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ABSTRACT Akkermansia muciniphila is an abundantly present commensal mucin-
degrading gut bacterium (1 to 4%) that is widely distributed among healthy individuals. It
has been positioned as a health biomarker and is currently being explored as a biothera-
peutic agent and next-generation probiotic. Preliminary and ongoing research is mostly
based on in vivo mouse models and human intervention trials. While these allow the
assessment of physiologically relevant endpoints, the analysis of fecal samples presents
limitations with respect to the in-depth mechanistic characterization of Akkermansia9s
effects at the level of the microbiome. We aimed to evaluate the effect of A. muciniphila
treatment on the endogenous community from four different donors in a validated, con-
trolled in vitro model of the gut microbial ecosystem (SHIME). Taking into account the
nutritional specificity of A. muciniphila and the prebiotic-like action of mucins in the colon
environment, the interplay between mucin, A. muciniphila, and the endogenous commu-
nity was investigated. The effects on the microbial community composition and function-
ality of A. muciniphila supplementation without mucin were limited, whereas mucin addi-
tion successfully induced compositional and metabolic changes in the gut microbiota.
Indeed, mucin addition resulted in significantly higher acetate, propionate, and butyrate
production for all four donors and the increase of several bacteria, including A. mucini-
phila, Ruminococcus, Clostridium cluster XIVa, and Lachnospiraceae. This study revealed that
the supplementation of A. muciniphila together with mucin limited the observed prebi-
otic-like effect of mucin in inducing compositional changes.

IMPORTANCE Research into the identification of biomarkers for gut health and ways
to modulate the microbiota composition and activity to improve health has put
Akkermansia muciniphila in the spotlight. As a mucin degrader, A. muciniphila colo-
nizes the interesting but not fully described host-glycan degradation niche. Much
research concerning A. muciniphila has been done, but little is known about its
behavior in the complex microbial ecosystem in the colon, the potential of mucins
to influence A. muciniphila behavior, and the impact of its probiotic administration
on the microbial ecosystem. This study aimed at investigating the impact of A.
muciniphila administration on the endogenous community while also taking into
account its nutritional specificity. As such, the effect of A. muciniphila administra-
tion was investigated with and without addition of mucin. This allowed us to eluci-
date the importance of the presence of mucin to modulate the efficiency of probi-
otic supplementation with A. muciniphila.

KEYWORDS SHIME, colon, gastrointestinal tract, gut, host glycan, microbiome,
microbiota, mucus, prebiotic, probiotic

A kkermansia muciniphila was isolated from human feces as a mucin-degrading bac-
terium in 2004 (1). Since its discovery A. muciniphila has gained attention in scien-

tific studies, as its abundance is inversely correlated with disorders such as inflammatory
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bowel disease (IBD), obesity, autism, appendicitis, and diabetes (2–9). A study with obese
mice showed A. muciniphila exerting therapeutic effects, as its supplementation reversed
high-fat-diet-induced insulin resistance, dyslipidemia, metabolic endotoxemia, and fat
mass gain (10). Plovier et al. (11) showed that pasteurization of A. muciniphila before treat-
ment enhanced its beneficial impact and that the beneficial effects were, at least partly,
due to a specific outer membrane protein (Amuc_1100). An ongoing clinical study by
Université Catholique de Louvain is investigating the effects associated with the adminis-
tration of A. muciniphila on the metabolic disorders related to overweight and obesity in
humans. Preliminary results demonstrated that daily oral administration of A. muciniphila
was safe and well tolerated and after 3 months improved several metabolic parameters,
such as insulin sensitivity (12).

A. muciniphila has been referred to as a possible next-generation probiotic (13–15),
a broad term that conforms to the normal definition of a probiotic and comprises
microorganisms with potential health benefits but which do not necessarily have a
qualified presumption of safety (QPS) or generally regarded as safe (GRAS) status.
Some of these next-generation probiotics are likely to be used in a pharmaceutical
context, which makes them fit well within the emerging concept of live biotherapeutic
products: “a biological product that: (1) contains live organisms, such as bacteria; (2) is
applicable to the prevention, treatment, or cure of a disease or condition of human
beings; and (3) is not a vaccine” (16). Since there is as yet no consensus on the correct
terminology, we consider A. muciniphila to be a live biotherapeutic product, thereby
avoiding confusion with established probiotic products. A. muciniphila’s mode of
action may consist of direct interaction with the host—for example, through the
Amuc_1100 protein (11)—and/or indirect interplay with the established microbial
community.

This established community, together with the high turnover in the gastrointestinal
tract, however, presents a challenge for the stable introduction and maintenance of
live biotherapeutics. In that respect, the availability of nutrients, selectively sustaining
the growth of a biotherapeutic agent, could be an important factor in determining the
success rate of future therapies. In the case of A. muciniphila, the host glycan mucin
has been identified as a major determinant of its colonization capacity (17, 18). In the
Simulator of the Human Intestinal Microbial Ecosystem (SHIME), a dynamic model of
the colonic microbial ecosystem, mucin deprivation and supplementation were shown
to specifically affect A. muciniphila abundance, more than any other species present
(19, 20).

