny produced from males homozy-

gous for this mutation arrest during the blastoderm stage,

with only approximately 1% surviving to the first instar before

also terminating development (Fuyama 1984). However, em-

bryos that survive are haploid and their genome content is

entirely maternally derived. These embryos are thus suitable

and advantageous for whole-genome sequencing given that

no haplotype phasing is required.

Females from each of the isofemale lines were crossed to

ms(3)K81 males and the resulting gynogenetically derived

haploid embryos were allowed to develop for 12–24 h.

Dechorionated embryos were examined, and those that

exhibited normal initial development consistent with healthy

24-h embryos, were individually collected from each popula-

tion. We collected one embryo each from 144 of the 225

isofemale lines representing each of the 15 replicate popula-

tions for a total of 48 embryos for each of the Cold, Warm,

and Temp populations (table 1).

DNA Library Preparation and Sequencing

Single embryo DNA extraction was as described previously

(Dean et al. 2002; Langley et al. 2011). Briefly, embryonic

DNA was extracted and amplified using the REPLI-g Midi kit

(Qiagen, Valencia CA) according to the manufacturer’s

instructions. Embryos were homogenized in D2 buffer and,

following a 10-min incubation period on ice, stop solution

was added plus the amplification master mix. Amplification

was performed for 16 h at 30 �C followed by heat inactivation

at 65 �C for 3 min. DNA fragmentation was performed using

NEBNext dsDNA Fragmentase (New England Biolabs, Ipswich,

MA). All intermediate quantification and cleanup steps uti-

lized the Quant-iT PicoGreen dsDNA Assay kit

(ThermoFisher), and AMPure XP kit (Beckman Coulter,

Indianapolis, IN), respectively. End repair, dA-tailing, and

Table 1

Replicate Populations from Each Temperature Regime and the Number of Isogenic Lines within Each Population

Cold-Regime No. of Lines Warm-Regime No. of Lines Temp-Regime No. of Lines

C1 10 H1 9 T1 8

C2 9 H2 9 T2 11

C3 9 H3 10 T3 9

C4 10 H4 10 T4 10

C5 10 H5 10 T5 10

NOTE.—Individual embryos from each line were utilized in our studies ensuring homogenous representation of each replicate population from their corresponding tem-
perature regime.
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adapter ligation were performed using standard in-house pro-

tocols. PCR enrichment steps used NEXTFLEX DNA barcoded

adapters and primers (Applied Genomics, Waltham, MA) cou-

pled with Phusion HS FLEX DNA polymerase (New England

Biolabs, Ispwich, MA).

Barcoded DNA libraries were sequenced on three lanes

using the Illumina HiSeq2000 (48 samples per lane) producing

100-bp paired-end reads. On an average, 1mg of each sample

was loaded on their respective lanes and run with standard

Illumina protocols.

Mapping and Variant Calling

Raw FASTQ files were preprocessed using custom Perl scripts

to allow for identification of read pairs. These reads were then

mapped to the D. melanogaster genome (Flybase, r6.22) us-

ing the MosaikAligner suite of tools (v.2.2.3; Lee et al. 2014).

A jump database was created from the D. melanogaster ge-

nome using a hash size of 13 and FASTQ files were processed

using MosaikBuild with the following parameters: -st Illumina

-mfl 250. Additionally, all samples were given a unique read

and group id. Resulting files were aligned using

MosaikAligner with the following parameters: -hs 13 -mm 4

-a all -m unique -mhp 100 -act 20. Resulting BAM files con-

taining only uniquely aligned reads were further processed

using SAMtools (v.1.9) to produce coordinate sorted files.

Duplicate reads were removed from each BAM file with the

Picard Toolkit (v.2.18.14; Broad Institute, http://broadinstitute.

github.io/picard/), using MarkDuplicates and setting

“remove_duplicates” to “true.” On an average, 72% of

read pairs were uniquely mapped. Five samples from the

cold-regime population and two samples from the warm-

regime population exhibited poor alignment percentages

and were not utilized in downstream variant calling.

Variant calling was performed using both FreeBayes soft-

ware (v.1.2.0; Garrison and Marth 2012) which uses a

Bayesian statistical framework that considers multiallelic loci

and nonuniform copy number across samples (Marth et al.

1999; Garrison and Marth 2012), and the Joint Genotyper for

Inbred Lines (JGIL) software (v.1.6; Stone 2012), which uses a

maximum likelihood algorithm to obtain estimates that max-

imize the joint probability of the read data across all popula-

tions with given parameters. Processed BAM files, and the

Drosophila genome reference (Flybase, r6.22) served as input

to FreeBayes, which was run with the “-ploidy” value set to

“1.” The resulting variant call file (VCF) served as input to

downstream postprocessing with the FreeBayes vcflib and

bcftools (v.1.9; Li 2011) software. Briefly, VCF files were fil-

tered to exclusively include SNPs with a phred-encoded quality

score >15. Additionally, any SNP within 10 bp of an indel

were also removed, and any sites with more than one minor

allele (likely stemming from sequencing errors) were filtered.

VCF files were then split by chromosome arm into separate

tab-delimited files listing SNP read counts for each sample.

Custom Perl scripts were used to produce tall-array format

text files containing read counts and coordinates for every

SNP for each sample. Additional Perl scripts were then used

produce a SNP “observation file” that groups all samples

based on the temperature regime in which they evolved

(“Warm,” “Cold,” or “Temp”) and lists the total read count

for both the reference and minor allele in each regime for

each SNP. For JGIL, processed BAM files likewise served as

input. JGIL was run with the inbreeding generation count set

to 50, the base quality threshold at 15, and output format to

tall-array. The resulting tall-array files were likewise converted

into observation files using Perl scripts.

Population Comparisons

Samples grouped together according to the temperature re-

gime in which they evolved (Warm, Cold, and Temp; see

Materials and Methods) are treated as a single population in

this study. For simplicity, samples grouped in this manner are

referred to as “populations” (Cold population, Warm popu-

lation, Temp population) in the proceeding text. In order to

glean population-specific data, we assessed total coverage

across the three populations. Observation files containing to-

tal SNP observations across the three populations were further

filtered using standard Linux shell tools to only include SNPs

with at least 100 reads across each of the three temperature

regimes. We also removed SNPs with total observation counts

exceeding 750 as this likely represents read coverage bias

based on the overall distribution of SNP coverage for each

population (supplementary fig. S1, Supplementary Material

online). Results from both JGIL and FreeBayes showed strong

overlap in observed SNPs (see Results). We therefore limited

our analysis to overlapping SNPs from both methods.