This reflects the superior ability of A. muciniphila to use up to 85% of the complex
mucin structure. This is composed of O-glycosylated and, to a lesser extent, N-glycosyl-
ated protein backbones, with chains of 2 to 12 monosaccharides, mostly galactose,
fucose, N-acetylgalactosamine, N-acetylglucosamine, mannose, and sialic acid (21, 22).
In vivomouse trials have demonstrated A. muciniphila’s efficient degradation of mucins
(18, 23). It possesses an entire repertoire of enzymes with both extracellular and intra-
cellular activity (21). A study of its genome showed the presence of genes encoding 61
proteins predicted to be involved in mucin degradation (11% of all proteins). Mucin
degradation by A. muciniphila leads to the release of oligosaccharides and their subse-
quent fermentation into acetate and propionate, both of which can stimulate microbial
metabolic interactions, as well as a host response (1, 24). Other bacteria in close prox-
imity could profit from the mucolytic activity by using the oligosaccharides and acetate
for growth and metabolic conversions, such as butyrate production (25, 26). It has
been hypothesized that the presence and activity of these cross-feeding bacteria coex-
isting with A. muciniphila at the mucus layer might provide additional resistance
against colonization by pathogens and could impact the host response due to their
proximity to the epithelial cells (13, 14).

Only a few other intestinal species have the enzymatic capacity for initiating partial
or full mucin degradation, including Bacteroides thetaiotaomicron, Ruminococcus gna-
vus, Ruminococcus torques, and Bifidobacterium bifidum (2, 27–29). Considering the
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limited number of species that can degrade the complex mucin structure and the
described health effect conferred by its degradation, mucins fit the definition of prebi-
otic substances, “substrates that are selectively utilized by host microorganisms confer-
ring a health benefit” (14, 30, 31). As mucin glycans constitute 80% of the dry weight
of the mucus layer covering the intestinal epithelium and are present in the luminal
content as a consequence of the continuous mucus desquamation, the human body
has even been described as producing its own prebiotic (32–34). Mucin thus plays an
important role in the interaction between A. muciniphila, the microbial community,
and the host.

Considering the ongoing studies and future perspective for A. muciniphila as a bio-
therapeutic agent, we investigated the effect of A. muciniphila administration on the
endogenous community. For this purpose, the in vitro SHIME model was used, with co-
lon compartments separately inoculated with the microbiota from four human donors.
Taking into account its nutritional specificity, supplementation of A. muciniphila was
investigated with and without addition of mucin as its functional niche. This allowed
us to elucidate the importance of the presence of mucin to modulate the engraftment
success of supplemented A. muciniphila. The interplay between A. muciniphila, mucin,
and the microbial community may also confer community resilience in a scenario of
antibiotic-induced community disruption. As a final objective, we therefore also eval-
uated the impact of an antibiotic pulse on the dynamics and recovery of Akkermansia-
or mucin-amended microbial ecosystems.

RESULTS

During the 10-day mucin deprivation period, mucin-free medium was fed to the
SHIME system, creating mucin-deprived microbial communities, separately derived
from the fecal microbiota of four different donors. These different communities were
characterized by a profound decrease in A. muciniphila abundance (Fig. 1) and similar

FIG 1 Log (base 10) scaled relative abundance of A. muciniphila over total bacteria, measured with qPCR. Colon
vessels were inoculated with fecal samples of donors 1 to 4. From days 0 to 10, mucin-free feed was added. From
days 10 to 20, different treatments were imposed; vessels were treated with either A. muciniphila (1Akk–Muc), mucin
(–Akk1Muc) (4 g liter21), or a combination of both (1Akk1Muc) or received no treatment (–Akk–Muc). At day 20, all
vessels were treated with an antibiotic mix (ABX), after which A. muciniphila treatments, in contrast to the mucin
treatments, were discontinued.
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short-chain fatty acid (SCFA) profiles (Fig. 2) with 36.36 6.8mM acetate, 9.46 0.8mM
propionate, and 4.26 1.4mM butyrate (n=16). The initial A. muciniphila abundance of
around 0.01% in donors 1, 2, and 3 decreased 1,000-fold for donors 1 and 2 upon
mucin deprivation and was close to the quantification limit in donor 3 (Fig. 1). In the
case of donor 4, A. muciniphila abundance levels remained close to the quantification
limit during the entire mucin deprivation period (Fig. 1).

Effect of treatment on community functionality and A. muciniphila abundance.
From day 10 onward, A. muciniphila and/or mucin was added to the SHIME. A. mucini-
phila concentrations could be affected by addition of exogenous A. muciniphila and by
addition of mucin as its functional niche (Fig. 1). We found the combination of exoge-
nous A. muciniphila with mucin to yield the highest levels of A. muciniphila. This coin-
cided with a sharp increase in propionate for all 4 donors and in acetate and butyrate,
albeit to a lesser extent (Fig. 2). Addition of exogenous A. muciniphila in the absence of
mucin also resulted in high A. muciniphila levels. However, this addition of A. mucini-
phila alone did not come with significant shifts in functionality in terms of SCFA pro-
duction, with A. muciniphila addition contributing to only 0.5% of the variation in SCFA
concentrations (P= 0.11) (Fig. 2 and 3).