Because we are combining all the reads for a given tem-

perature regime, we used Fisher’s exact test to identify regions

with significant differences in allele frequency. We recognize

that the Cochran–Mantel–Haenszel (CMH) test (Kofler et al.

2011) has arguably become an industry standard since, in

contrast to Fisher’s exact test, it considers independent bio-

logical replicates in its contingency tables (Vlachos et al.

2019). However, this test cannot be applied to our data given

its underlying structure. Our observation files were converted

into a format suitable for Fisher’s test using Popoolation2

(Kofler et al. 2011), and utilizing allele counts from both

JGIL and Freebayes for each overlapping SNP. Resulting P

values are reported in �log10 format. We performed tests

centered on three pairwise population comparisons: Cold ver-

sus Warm, Cold versus Temp, and Warm versus Temp.

In addition, we supplemented this analysis using a sliding

window approach using methods previously described in

Burke et al. (2010). Using the windowscanr (v.0.1; Tavares

2019) and boot (v.1.3-24; Canty and Ripley 2020) packages

implemented in R, we calculated in each window the mean

and quantile score that 5% of P values exceeded using a
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window size of 100 kb and step size of 10 kb. As windows

with low SNP density could cause excess variation in the met-

ric, especially in areas with low coverage (i.e., centromeres),

we filtered out windows with SNP counts less than the value

that 95% of all counts exceeded across all windows of a

chromosome arm. This resulted in 2,349, 2,528, 2,810,

3,207, and 2,354 windows, respectively, for chromosomes

2L, 2R, 3L, 3R, and X. A significance threshold was calculated

for each comparison and chromosome by taking the standard

deviation of all quantiles that 5% of P values exceeded for

100 bootstrap replicate samples in each window and com-

puting a metric that represented the quantile of this value at

the 75th percentile. The product of this metric and the quan-

tile representing qnorm(0.999) in R was added to the median

value of quantile scores across all windows to compute a

threshold which represents a 99.9% upper bound (Burke

et al. 2010).

Heterozygosity within each population was calculated as

2pq with allele frequencies representing coverage for each

allele divided by total coverage for the SNP in question. The

population-specific metrics, nucleotide diversity, and Tajima’s

D were calculated using the PopGenome package in R

(v.2.7.5; Pfeifer et al. 2014) in the following manner: a VCF

file containing the final set of SNPs following filtering (see

Results) was split into individual VCF files, each one represent-

ing one of the five chromosome arms. VCF files were loaded

into PopGenome which then grouped all samples into their

corresponding populations. Nucleotide diversity was calcu-

lated over sliding windows (100 kb; 10 kb step size) using

the built-in diversity.stats function. In the case of missing sites,

PopGenome ignores those positions and calculates nucleotide

diversity for the valid nucleotides. All nucleotide diversity val-

ues were divided by the number of sites per window

(100,000) to obtain per-site nucleotide diversity within a pop-

ulation. Tajima’s D values were likewise calculated using the

built-in neutrality.stats function over sliding windows.

Identification of Candidate Loci

The quantile value score representing the 95th percentile of all

P values was computed for all SNPs for each comparison and

SNPs with values exceeding this threshold were retained.

Compared with the metric used in our sliding window anal-

ysis, this threshold is less stringent and takes into consider-

ation all SNPs across all chromosomes. Retained SNPs that fell

within candidate genes were identified by creating a database

of gene identifiers and coordinates using FlyMine (v.46.0; July

2018; Lyne et al. 2007). Custom Perl scripts were then used to

match SNPs to their corresponding genes. Genes with multi-

ple SNPs were only counted once to create a list of candidate

genes for each comparison. Strong overlap of SNPs with P

values exceeding this threshold was observed when P values

based on allele frequencies generated by Freebayes or JGIL

were compared. We therefore limited our analysis to these

overlapping SNPs when identifying associated candidate loci.

Candidate genes were further filtered to only include those

with annotated expression in the ovaries for downstream

analysis. Additionally, as part of our downstream analysis,

we also filtered ovary annotated genes to only include those

with known roles in DNA binding.

Variant Annotation

Identified variants were annotated using SnpEff (v. 4.3;

Cingolani et al. 2012) using annotation from release

D. melanogaster 5.86. We considered variants within exons,

introns, UTRs within a single gene. Regions more than 500 bp

upstream or downstream were considered intergenic.

Gene Ontology Enrichment Analysis and Overlap Plots

Gene ontology (GO) enrichment analysis was performed us-

ing GOWINDA (v. 1.12; Kofler and Schlotterer 2012).

Compared with standard analysis of GO, GOWINDA corrects

for the number of SNPs associated with a gene of interest.

Variation in SNP counts associated with genes affects the

probabilities of individual genes being sampled with genes

having higher SNP counts clustering together. We used

gene annotations based on D. melanogaster release 6.22

(Flybase) and set the minimum number of genes for each

GO term to ten resulting in 3,430 potential ontologies for

each comparison. The number of simulations was set to

100,000 and reported P values are FDR-corrected.

To identify genes in our data sets associated with DNA

binding, a template query was made to Flymine to create a

list of all D. melanogaster genes associated with the GO term

“DNA binding.” Genes in our data sets were then cross-

checked against this list to create a modified data set contain-

ing only genes associated with this term. These data sets were

further filtered to exclusively include zinc finger domain-

containing candidates by cross checking against a list of zinc

finger transcription factors generated through a query to

Flybase (Flybase ID: FBgg0000729).

Upset plots generated with the UpsetR package in R were

used to visualize both Freebayes and JGIL SNP overlaps and

overlapping genes in our population comparisons (v.1.4.0;

Conway et al. 2017).

Results and Discussion

Assessment of Sequencing and SNP Data

The focus of this study is on the identification of genomic loci

underlying divergence in recombination rate among the ex-

perimentally evolved populations. Given our experimental de-

sign, it was important to establish a set of high confidence

variants for downstream analysis. We therefore started out by

assessing overall sample coverage of reads prior to variant

calling and downstream analysis as part of standard quality

Temperature-Evolved Drosophila melanogaster Populations GBE
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control. Likewise, we chose to use two methods of variant

calling (JGIL and Freebayes) as we have the highest confi-

dence in SNPs common to both methods since each utilizes

a distinct statistical framework. Finally, it was important to

establish a set of SNPs for which coverage was sufficient

and uniform across our three temperature regimes.

We assessed read coverage among the samples to verify

genomic coverage among the three populations. Among the

samples from the Cold population, approximately 331 million

reads were uniquely aligned corresponding to an average of

71% of total reads per sample, or 65% of total reads per

sample when properly aligned read pairs were counted. For

the Warm and Temp population samples, approximately 362

million and 382 million reads were properly aligned, respec-

tively, corresponding to an average of 72% of total reads per

sample in each of those regimes, and 68% of total reads

when counting read pairs per sample in both regimes.

Average sequencing depth across all samples was 5.2� per

embryo corresponding to a population coverage of approxi-

mately 80� (supplementary table S1, Supplementary Material

online).

We next examined the distributions of read coverage

across the five major chromosome arms for each population.

Comparisons of coverage patterns between each population,

in which total reads from all samples were plotted following

removal of duplicate reads, revealed a similar profile along the

major chromosome arms (supplementary fig. S2A–C,

Supplementary Material online). Among the three popula-

tions, a slight bias in read density was observed toward cen-

tromeric regions of chromosomes two and three, especially

on the right arms. Despite this, coverage across the chromo-

somes was relatively uniform across all five arms. Likewise, the

overall read density distribution for each chromosome was

similar across the three populations, with a slightly narrower

distribution among the Temp population indicating better

coverage among sites (supplementary fig. S3,

Supplementary Material online). In summary, the read cover-

age and chromosome distribution profiles of the three pop-

ulations showed no major variation making the data suitable

for downstream analysis.

Having established sufficient read coverage in all our in-

cluded samples, we next sought to identify SNPs both com-

mon and consistent in coverage among the three populations

utilizing Freebayes and JGIL (see Materials and Methods).

Given the differing statistical frameworks utilized by these

two programs, we have the highest confidence in SNPs com-

mon to both programs. Limiting our analysis to SNPs in the

five major chromosome arms and chromosome 4, a total of

2,689,118 raw variants were identified using JGIL and

7,410,885 with FreeBayes. After filtering the FreeBayes data

set to remove low-quality SNPs that failed to meet our criteria

(see Materials and Methods), a total of 1,688,314 SNPs

remained in the FreeBayes data set with strong overlap be-

tween it and the JGIL data set (fig. 1A). Average coverage for

all SNPs ranged from 200� to 350� across the three popu-

lations for both filtered data sets and the average number of

samples with coverage for each SNP was 114. In total,

850,298 SNPs were shared between the FreeBayes and JGIL

across all three regimes which corresponded to one variant

per 157 bases (fig. 1B). These numbers are similar to other

studies of natural variation in North American of

D. melanogaster (Singh et al. 2007; Sackton et al. 2009;

Huang et al. 2014). Interestingly, 221,500 (26%) of our var-

iants overlapped with those identified in an analysis of a large

set of inbred lines comprising the D. melanogaster Genetic

Research Panel (freeze2, Huang et al. 2014). This suggests

that a subset of variants in our populations is common and

widespread across other D. melanogaster populations.

Approximately 52% of SNPs mapped to genes with 42%

mapping to introns. In summary, we have the highest confi-

dence in these 850,298 SNPs as they were identified using

two different software methods, exhibit uniform and consis-

tent coverage among our populations, and partially overlap

previous data from other populations.

Identification of Divergent Alleles

We tested for divergence in SNP allele frequencies using

Fisher’s exact test within the following population compari-

sons: Cold versus Warm, Cold versus Temp, Warm versus

Temp. Although the lack of sequencing data from the found-

ers precludes an analysis of SNPs that may have emerged

during the experimental evolution phase, our analysis is still

expected to identify divergent genomic regions and candidate

loci that contribute to differences in recombination rate be-

tween the three populations. For each comparison, we set a

genome-wide threshold for statistical significance using the

�log10(P value) corresponding to the 95th percentile of all

such values (fig. 1C and supplementary fig. S4A–E,

Supplementary Material online). A large overlap was observed

in SNPs with genome-wide significant differences in allele fre-

quency, in each comparison, when either the JGIL or

FreeBayes allele counts were utilized (fig. 2A–C) enabling us

to limit our analysis to common SNPs in each comparison with

high confidence. This corresponded to 38,070 (4.4%),

37,385 (4.3%), and 37,321 (4.3%) SNPs in the respective

Cold versus Warm, Cold versus Temp, and Warm versus

Temp comparisons that exceeded this threshold.

Identification of Divergent Regions

To identify divergent genomic regions among the three pop-

ulations, we also carried out a sliding window analysis of our

Fisher’s test results (see Materials and Methods). Compared

with individual tests, this method allows for the identification

of divergent regions due to linkage. Our analysis identified

multiple regions of divergence relative to genomic back-

ground in all three comparisons (fig. 3). When examining

the Cold versus Warm comparison, large areas of divergence
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with peaks exceeding genomic background threshold were

observed toward the centromeric regions of chromosomes

two and three with a more homogenous distribution of di-

vergent regions in the X chromosome. We compared this

result with that obtained when differences in allele frequen-

cies between two random subsets each representing half of

all samples within the three populations, Cold, Warm, and

Temp, were evaluated against the respective Cold versus

Warm, Cold versus Temp, and Warm versus Temp groups

(fig. 3, blue lines). As expected, far fewer peaks exceeding

threshold were observed when the two random subsets of

samples within a population were compared (fig. 3, blue

lines). Statistical analyses comparing the proportion of win-

dows exceeding threshold between these comparisons like-

wise revealed a significant difference for each chromosome

arm (supplementary table S2, Supplementary Material online).