Mucin seemed to be the most important driver of altered functionality, as partial re-
dundancy analysis indicated that mucin treatment accounted for 17% of the observed
variation in SCFA concentrations (P=0.001) (Fig. 3). Even in the absence of exogenous
A. muciniphila, addition of the host glycan displayed a high 10 mM increase in propio-
nate concentrations for all donors (Fig. 2). This propionate increase was less pro-
nounced for donor 2, yet this was compensated for by a high 10 mM increase in butyr-
ate for the mucin amendment alone. Interestingly, the endogenous A. muciniphila in
this donor did not respond to the mucin treatment (Fig. 1).

While we had expected A. muciniphila to completely wash out from the SHIME reac-
tor when no exogenous A. muciniphila was added and no mucin was supplemented as
its nutritional preference, endogenous A. muciniphila levels never disappeared (Fig. 1).

Effect of treatment on community composition. Besides A. muciniphila (OTU9),
other members of the microbial community were affected by the different treatment
combinations. An unsupervised principal-coordinate ordination displayed no clear do-
nor- or treatment-dependent clustering, illustrating the individuality of the response to
mucin and A. muciniphila (Fig. 4). To quantify and distinguish between donor and treat-
ment effects a partial distance-based redundancy analysis (RDA) was performed, show-
ing that the effects of mucin (8%) and A. muciniphila (7%) were limited and nonsignifi-
cant (see Table S2 in the supplemental material). In order to select the taxonomic
entities which were most discriminative for each of the different treatments, a sparse
partial least squares discriminant analysis (sPLS-DA) was performed. The final model,
retaining only the 75 most predictive operational taxonomic units (OTUs), showed a
clustering by treatment (three-dimensional [3D] plot is shown in Fig. S2). Clostridium
cluster XIVa OTU26 and Veillonella OTUs 44 and 46 were characteristic of the control
treatment without mucin or A. muciniphila (Fig. 5). The addition of A. muciniphila had
little effect on the microbial community, whereas mucin supplementation resulted in
proportional increases of A. muciniphila (OTU9), OTU20, OTU21, OTU24, OTU48, OTU43,
OTU32, and OTU37. Interestingly, coadministration of A. muciniphila restricted the
effect of mucin on these OTUs and amplified the A. muciniphila upsurge (Fig. 5). In the
presence of added A. muciniphila (1Akk1Muc [i.e., treatment with both A. muciniphila
and mucin] versus 1Akk–Muc [i.e., treatment with A. muciniphila alone]), fewer OTUs
were significantly affected, amounting to OTU9 and OTU32 increasing in abundance and
OTU62 (corresponding phylogenetically to Enterobacteriaceae [;Enterobacteriaceae]) and
OTU78 (;Lachnospiraceae) decreasing in abundance (Fig. 5). This was also reflected at the
genus level (Fig. 5) and in the DESeq2 analysis, comparing the different conditions after 10
days of treatment (Fig. 6). Mucin treatment (–Akk1Muc [i.e., treatment with mucin alone]
versus –Akk–Muc [i.e., no treatment]) significantly stimulated A. muciniphila (OTU9), OTU32
to OTU63 (;Clostridium cluster XIVa), and OTU48 (;Ruminococcus torques) (Fig. 6). OTU46
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FIG 2 Short-chain fatty acid concentration (mM) measured in the colon vessels inoculated with fecal
samples of donors 1 to 4. From days 0 to 10, mucin-free feed was administered. From days 10 to 20

(Continued on next page)
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(;Veilonellaceae), OTU41 (;Enterobacter), and OTU26 (;Clostridium cluster XIVa), on the
other hand, were characteristic of mucin-deprived communities (Fig. 6).

In line with the sPLS-DA, the effect of A. muciniphila supplementation on the com-
munity was very limited, with only 0.33% of the community at the OTU level signifi-
cantly affected. A. muciniphila adversely affected OTU48 (;R. torques) abundances in
the presence of mucin (1Akk1Muc) and OTU41 (;Enterobacter) in the treatment with-
out mucin (1Akk–Muc).

The DESeq2 procedure resulted in few OTUs whose abundance was significantly
changed by the treatments across all four donors. These interindividual differences are
also apparent from the principal-coordinate analyses (PCoA) at the genus level after treat-
ment (day 20) (Fig. 4). For donors 1 to 3, different clusters were distinguished in response
to the treatments. Communities after treatment with mucin (without A. muciniphila) are
characterized by the presence of Ruminococcus, Roseburia, and Parabacteroides and clus-
tered separately from communities treated with both mucin and A. muciniphila. Those
without mucin, on the other hand, clustered according to donor, independent from A.
muciniphila treatment. Addition of A. muciniphila thus impacted mucin9s effect on the
community composition, whereas A. muciniphila had no effect without mucin. Samples
from donor 4 clustered separately, partly due to the higher relative abundance of
Fusobacterium spp., and showed a different response to the treatments, with the addition
of A. muciniphila affecting community composition when no mucin was added, but not in
combination with mucin supplementation.