FIG. 1..—UpSet plots depicting overlap of SNPs detected by JGIL and Freebayes after (A) filtering to remove low quality SNPs, and (B) following a final

filtration to remove SNPs failing to meet coverage criteria in all three populations. Numbers SNPs shared between methods are specified in the upper bar plot

and methods used (JGIL or Freebayes) are indicated by dark circles below the bar chart. (C) P values in �log10 format (Fisher’s exact test) when comparing

allele frequencies between the Cold and Warm populations using allele frequencies generated by FreeBayes plotted along the five major chromosomes. Red

points depict values exceeding the quantile corresponding to the 95th percentile of P values across all chromosomes. Black points depict values below this

threshold.
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Interestingly, a relatively high number of peaks exceeding ge-

nomic background was observed in the random Warm pop-

ulation subset comparison (Warm vs. Temp comparison, blue

line), indicating higher levels of genetic variation within this

population of experimentally evolved lines and perhaps

divergence among replicate lines. Nevertheless, divergence

at the level of the temperature regime is still much more

prominent qualitatively, especially toward the centromeric

regions. Previous data showed the largest difference in re-

combination rate when comparing the Warm and Cold

FIG. 2.—SNPs and associated gene counts exceeding the significance threshold representing the quantile corresponding to the 95th percentile of

�log10P values in the three population comparisons using allele frequencies generated by FreeBayes and JGIL. UpSet plots depicting overlap of SNPs

exceeding this threshold in the (A) Cold versus Warm, (B) Cold versus Temp, and (C) Warm versus Temp population comparisons. Numbers of shared SNPs

between comparisons are specified in the upper bar chart and comparisons are indicated by dark circles below the bar chart. (D) Table depicting counts for

genes associated with these SNPs for each comparison overall and for those with annotated expression in the ovary. (E) UpSet plot depicting overlap of genes

associated with SNPs exceeding the significance threshold (see Results) for the three population comparisons (Cold vs. Warm, Cold vs. Temp, Warm vs.

Temp). Numbers of shared genes between comparisons are specified above the upper bar chart and comparisons are indicated by dark circles below the bar

chart.
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populations (Kohl and Singh 2018). The most striking areas of

divergence were likewise noted in this comparison (compare

fig. 3, Cold vs. Warm to Cold vs. Temp and Warm vs. Temp).

We also examined nucleotide diversity (p), heterozygosity,

and Tajima’s D in sliding windows for the three populations.

Reductions in these metrics are expected to flank nearby areas

undergoing positive selection. Localized reductions in mean

heterozygosity were noted among the three populations

across all five chromosome arms with areas of distinct differ-

ences in heterozygosity noted between the populations

(fig. 4A). The most striking areas exhibiting reduced

heterozygosity were again focused among centromeric

regions particularly on the right arms of chromosomes two

and three within all three populations. Marked differences in

heterozygosity at the level of populations were especially

noted in these same areas which seemed to correlate with

areas previously noted as having high divergence within the

population comparisons (compare figs. 3 and 4A).

We note three distinct areas on chromosome 2L where

mean heterozygosity approaches zero in the Warm popula-

tion, one distinct area on chromosome 3L where mean het-

erozygosity approaches zero in the Temp population, and a

FIG. 3.—Sliding window plots (100-kb window; 10-kb step size) depicting allele frequency differences between the Cold and Warm populations (left

column), Cold and Temp populations (middle column), and Warm and Temp populations (right column), for the five major chromosome arms (rows). Black

line depicts �log10P value based on Fisher’s exact test corresponding to the 95th percentile for each window along the chromosome. Red lines depict

genomic background threshold at 0.1% probability (see Materials and Methods). Blue lines depict the same scores when a random subset representing half

of the Cold (first column), Temp (second columns), or Warm (third column) population allele frequencies are compared with that of the remaining subset.

Temperature-Evolved Drosophila melanogaster Populations GBE
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FIG. 4.—(A) Heterozygosity within the three populations across the genome. Sliding window plots (100-kb window; 10-kb step size) depicting mean

heterozygosity across the five major chromosome arms for the Cold-regime population (blue line), Warm-regime population (dark red line) and Temp-regime

population (orange line). Dark gray shading depicts peri-centromeric regions with general reductions in mean heterozygosity in all three populations.

Asterisks denote areas where mean heterozygosity approaches zero for a temperature-regime population. (B) Tajima’s D and nucleotide diversity. Sliding

window plot (100-kb window size; 10-kb step) of Tajima’s D (blue) and nucleotide diversity (p) (dark red) values plotted along the five major chromosome

arms for the Warm population. Nucleotide diversity plots are smoothened using loess regression. (C) Recombination rate estimates across the Drosophila

melanogaster genome. Recombination rate calculator (RRC) software was utilized to estimate recombination rate in 100-kb intervals (see Comeron et al.

[2012]). Recombination rates (cM/Mb) based on available data are depicted across the five major chromosome arms. Gray shading depicts centromeric areas

with comparatively low rates of recombination that strongly overlap areas of reduced heterozygosity and Tajima’s D within the three temperature-regime

populations.
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final area on chromosome 3R where mean heterozygosity

approaches zero in the Cold population suggesting possible

fixation in these populations for those regions (fig. 4A aster-

isks). A sharp contrast to the Cold population is noted in the

first instance on chromosome 2L. However, no other areas

approaching zero are noted.

A similar pattern of reduction in nucleotide diversity and

Tajima’s D was observed in the Warm (fig. 4B) and Temp

populations (supplementary fig. S5A, Supplementary

Material online); general reductions in Tajima’s D values

were noted toward centromeric regions of chromosome

two and three in these regimes in contrast to the Cold-

regime population (supplementary fig. S5B, Supplementary

Material online). All three populations regardless of tempera-

ture regime showed very similar patterns of nucleotide diver-

sity (compare fig. 4B and supplementary fig. S5A and B,

Supplementary Material online). As these patterns were

most notable in the Warm and Temp populations compared

with the Cold and seemed to overlap previously noted areas

of allele frequency-divergence within the population compar-

isons (fig. 3), this data would suggest that these areas in the

Temp and especially Warm populations may have experi-

enced a stronger genomic response to the Warm temperature

regime.

Considering that recombination is generally suppressed in

centromeric regions in D. melanogaster (Beadle 1932;

reviewed in Lindsley and Sandler 1977), it is tempting to spec-

ulate that reductions in these metrics might arise more readily

in these regions and contribute to the observed patterns of

divergence. To this end, we used the latest release of the

D. melanogaster recombination rate calculator (v2.3; https://

petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.pl;

last accessed December 13, 2020; Comeron et al. 2012) to

estimate recombination rates across the five major chromo-

some arms at 100-kb intervals. As expected, estimated recom-

bination rates were especially suppressed on the right arms of

chromosomes two and three toward the centromeres

(fig. 4C). These areas of suppression overlapped our observed

areas of reduced heterozygosity, Tajima’s D, and nucleotide

diversity (compare fig. 4A–C). In addition, an overlap was

noted in observed areas of divergence in the pairwise temper-

ature regime comparisons (compare figs. 3 and 4C). Lack of

sequencing data from the founders, however, limits our ability

to make empirical inferences about the evolution of these

lines. For instance, it is highly likely that SNPs we identified

were present in the founders but at unknown frequencies. In

summary, the observed divergence in allele frequencies be-

tween the three populations, and local reductions in diversity

statistics would suggest divergence of the SNPs initially segre-

gating in the founders based on the temperature regime in

which the populations evolved; especially in areas of reduced

recombination.