Effect of antibiotic pulse. After 10 days of treatment (day 20), an antibiotic pulse,
containing ciprofloxacin, tetracycline, and amoxicillin, was applied to the colon vessels,
after which A. muciniphila treatment ceased but mucin treatment continued. The effect
of this antibiotic disturbance was followed up to investigate whether preceding treat-
ment with mucin and/or A. muciniphila would have protective effects. At the functional
level, no protective effects were observed, as the drop in SCFA production after the an-
tibiotic pulse resulted in more similar SCFA profiles across treatments (Fig. 2). The
decrease in propionate and butyrate after the antibiotic pulse was significantly larger
(P, 0.05) in the presence of mucin, offsetting the initial positive effects of the addition
of mucin. Acetate almost fully recovered to the levels found before antibiotic disturb-
ance within 10 days. Propionate and butyrate levels remained significantly lower
throughout the antibiotic wash-out period (P, 0.01). Four to six days after the disturb-
ance, A. muciniphila abundance was lowest, after which it increased again in conditions
with mucin. After 10 days of recovery, a clear, although not significant, difference in
A. muciniphila abundances between conditions with and without mucin was visible
(Fig. 1). Also, at the community level, no protective effects were observed from the
treatments, and the disturbance persisted after 10 days. The antibiotic pulse mar-
ginally reduced the total bacterial count (Fig. S3) and affected the same genera, such as
Roseburia, Bifidobacterium, Alistipes, Butyricicoccus, Enterobacteriaceae, etc., independent of
the preceding treatment, as determined by DESeq analysis (Fig. S4). Alpha diversity was sig-
nificantly reduced after antibiotic treatment and did not recover within 10days (P, 0.01)
(Fig. S5).

The case of donor 2. An interesting effect of the treatments and antibiotic disturb-
ance was observed for donor 2. Endogenous A. muciniphila did not increase with
mucin addition prior to antibiotics but suddenly responded to mucin after the antibi-
otic disturbance (Fig. 1). Interestingly, this mucin treatment, without a response of A.
muciniphila, caused an increase in butyrate significantly larger than in any other donor
or for any other treatment and induced no response in propionate (Fig. 2). A detailed
inspection of the time course of the relative abundances from species that were signifi-

FIG 2 Legend (Continued)
onwards, different treatments were applied; vessels were treated with either A. muciniphila (1Akk–Muc),
mucin (–Akk1Muc) (4 g liter21), a combination of both (1Akk1Muc), or neither (–Akk–Muc). At day 20,
all vessels were treated with an antibiotic mix (ABX), after which A. muciniphila treatments, in contrast to
the mucin treatments, were discontinued.
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FIG 3 Partial redundancy analysis correlation triplot with the response variables (Ac, acetate; Pr, propionate; Bu, butyrate; Br,
branched SCFA) indicated in red and the different factors represented in the legends.
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cantly affected solely by the mucin treatment revealed an interesting response of
Ruminococcus species OTU48 and OTU65, together with butyrate-producing Roseburia
OTU34, to the mucin treatment in donor 2 (Fig. 7). These species might be involved in
the observed difference in butyrate between those two treatments (Fig. 1). Ruminococcus
species OTU48 and OTU65 responded to mucin treatment without A. muciniphila supple-
mentation, but not to other treatments, together with butyrate-producing Roseburia spe-
cies (OTU34), which increased greatly. After antibiotic disturbance, OTU65 and OTU34 did
not recover, whereas OTU48 did. OTU34 and OTU48 displayed similar responses to mucin
treatment in donor 3, which was characterized by a less pronounced A. muciniphila
response (Fig. 1 and 7).

DISCUSSION

In this study, we hypothesized that the combination of the candidate live biothera-
peutic A. muciniphila with mucin as its functional niche may yield increased survival
and activity for A. muciniphila and subsequently bring about prebiotic effects to the
community. Being a specialist mucin degrader, A. muciniphila would use the mucin,
produce acetate and propionate, and release mucin-derived oligosaccharides and thus
have a greater impact on the community composition and functionality, for example,
by stimulating cross-feeding on acetate by butyrate-producing species (25, 26).

Our initial hypothesis, stating that joint supplementation of A. muciniphila and
mucin more effectively induces cross-feeding of, for instance, butyrate, compared to
mucin alone, does not seem to hold. Mucin addition had the largest impact on micro-
bial community composition and functionality. Mucin-enriched communities, without
addition of exogenous A. muciniphila, were characterized by higher endogenous
Akkermansia, Roseburia, Ruminococcus, and Parabacteroides proportions. Similar

FIG 4 A PCoA biplot revealed the effect of treatment (colors) on the bacterial communities of the different donors (shapes) comparing days 10 and 20
(size). Samples from donors 1, 2, and 3 with mucin clustered together, independent from A. muciniphila treatment. Samples from donors 1, 2, and 3
without mucin also clustered together, independent from A. muciniphila treatment. Weighted average scores of genera characteristic of treatments were a
posteriori projected.
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FIG 5 Heatmap representation of the most predictive genera (left side) and OTUs (right side) for the different treatments as determined by sPLS-DA
regression analysis.

A. muciniphila and Mucin Effect on Microbial Community Applied and Environmental Microbiology

February 2021 Volume 87 Issue 4 e02647-20 aem.asm.org 9

https://aem.asm.org


community shifts upon mucin addition were observed in previous studies (19, 20).
Mucin addition resulted in significant increases in acetate, propionate, and butyrate
production (P, 0.01) for all donors. This increase was independent of A. muciniphila
addition, except for donor 2, where the butyrate increase was three times higher in the