Finally, despite uniform read coverage and SNP observa-

tions across the three regime-based populations, a slight bias

in read coverage was noted toward centromere regions of the

right arms of chromosomes two and three. These areas par-

tially overlap with the observed areas of divergence in the

three comparisons (supplementary fig. S2A–C,

Supplementary Material online), as well as the observed re-

duced heterozygosity and nucleotide diversity noted in the

populations. This would suggest that the ability to detect

changes in these evolutionary parameters in these regions is

substantially greater compared with other areas of the ge-

nome thereby skewing our results.

Identification of Candidate Loci

Having identified genomic regions with significant differences

in allele frequency, we next sought to identify candidate loci

underlying genetic differences in recombination rate between

populations. Based on the experimental evolution study de-

sign, recombination rate could potentially vary based on sev-

eral levels including the lines within each population (see

Materials and Methods), among replicates within a given tem-

perature regime and among temperature regimes in which

the populations evolved (table 1). Here, we focused exclu-

sively on the temperature regime in which the replicate pop-

ulations evolved. SNPs were mapped to their corresponding

genes using an annotated list of chromosome coordinates

and gene ids (see Materials and Methods). Exclusion of

SNPs with �log10(P values) below the established threshold

based on the 95th percentile (see above) in each comparison

resulted in 2,948, 3,280, and 3,078 divergent genes in the

respective Cold versus Warm, Cold versus Temp, and Warm

versus Temp comparisons (fig. 2D).

To account for divergence in other phenotypes in addition

to recombination rate (see Introduction), we focused almost

exclusively on genes with annotated expression in the ovaries

(fig. 2D). Filtering candidates in this manner resulted in 1,270

candidate genes in the Cold versus Warm comparison, 1,450

candidate genes in the Cold versus Temp comparison, and

1,335 candidate genes in the Warm versus Temp comparison.

Substantial overlap was noted among the three comparisons

of genes expressed in the ovary (fig. 2E). Overall analysis of

genes in each comparison is summarized in supplementary

table S3, Supplementary Material online. For each compari-

son, we also analyzed candidate genes unique to that com-

parison (supplementary table S4, Supplementary Material

online), and candidates associated with nonsynonymous

SNPs (supplementary table S5, Supplementary Material

online).

Population Comparisons of Candidates

Within the 1,270 candidates of the Cold versus Warm com-

parison, we noted 437 SNPs (1.1% of SNPs that exceeded

threshold) that were either putative nonsynonymous muta-

tions, splice variants, or stop codons representing 271 candi-

date genes (supplementary table S5, Supplementary Material
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online). Gene ontology analysis of the initial 1,270 candidates

revealed 540 enrichment terms (supplementary table S3,

Supplementary Material online). Among the top categories

were terms associated with protein metabolism and oogene-

sis. It should be noted that since we limited our analysis to

genes with annotated expression in the ovaries, a slight bias

toward categories associated with oogenesis and related

terms are to be expected. Analysis of the 271 candidate genes

with putative protein modifying SNPs, revealed 100 signifi-

cantly overrepresented terms with top categories associated

with DNA and chromatin metabolism and binding (supple-

mentary table S5, Supplementary Material online). As the

greatest difference in recombination rates were noted be-

tween the Cold and Warm populations, genes in this category

are of primary interest.

We were also interested in candidate genes unique to the

Cold versus Warm comparison. Enrichment analysis of the

127 genes in this category revealed 61 significantly overrep-

resented terms with top terms strongly associated with DNA

recombination and mitotic and meiotic cell cycle processes

(supplementary table S4, Supplementary Material online).

Genes associated with DNA recombination in this category

included spn-B, the mei-217/218 complex, Fancm, and SMC5.

We also identified 16 nonsynonymous SNPs associated with

16 loci (supplementary table S4, Supplementary Material on-

line). Most of these candidates are associated with nucleic

acid metabolism, however, Fancm was also noted in this

list. Fancm encodes a DNA helicase and plays a critical role

in DNA DSB repair while acting to suppress crossover events in

the context of mitosis and meiosis (Kuo et al. 2014), making

this an intriguing candidate. Another gene in this list is Tollo

which based on sequence homology may be a member of the

Toll-like receptor (TLR) superfamily. TLRs are a critical compo-

nent of the innate immune response to bacterium (reviewed

in Ferrandon et al. 2007). Interestingly, data suggest that in-

fection by pathogenic bacteria (Singh et al. 2015) and the

bacteria Wolbachia pipientis is associated with an increase

in recombination rate (Hunter et al. 2016; Singh 2019); how-

ever, it is not known whether the innate immune response to

this bacterium in the ovaries is responsible for this effect.

Although it is interesting to speculate that changes in innate

immunity could lead to variation in recombination fraction,

lack of information on bacterial infection in our populations

precludes further speculation.

We also examined candidate loci stemming from compar-

isons of the Cold versus Temp populations and Warm versus

Temp populations which resulted in 1,450 and 1,335 candi-

dates, respectively (supplementary table S3, Supplementary

Material online). Within these sets of candidates, 435 SNPs

(1.1% of SNPs that exceeded threshold) representing 290

genes in the Cold versus Temp comparison, and 406 SNPs

(1.0% of SNPs exceeding threshold) representing 263 genes

in the Warm versus Temp comparison were found to encode

putative nonsynonymous SNPs, splice variants, or stop codon

polymorphisms (supplementary table S5, Supplementary

Material online). Genes unique to each comparison and genes

representing nonsynonymous SNPs in each comparison along

with their corresponding GO analyses are summarized in sup-

plementary tables S4 and S5, Supplementary Material online.

Notable in these different comparisons is rad50 with non-

synonymous SNPs in the Cold versus Warm and Cold versus

Temp comparisons. rad50 encodes an exonuclease with crit-

ical roles in DSB repair via homologous recombination

(Ciapponi et al. 2004; Gorski et al. 2004). Although expres-

sion of this protein is noted in females, it is not known

whether this protein plays a role in DSB repair in the context

of meiotic recombination.

We also examined SNP allele frequencies among the puta-

tive nonsynonymous SNPs identified in our comparisons. For

this analysis, SNP allele frequencies were analyzed in each of

the collective Cold, Warm, or Temp populations depending

on the comparison in question (supplementary tables S4 and

S5, Supplementary Material online). However, we also split

each population into the five constituent population replicates

comprising that population overall (table 1) and examined

SNP allele frequencies in each replicate. Similar results were

obtained in either case with fixation noted in very few candi-

date SNPs.

Refinement of Candidates

After refining our list to only include candidate genes with

annotated expression in the ovary, we are still left with a large

set of loci with wide-ranging functions outside the scope of

recombination. For example, phospholipase D is noted as a

potential candidate for regulating plasticity in cell membrane

lipid composition in response to temperature in these popu-

lations (Cooper et al. 2012). Our own assay noted SNP allele

frequency divergence in the Cold versus Temp and Cold ver-

sus Warm comparisons within this gene (supplementary

tables S3 and S5, Supplementary Material online). We likewise

suspect that many of our loci are likewise candidates in the

context of thermal adaptation as average temperatures in the

region where collection took place max out at 21 �C (https://

climate.weather.gc.ca; last accessed December 13, 2020).

Given these factors, we sought to further refine our lists to

only include candidates with annotated functions related to

DNA binding or zinc finger transcription factors. Mammalian,

PRDM9, for example, contains a C2H2 zinc finger array which

plays a critical role in DNA hotspot-specific binding to facilitate

recombination via histone trimethylation (Baudat et al. 2010).

Filtering for genes associated with DNA binding resulted in

805, 919, and 837 candidates in the respective Cold versus

Warm, Cold versus Temp, and Warm versus Temp compar-

isons (supplementary table S6, Supplementary Material on-

line). When we further refined these lists to exclude

candidates lacking zinc finger domains, we were left with

50 candidates in the Cold versus Warm and Warm versus

Winbush and Singh GBE

12 Genome Biol. Evol. 13(1) doi:10.1093/gbe/evaa252 Advance Access publication 28 November 2020

https://climate.weather.gc.ca
https://climate.weather.gc.ca


Temp comparison and 49 candidates in the Cold versus Temp

comparison (table 2). Within these candidates, we identified

14, 10, and 17 loci, containing nonsynonymous SNPs in the

respective comparisons (table 3). Several genes in this list have

not been annotated including Aef1 and CG17568.

Examination of SNP allele frequencies in whole populations

and individual replicates comprising a population revealed no

fixation of any candidates. However, we note several sites for

which the SNP allele frequency is zero in one population of a

comparison, suggesting a role for that SNP in the contrasting

population’s difference in recombination rate (supplementary

table S7, Supplementary Material online). For example, SNP

allele frequencies at sites associated with the gene Aef1 in the

Cold population, but not the Warm and Temp populations,

are zero which could imply a role for variants in this gene at

those sites in the previously observed increased recombination

rate in the Warm and Temp populations.

As a final step, we sought to identify SNPs associated with

loci which were divergent across all three comparisons. An

overlap of genes is noted among the three comparisons (fig.

2E), however, these overlaps are at the level of genes as op-

posed to SNPs. Overlaps at the SNP level were observed in a

total of 78 genes with 58 genes associated with the term DNA

binding (supplementary table S8, Supplementary Material on-

line). Of those 58 genes, ush, Hr38, EcR, lola, and mamo

contain zinc finger domains. Nonsynonymous SNPs were as-

sociated with ncm, kon, CG34417, and mamo. The recur-

rence of these genes in our data sets and their annotated

functions make them ideal candidates in the regulation of

recombination rate variation.ush encodes a cofactor that

associates with the GATA transcription factor Pannier and

plays a critical role in several cell-differentiation and develop-

mental processes (Cubadda et al. 1997). In mammals, includ-

ing humans, mutations in homologous friend of GATA (FOG)

proteins are implicated in gonadal dysgenesis and sterility

(Tevosian et al. 2002; Brauner et al. 2016).

Both EcR and Hr38 encode nuclear hormone receptors for

the insect steroid family ecdysone. Circulating levels of ecdy-

sone in adult female Drosophila play a critical role in oogenesis

(Buszczak et al. 1999). Along these lines, defects in oogenesis

and fecundity due to environmental stressors including

changes in nutrient availability, temperature, and social inter-

actions have been linked to changes in the ecdysone titer in

females (Rauschenbach et al. 2000; Gruntenko et al. 2003;

Terashima and Bownes 2004; Meiselman et al. 2018).