FIG 6 Boxplots of OTUs that were significantly different in abundance between treatments (day 20) across all four donors as determined by DESeq2
analysis (a = 0.05). The color of the boxplots represents the different treatments, and facet labels are colored according to the phylum-level classification.
Letter codes show significance.
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absence of A. muciniphila supplementation. Endogenous A. muciniphila, although pres-
ent, did not increase upon mucin supplementation in this donor. The highest increase
in butyrate was thus induced by mucin at low A. muciniphila abundance. OTU32,
belonging to the butyrate-producing genus Roseburia, was specifically increased by
mucin treatment in donor 2 and to a lesser extent in donor 3. However, no Roseburia
species have been identified to degrade mucin. Butyrate production would thus be
the result of cross-feeding, not with A. muciniphila but with, for example, OTU48 and
OTU65, both belonging to Ruminococcus and increased by the mucin treatment.
Species like R. gnavus and R. torques are known mucin degraders and might thus

FIG 7 (Top) Volcano plot showing results from the DESeq2 analysis between treatments 1Akk1Muc and –Akk1Muc in donor 2.
Green and red dots represent OTUs that are more abundant in –Akk1Muc and 1Akk1Muc, respectively, and the size indicates
the relative abundance of the OTU in the community. (Bottom) Relative abundance of OTUs stimulated by mucin treatment –Akk1Muc
in donor 2. As a comparison, relative abundances for the other donors are shown too.
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deliver acetate and mucin-derived oligosaccharides to Roseburia and other butyrate-
producing species (2, 27, 28, 35). It is a possibility that this cross-feeding consortium
prevented endogenous A. muciniphila from benefitting from the mucin. In support of
this hypothesis, we observed that A. muciniphila abundance increased upon mucin treat-
ment after community disruption by antibiotics, together with OTU48 (;R. torques), while
OTU32 (;Roseburia) and OTU65 (;Ruminococcus) did not recover. These hypotheses,
however, need to be substantiated with further experiments before real conclusions can
be drawn.

In contrast to the mucin treatment, the addition of A. muciniphila hardly affected
the community (Fig. S6 to S9). This is not surprising, as prebiotic treatments (such as
mucin) generally induce more significant changes in community composition com-
pared to probiotic treatments (such as A. muciniphila) (36). When comparing the effect
of A. muciniphila with and without mucin at the community level, only two species
were significantly increased by the combined supplementation of A. muciniphila and
mucin; these were A. muciniphila for obvious reasons and a Clostridium cluster XIVa
species (OTU32) (Fig. S7). It is not clear whether the latter would benefit from putative
cross-feeding interactions. Ruminococcus torques, a known mucin degrader (2), on the
other hand, was significantly decreased by coadministered A. muciniphila and mucin
compared to supplementation with only mucin. This suggests that coadministration of
8 log units of A. muciniphila gives an initial numerical advantage over other species,
resulting in a more efficient occupation of the mucin-degradation niche, thereby out-
competing endogenous community members, such as R. torques. In contrast, if mucin
is administered alone, the endogenous microbiota can probably compete more effi-
ciently with the endogenous A. muciniphila, eventually resulting in a bigger commu-
nity change.

However, the combined addition of A. muciniphila and mucin may still provide a
protective advantage in case of an acute stress. We chose antibiotic administration as a
relevant stress factor for the gut microbiota, and the mix of amoxicillin, tetracycline,
and ciprofloxacin was previously found to cause microbial dysbiosis (37). Antibiotic dis-
ruption of the microbial community 10 days after the mucin and/or Akkermansia treat-
ment caused a profound decrease in SCFA production, in line with results from in vivo
and in vitro studies (37–39), although the proportional SCFA profiles did not alter.
Mucin-supplemented communities retained higher SCFA levels than mucin-depleted
communities, as before the antibiotic treatment. In addition, community composition
was heavily affected, and it did not recover within the 10-day recovery period; however
A. muciniphila levels did recover faster in mucin-rich communities. Thus, although no
general protective effects from mucin and/or Akkermansia treatment at the community
level were observed, mucin-supplemented communities did benefit from the presence
of mucin.

In contrast to previous studies, A. muciniphila was not washed out of the system,
even when no mucin was added to the feed during 30 days (–Akk –Muc) (19, 20). Its
abundance decreased due to the mucin deprivation in the first 10 to 14 days but stabi-
lized afterwards. Plovier et al. (11) previously obtained dense A. muciniphila cultures on
a mucin-free medium containing peptone, glucose, N-acetylglucosamine, and threo-
nine. All compounds of this mucin-free medium were also present in our mucin-free
SHIME feed, possibly explaining why A. muciniphila did not completely disappear.

The ability to control the supply of mucin glycan (by varying the concentration but
not the structure) necessitated the use of in vitro models. Besides, the nutritional role
of mucins cannot be separated from the protective role of the mucus layer in vivo, and
attachment to the mucus layer or the antimicrobial peptides in the mucus layer would
have confounding effects. The in vitro model (SHIME) used in this research thus pro-
vided essential advantages to study the impact of mucin degradation on the commu-
nity. However, there still remain many aspects of the mucin degradation niche that
should be addressed in future research, such as variability in mucin structure and
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supply influenced by interindividual variability, host health, and the cross talk with the
microbial community.