Furthermore, divergence in nonsynonymous SNPs is noted

in our comparisons for Eip75B, which encodes an ecdysone-

induced protein and for which knockdown is associated with

a decrease in recombination rate (Hunter et al. 2016). These

data would suggest a link between environment, fertility, re-

combination rate, and ecdysone signaling, however, a more

Table 2

Chromosome and Gene Symbol of Candidate Loci with Annotated

Expression in the Ovary in Each Comparison (columns) That Were Also

Identified to Encode Zinc Finger Domain-Containing DNA-Binding Proteins

Cold versus Warm Cold versus Temp Warm versus Temp

Chromosome Symbol Chromosome Symbol Chromosome Symbol

2L dbr 2L dbr 2L dbr

2L ush 2L ush 2L ush

2L bowl 2L bowl 2L CG3407

2L CG3407 2L CG3407 2L CG13775

2L CG4496 2L CG13775 2L CG4496

2L prg 2L prg 2L prg

2L ab 2L ab 2L ab

2L crol 2L CG9932 2L crol

2L CG9932 2L wek 2L CG9932

2L noc 2L her 2L wek

2L her 2L BuGZ 2L CG17328

2L BuGZ 2L CG17568 2L her

2L CG10431 2L Hr38 2L BuGZ

2L CG17568 2L Hr39 2L CG10431

2L Hr38 2L CG31612 2L CG17568

2L Hr39 2L tsh 2L Hr38

2L CG31612 2R EcR 2R EcR

2L tsh 2R jing 2R jing

2R EcR 2R rgr 2R rgr

2R jing 2R lola 2R lola

2R lola 2R shn 2R shn

2R shn 2R chn 2R chn

2R chn 3L ERR 2R CG8089

2R CG8089 3L ssp 2R ken

3L CG10147 3L CG17359 3L ssp

3L CG6765 3L Trl 3L CG11560

3L CG17359 3L Eip75B 3L CG7372

3L Eip75B 3L ftz-f1 3L Eip75B

3L ftz-f1 3L CG11456 3L ftz-f1

3L CG11456 3L Aef1 3L Aef1

3L Aef1 3L Hr78 3L jim

3L jim 3L jim 3R MTA1-like

3R rn 3R MTA1-like 3R rn

3R dsx 3R rn 3R dsx

3R CG14710 3R dsx 3R CG14710

3R CG6808 3R hb 3R CG6808

3R l(3)neo38 3R CG6808 3R l(3)neo38

3R srp 3R srp 3R MBD-R2

3R mld 3R sqz 3R mld

3R zfh1 3R mld 3R zfh1

3R ttk 3R ttk 3R ttk

X Hr4 X ovo X ovo

X CG12236 X CG12236 X CG32767

X CG9650 X mamo X CG9650

X mamo X disco-r X mamo

X disco-r X zld X disco-r

X CG1529 4 dati X zld

4 dati 4 pho X CG1529

4 pho 4 pho

NOTE.—Loci in red are common across all three comparisons.
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Table 3

Candidate Loci and Associated Nonsynonymous Variants for Genes Expressed in the Ovary and Previously Annotated to Encode Zinc Finger Domain-

Containing DNA-Binding Proteins in the Cold versus Warm, Cold versus Temp, and Warm versus Temp Comparisons

Comparison Chromosome Site Symbol Variant Putative Impact

Cold versus Warm 2L 68395 dbr c.581C>T p.Ser194Leu

2L 16678421 her c.971T>C p.Val324Ala

2L 19180774 CG17568 c.773C>A p.Thr258Lys

2L 19180805 CG17568 c.742C>A p.Gln248Lys

2L 19180882 CG17568 c.665C>T p.Ala222Val

2L 20713069 Hr38 c.401G>A p.Gly134Asp

2R 6123167 EcR c.394T>C p.Phe132Leu

2R 10508895 lola c.2365C>A p.Leu789Met

2R 10520628 lola c.2013C>A p.Asn671Lys

2R 15147402 CG8089 c.354G>C p.Glu118Asp

3L 13998171 CG17359 c.1012T>C p.Phe338Leu

3L 17998691 Eip75B c.441G>T p.Met147Ile

3L 18059399 Eip75B c.186C>G p.Ser62Arg

3L 21436389 Aef1 c.1107C>A p.His369Gln

3L 21436444 Aef1 c.1162G>A p.Ala388Thr

3R 11620278 CG14710 c.69C>G p.Ile23Met

3R 11621603 CG6808 c.1213A>T p.Thr405Ser

X 13883147 mamo c.2318C>T p.Thr773Met

X 21030274 CG1529 c.1522C>A p.Pro508Thr

Cold versus Temp 2L 68395 dbr c.581C>T p.Ser194Leu

2L 15767479 wek c.693C>G p.Asp231Glu

2R 6123167 EcR c.394T>C p.Phe132Leu

2R 6503610 jing c.572C>T p.Thr191Ile

3L 12119081 ssp c.646C>G p.Leu216Val

3L 12119112 ssp c.677C>T p.Thr226Ile

3L 13998171 CG17359 c.1012T>C p.Phe338Leu

3L 14760593 Trl c.817A>T p.Asn273Tyr

3L 21436389 Aef1 c.1107C>A p.His369Gln

3L 21436444 Aef1 c.1162G>A p.Ala388Thr

X 13883147 mamo c.2318C>T p.Thr773Met

Warm versus Temp 2L 3812368 CG3407 c.836C>G p.Thr279Ser

2L 16678421 her c.971T>C p.Val324Ala

2L 16745093 BuGZ c.1015T>A p.Ser339Thr

2L 19180882 CG17568 c.665C>T p.Ala222Val

2R 10508895 lola c.2365C>A p.Leu789Met

2R 10520628 lola c.2013C>A p.Asn671Lys

2R 10524037 lola c.1960A>G p.Thr654Ala

2R 10525682 lola c.1544G>A p.Ser515Asn

3L 12119081 ssp c.646C>G p.Leu216Val

3L 12119112 ssp c.677C>T p.Thr226Ile

3L 12120750 CG11560 c.603A>C p.Glu201Asp

3L 15620888 CG7372 c.851A>G p.Lys284Arg

3R 5647254 MTA1-like c.17C>G p.Pro6Arg

3R 7308125 rn c.203G>A p.Gly68Asp

3R 11621081 CG14710 c.814T>A p.Tyr272Asn

3R 11621603 CG6808 c.1213A>T p.Thr405Ser

3R 12355726 MBD-R2 c.418T>A p.Ser140Thr

3R 31728395 ttk c.781A>T p.Ser261Cys

X 5064506 ovo c.466G>A p.Ala156Thr

X 13883147 mamo c.2318C>T p.Thr773Met

X 21030313 CG1529 c.1483G>C p.Ala495Pro

X 21030367 CG1529 c.1429C>G p.Leu477Val
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in-depth analysis linking ecdysone signaling in the ovary to

recombination rate is required.

Most intriguing in this set is mamo which encodes a BTB

domain-containing chromatin-binding protein. Reductions in

mamo expression in the female germline are associated with

defects in meiosis during prophase I and abnormal karyosome

structure. Furthermore, mamo appears to mediate its effect

through the direct binding to specific DNA consensus sequen-

ces (Mukai et al. 2007; Hira et al. 2013). Given the appear-

ance of mamo in all of our data sets and comparisons, it is

tempting to speculate a role for this gene in recombination

variation however, testing this hypothesis requires perturba-

tion of mamo function in a manner that allows oogenesis to

proceed intact.

Comparison to Previous Studies

Previous work examining recombination between visible

markers on chromosome 3R and X in a different set of inbred

lines revealed a prioritized set of 20 candidate genes with

potential roles in regulating recombination rate (Hunter

et al. 2016). If genetic variation underlying divergence in

recombination between populations also contributes to vari-

ation within populations, it is expected that these candidates

would likewise show up in our analyses. Examining our initial

data set prior to filtering for genes with annotated ovary ex-

pression, we identified 17 of those 20 genes in at least one

comparison (table 4) of which 13 had annotated expression in

the ovaries. Of those 17 genes, nonsynonymous SNPs were

noted in lola, bru2, Ptp61F, and Eip75B in the Cold versus

Warm comparison, jing, alph, and Ptp61F in the Cold versus

Temp comparison, and lola in the Warm versus Temp com-

parison (table 4) all of which are expressed in the ovaries. An

examination of SNP allele frequencies in whole populations

and individual replicates comprising whole populations like-

wise revealed no fixation of any of these SNPs (supplementary

table S9, Supplementary Material online).

We also examined our data sets for differences in allele

frequencies for SNPs that mapped to loci previously implicated

to participate directly in meiotic recombination (reviewed in

McKim et al. 2002; Hughes et al. 2018). Five genes were

noted that fell into this category including mei-218 and ord

in the Cold versus Warm comparison, c(2)M and mus312 in

the Cold versus Temp comparison, and c(3)G in the Warm

Table 4

Comparison to Genes Previously Identified in Mediating Recombination Rate in a Separate Population of Fly Lines (Hunter et al. 2016)

Genes overlapping Hunter et al. (2016) for each comparison

Cold versus Warm Cold versus Temp Warm versus Temp

Ubx CG33970 alph Ubx Oaz Ubx

Pk Oaz CG33970 lola bru2 pk

Lola bru2 bru2 CG1273 CG4440 lola

CG1273 CG4440 CG4440 dpr6 cdi dpr6

dpr6 cdi cdi MESR3 Eip75B MESR3

MESR3 Eip75B Eip75B CG15365 Ptp61F grp

grp Ptp61F Ptp61F grp jing CG33970

alph jing jing CG9650

CG9650

Associated nonsynonymous SNPs

Comparison Chromosome Site Symbol Variant Putative impact

Cold versus Warm 2L 12357227 bru2 c.638C>G p.Ala213Gly

2R 10508895 lola c.2365C>A p.Leu789Met

2R 10520628 lola c.2013C>A p.Asn671Lys

3L 1344496 Ptp61F c.1479C>A p.Asn493Lys

3L 1417156 Ptp61F c.695A>G p.His232Arg

3L 17998691 Eip75B c.441G>T p.Met147Ile

3L 18059399 Eip75B c.186C>G p.Ser62Arg

Cold versus Temp 2R 6503610 jing c.572C>T p.Thr191Ile

3L 1344496 Ptp61F c.1479C>A p.Asn493Lys

3L 1412953 Ptp61F c.1678T>A p.Ser560Thr

3R 29594308 alph c.895C>G p.His299Asp

3R 29604521 alph c.1104C>G p.Ile368Met

Warm versus Temp 2R 10508895 lola c.2365C>A p.Leu789Met

2R 10520628 lola c.2013C>A p.Asn671Lys

2R 10524037 lola c.1960A>G p.Thr654Ala

2R 10525682 lola c.1544G>A p.Ser515Asn

NOTE.—Genes common to both studies and associated nonsynonymous SNPs for the three comparisons (Cold vs. Warm, Cold vs. Temp, Warm vs. Temp).
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versus Temp comparison. Both c(2)m and c(3)G were noted to

contain putative nonsynonymous variants. The relatively small

number of genes in this category in our analyses in compar-

ison to the 25-plus genes that have been characterized would

suggest that differences in recombination rate between the

three populations are regulated by a distinct set of loci; the

majority of which do not directly participate in the recombi-

nation process.

Conclusions

In summary, we have identified a fairly large number of can-

didate genes in our screen that potentially mediate recombi-

nation rate divergence between populations. Our data

indicate that these genes are not core components of meiotic

recombination machinery. Rather, our data indicate that ge-

netic variation underlying divergence in recombination be-

tween populations is largely overlapping with genetic

variation underlying variation in recombination within

populations.

Several additional phenotypes have diverged among these

populations including fecundity, developmental plasticity,

thermal tolerance, and cell membrane composition (Cooper

et al. 2012; Condon et al. 2014, 2015; Adrian et al. 2016; Le

Vinh Thuy et al. 2016; Alton et al. 2017). Despite refinements

of our data set to genes expressed in the ovaries and those

with functions associated with DNA-binding or zinc finger

transcription factors, we expect many of the remaining can-

didates may have diverged in the evolutionary context of

these phenotypes as well as other traits associated with tem-

perature. Moreover, we cannot discount the possibility that

differences in allele frequency in our candidates stem from

selection on other phenotypes related to thermal tolerance as

demonstrated in earlier studies (Rolandi et al. 2018).

However, our data are consistent with a role for these candi-

date genes in contributing to the observed divergence in re-

combination rate among experimental evolution regimes.

From a broader evolutionary perspective, it is difficult to

determine whether these candidates are the result of direct

selection of pre-existing recombination rate variation in re-

sponse to temperature or result indirectly from selection of

these other traits in response to different temperature

regimes. This is further complicated by the broad pleiotropic

roles of many of our candidates. Furthermore, the experimen-

tal design introduces a possible role for genetic drift in our

associated allelic variation as differences in temperature can

affect generation counts and population size and variation of

these parameters were noted during the experimental evolu-

tion phase (Yeaman et al. 2010). Although genetic drift was

largely ruled out in the context of thermal tolerance, cell size,

and cell membrane composition (Cooper et al. 2012; Condon

et al. 2015; Adrian et al. 2016), it was noted that drift may

play a role in the observed variation in recombination rate at

the level of replicate lines within a population (Kohl and Singh

2018). However, given that this study is focused exclusively on

recombination rate variation at the pooled population level, a

role for genetic drift seems less likely than direct or indirect

selection. Regardless, functional validation of our candidates

in the context of recombination rate variation is necessary.

Finally, it should be noted that given our experimental design

many of our candidates and pathways are likely distinct from

those subject to selection in the context of recombination rate

due other environmental factors such as nutrient availability

(Reviewed in Modliszewski and Copenhaver 2017).

Future studies centered around the functional validation of

the most intriguing candidates, such as mamo, EcR, and Tollo,

through perturbation in function, expression of the alleles in

question, quantification of expression levels, and antibody vi-

sualization of protein chromatin interactions during various

stages of meiosis will allow us to determine the roles the

candidates with higher potential play in recombination rate

variation.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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