To conclude, this in vitro study with four donors revealed that the presence or ab-
sence of mucin as a functional niche has a far greater effect than A. muciniphila on the
gut microbiota. The joint supplementation of A. muciniphila with mucin limited the
prebiotic-like effect that was observed for mucin in inducing compositional and meta-
bolic changes. While cross-feeding on mucin has been shown for butyrate-producing
bacteria and A. muciniphila in coculture experiments (25), A. muciniphila does not seem
to enhance cross-feeding in a complex microbial background. Addition of both mucin
and A. muciniphila might lead to A. muciniphila dominating the mucin degradation
niche, while addition of mucin alone leads to involvement of several bacteria, including
A. muciniphila, Ruminococcus, Clostridium cluster XIVa, and Lachnospiraceae. When aim-
ing at the modulation of (mucus-associated) microbiota, stimulation of endogenous A.
muciniphila might thus be more successful than its administration as a live biothera-
peutic product.

MATERIALS ANDMETHODS
Chemicals, growth media, and bacterial strains. Chemicals were obtained from Sigma (Bornem,

Belgium), unless stated otherwise. Akkermansia muciniphila (DSMZ 22959, type strain) was cultured in rein-
forced clostridial medium (RCM) with 4 g liter21 of partially purified porcine gastric mucin type III for 24 h
prior to the daily treatment of the colon vessels (days 10 to 20). After 24 h of growth, the pure culture was
washed with anaerobic phosphate-buffered saline (PBS) (0.8 g liter21 NaCl and 0.2 g liter21 KCl) in an an-
aerobic (10% CO2 and 90% N2) workstation (GP Campus, Jacomex, Dagneux, France). Using flow cytometry,
the A. muciniphila concentration was quantified and was standardized to 2.5 · 108 6 5 · 107 cells ml21

before supplementation (10ml) to the SHIME colon compartments (40). This daily dose of an average of
2.5 · 109 cells of A. muciniphila was based on other in vitro SHIME experiments and in vivo studies of the
effect of bacterial supplementation/probiotics (11, 12, 41, 42). Samples of the pure A. muciniphila cultures
were diluted in a filter-sterilized phosphate-buffered solution to obtain cell numbers within the detection
range (103 to 106 cells/ml). Next, the samples were stained with SYBR green I (10,000� diluted from stock;
Invitrogen) and incubated for 13min at 37°C before measurement. The flow cytometer (BD Accuri C6 flow
cytometer; BD, Erembodegem, Belgium) was equipped with a 488-nm solid-state laser, and Milli-Q water
was used as the sheath fluid. Cell counts were done by measuring the number of particles in a set volume,
and quality control of cell counting was done with standardized beads. The background was monitored
by measuring a filtered sample, diluted identically to the test samples. Each sample was performed in trip-
licate (40).

The nutritional medium for the SHIME consisted of (in g liter21) Arabic gum (1.0), starch (4.0) (Anco,
Roeselare, Belgium), xylan (1.0), pectin (2.0), D-(1)-glucose (0.4), yeast extract (3.0) (Oxoid Ltd.,
Basingstoke, Hampshire, UK), peptone (1.0) (Oxoid Ltd., Basingstoke, Hampshire, UK), and commercial
pig gastric mucin type II (4.0). The monosaccharide composition of mucin was (in grams per 100 g dry
matter) L-arabinose (0.05), D-xylose (0.04), D-mannose (0.28), D-galactose (7.47), and D-glucose (1.95). This
medium was autoclaved and acidified with 37% HCl to pH 2.0. The pancreatic juice contained (in g
liter21) NaHCO3 (12.5), bile salts (6.0) (Difco, Bierbeek, Belgium), and pancreatin (0.9).

Long-term dynamic gut model for the luminal colon microbiota (SHIME). The dynamic in vitro
SHIME model (ProDigest, Ghent University, Ghent, Belgium) was used to study the impact of supplemen-
tation of live A. muciniphila, with or without the presence of a host glycan degradation niche, in different
microbial communities. The model is described by Van Herreweghen et al. (19); the model consists of
multiple compartments that simulate the stomach, the small intestine, and the colon regions (43). Each
anaerobic compartment was continuously stirred at 37°C and flushed with N2 (15min/day) to ensure an-
aerobic conditions after sampling. On day 0, the colon compartments were filled with nutritional me-
dium and inoculated with 40ml of 20% (wt/vol) fecal slurry. Following an overnight static incubation of
the colon compartments (16 h), the stomach and small intestine compartments operated on the fill-and-
draw principle, with peristaltic pumps adding nutritional medium and pancreatic juice three times a day
and gradually emptying the small intestine compartment into the colon compartments after gastrointes-
tinal digestion. The volume in the colon compartments was kept constant by the simultaneous fluid
flow into and out of compartments (44). Samples were taken from the vessels daily before new feed
entered the colon compartments.

Fecal samples were collected from healthy donors between the ages of 25 and 35 and prepared
within 1 h according to standard procedures (45) prior to inoculation.

The setup for this experiment is shown in Fig. 8. Fecal suspension from 4 donors was used to inocu-
late the colon vessels (4 colon vessels/donor), with a retention time (RT) of 40 h and a pH between 6.6
and 6.9 (distal colon pH). During the mucin deprivation period (days 0 to 10), a mucin-free nutritional
medium was fed to the colon vessels. From days 10 to 20 onward (treatment period), the 4 following
treatments were applied to the 4 colon vessels/donor: 1Akk1Muc, where A. muciniphila was adminis-
tered daily to the colon vessels after sampling and mucin (4 g liter21) was added to the feed; 1Akk–Muc,
where only A. muciniphila was added; –Akk1Muc, where only mucin (4 g liter21) was added; and –Akk–Muc,
which is identical to the medium provided during the mucin deprivation period. After this 10-day treatment
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period, an antibiotic mix, containing ciprofloxacin, amoxicillin, and tetracycline at, respectively, 40, 40, and
10mg liter21

final colonic concentrations, was supplemented directly into every colon vessel to induce acute
stress (37).

Samples were taken daily for SCFA analysis, as described previously (46), and every 2 days for DNA
extraction (47), followed by 16S rRNA gene amplicon sequencing (Illumina MiSeq) (48) and A. mucini-
phila quantitative PCR (qPCR) quantification (49).

Microbial community analysis. DNA extraction was performed by a combination of chemical and
mechanical lysis through a bead-beating step as reported by Geirnaert et al. (50). As starting material,
the pellet obtained after centrifuging 1ml of luminal sample at 5,000� g for 10min was used. The DNA
quality was verified on a 1.5% (wt/vol) agarose gel.

The total bacterial and Akkermansia-specific 16S rRNA gene copy number was quantified by qPCR on
100- and 10-fold-diluted DNA extracts, respectively, using a StepOnePlus real-time PCR system (Applied
Biosystems, Carlsbad, CA) as described in reference 19. The total bacterial 16S rRNA genes and the species-
specific 16S rRNA genes of A. muciniphila were quantified by qPCR on 100- and 10-fold-diluted DNA extracts,
respectively, using a StepOnePlus real-time PCR system (Applied Biosystems, Carlsbad, CA). Primers for total
bacteria (338F [ACTCCTACGGGAGGCAGCAG] and 518R [ATTACCGCGGCTGCTGG]) were used with the follow-
ing cycling program: 3min at 95°C, followed by 40 cycles of 1min at 95°C, 40 s at 56°C, and 40 s at 72°C (51).
A. muciniphila-specific primers (AM1 [GAGCACGTGAAGGTGGGGAC] and AM2 [CCTTGCGGTTGGCTTCAGAT])
were used with the following cycling program: 5min at 95°C, followed by 40 cycles of 15 s at 95°C, 40 s at
60°C, and 30 s at 72°C and a final extension at 72°C for 5min (49). The results of the A. muciniphila qPCR are
shown as relative abundance, normalized to the total bacterial count. The qPCR mix consisted of 14.19ml
sterile nuclease-free water (Sigma-Aldrich, St. Louis, MO, USA) and 2.5ml Taq buffer (10�, with KCl) contain-
ing 0.025 units of recombinant Taq DNA polymerase ml21, 0.2mM deoxynucleoside triphosphate (dNTP)
mix, 1.5mM MgCl2 (Fermentas Molecular Biology Tools, Waltham, MA, USA), 0.2mM primer F, 0.2mM primer
R, 0.05mg ml21 bovine serum albumin (BSA) (Roche Applied Science, Penzberg, Germany), and
0.125ml 20� SYBR green (1:500 diluted from a 10,000� SYBR green I nucleic acid stain concentrate
in DMSO; Sigma-Aldrich, St. Louis, MO, USA). For each sample, 5ml diluted DNA extract was added to
20ml PCR mix in technical triplicate in a qPCR plate, and for each qPCR assay, standard curves were
created by a 10-fold dilution series of DNA of a plasmid containing the targeted 16S rRNA gene
fragment.

At various time points during the experiment, the bacterial community was assessed using amplicon
sequencing of the 16S rRNA gene (48). DNA samples were sent to LGC Genomics (Teddington,
Middlesex, UK) for library preparation and sequencing on an Illumina MiSeq platform, as described by
De Paepe et al. (48). The V3-V4 region of the 16S rRNA gene was amplified by PCR using primers (341F
[CCTACGGGNGGCWGCAG] and 785R [GACTACHVGGGTATCTAAKCC]) obtained from Klindworth et al.
(52), with a slight modification to the reverse primer by introducing another degenerated position (K) to
make it more universal. The mothur software package v.1.39.5 and its guidelines were used to process
the amplicon data generated by LGC Genomics, as described in detail by De Paepe et al. (48).

Statistical analysis. All statistical analyses were performed in R v.3.4.3.
Functional data. Nonparametric, rank-based longitudinal data analysis of the SCFA production

(measured acetate, propionate, butyrate, and branched SCFA concentrations) over time was conducted
using the R package nparLD (nparLD_2.1). Wald- and analysis of variance (ANOVA)-type statistics were
used to assess the significance of the combined mucin and A. muciniphila treatment as a function of

FIG 8 Experimental setup of the SHIME experiment. Akk, A. muciniphila; Muc, mucin; RT, retention time.
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time (f1-ld-f1 design). A significant time effect was observed, which was expected, as the treatment was
applied after an initial stabilization period of 10 days and the system was disturbed after 20 days by an
antibiotic pulse. The longitudinal data analysis was therefore repeated on the data subsets (stabilization,
treatment prior to antibiotic pulse, and treatment post-antibiotic pulse). The relative treatment effects
obtained by nparLD were verified by a partial redundancy analysis, followed by a PCA (vegan 2.4-4
package).

Acetate, propionate, butyrate, and branched SCFA levels were modeled as a function of the treat-
ment (with A. muciniphila and/or mucin), conditional on the period (stabilization, treatment prior to anti-
biotic pulse, and treatment post-antibiotic pulse), and interindividual differences (factor donor).
Similarly, donor and period were considered main effects, conditional on the other factors. Permutation
tests were applied to assess the statistical significance of the global model and the individual canonical
axes (53). The RDA results were plotted in a type II scaling correlation triplot, displaying the constrained
canonical (labeled RDA1/2) and, in the case of the A. muciniphila or mucin effect, the first unconstrained
residual (labeled PC1) axis. Both axes were annotated with the proportional eigenvalues representing
their contribution to the total (both constrained and unconstrained) variance. The coordinates of the
sites were derived from the weighted sums of the scores of the response variables. Next to the absolute
metabolite concentrations, the relative proportion of the metabolites is an important marker. Therefore,
the above-outlined procedure was repeated using the metabolite ratios. Additionally, in order to assess
if significant interactions occurred between the explanatory variables, a global RDA was performed
based on a regression model including interaction terms in addition to each of the main effects.

Microbial community data. To visualize differences in microbial community composition between
donors, treatments, and antibiotic responses, ordination and clustering techniques were applied. For
these purposes, the shared file was further processed to remove OTUs with too low an abundance
according to the arbitrary cutoffs described by McMurdie and Holmes (54). An OTU is defined in the
manuscript as a collection of sequences that are found to be more than 97% similar to one another in
the V3-V4 region of their 16S rRNA gene after applying hierarchical clustering (55–58). To deal with dif-
ferences in sampling depth, proportional data transformed on the common scale to the lowest number
of reads was used (54). A table with the most abundant OTUs classified to the species level using both
the RDP Seqmatch tool and NCBI BLAST is given in Table S1.

Principal-coordinate analysis (PCoA; package stats) was conducted based on the abundance-
based Jaccard dissimilarity matrix (vegan package; visualized with ggplot2) (59–62). This procedure
was repeated at the OTU and genus levels, focusing on the comparison between the donors and
between the applied treatments. At the genus level, weighted averages of genus abundances were
a posteriori added to the ordination plot using the wascores function in vegan (61). Donor and treat-
ment both influenced the grouping of samples, which was further explored using a partial distance-
based redundancy analysis at the species level (db RDA) (63). The scores obtained by a PCoA were
modeled as a function of the treatment, with the effects of the interindividual variability and treat-
ment period being parceled out using the capscale function of the vegan package (vegan_2.4-4)
(61, 62). Interpretation of the results was preceded by a permutation test of the db RDA results to
confirm that a relationship exists between the response data and the exploratory variables. Using
the same principle, the significance of the first two constrained axes was evaluated. The constrained
fraction of the variance, explained by the exploratory variables, was adjusted by applying a subtrac-
tive procedure (64, 65). The fraction of the variance explained by the exploratory variables and its
significance are given in Table S2.

In a next step, sparse partial least squares discriminant analysis (sPLS-DA) (mixOmics_6.3.1) was per-
formed to select the taxonomic features most predictive of the treatment (1Akk1Muc, –Akk1Muc,
1Akk–Muc, and –Akk–Muc) (Fig. 1). Here, too, a factorial response variable was created, indicating the
treatment condition of each sample. The filtered proportional OTU-level abundances were used as pre-
dictors. The number of components and OTUs or genera to include in the sPLS-DA model were assessed
based on the classification error rates obtained after a 5-fold cross-validation. The final sPLS-DA model,
with an optimum of 3 components, was displayed (Fig. S2), and the proportional abundances of the
most predictive and most abundant OTUs and genera were represented in a heatmap (Fig. 5).

Finally, in order to find statistically significant differences in the species- and genus-level abundances
between the different treatments, the DESeq package was applied on the filtered, unnormalized data at
the end of the treatment period (day 20) (a = 0.05) as suggested by McMurdie and Holmes (54) and
Love et al. (66). The factors “treatment” and “donor” were used in the design formula, and the effect of
the treatment was determined by a likelihood ratio test on the difference in deviance between a full-
and reduced-model formula. An empirical Bayes shrinkage correction was employed for low counts (66).
Pairwise significant differences were obtained using Wald tests, specifying all pairwise combinations of
treatments as the contrast argument. Results from the pairwise comparisons were visualized in a vol-
cano plot, showing the 2log10 adjusted P value as a function of the shrunken log2 fold change. Species
with an absolute shrunken log2 fold change exceeding 2 were annotated in the plot (67). The most pro-
nounced significant differences at the species level were shown in side-by-side boxplots comparing the
normalized counts (plus a 0.5 pseudocount) during treatments.

To assess the effect of the antibiotic pulse on the microbial community, the DESeq package was
again applied. The effect of the antibiotic pulse was determined by a likelihood ratio test on the differ-
ence in deviance between a full- and reduced-model formula. An empirical Bayes shrinkage correction
was employed for low counts (66). Results from the pairwise comparisons, comparing values obtained
before and after the antibiotic pulse for each treatment, were visualized in a volcano plot showing the
2log10 adjusted P value as a function of the shrunken log2 fold change. Genera with an absolute
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shrunken log2 fold change exceeding 1 were annotated in the plot (67) (Fig. S4). Also, alpha diversity
was calculated using the Shannon coefficient (vegan package) and visualized in Fig. S5.

Data availability. The sequencing data have been submitted to the NCBI (National Center for
Biotechnology Information) database under accession number SRP126579.
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