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PP1 promotes cyclin B destruction and 
the metaphase–anaphase transition by 
dephosphorylating CDC20

ABSTRACT  Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid 
segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator 
CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is 
regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through 
modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 pro-
motes cyclin B destruction at the onset of anaphase by removing specific inhibitory phos-
phorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes 
cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after 
chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphory-
lation–defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint 
response and rapidly destroy cyclin B once all chromosomes have aligned and enter into 
anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase 
transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells.

INTRODUCTION
Entry into and exit from mitosis is regulated by a conserved network 
of pathways controlling the activity and stability of the cyclin B–de-
pendent protein kinase (CDK1-cyclin B). CDK1-cyclin B activation 
promotes entry into mitosis and the maintenance of the mitotic 
state until mitotic spindle formation and chromosome alignment 

have been completed (Nigg, 2001). Subsequent destruction of 
cyclin B once all chromosomes have aligned is the key event permit-
ting exit from mitosis (Holder et  al., 2019). Cyclin B stability is 
controlled by a specific ubiquitin E3 ligase known as the anaphase-
promoting complex/cyclosome (APC/C) acting in concert with the 
ubiquitin–proteasome system (Sivakumar and Gorbsky, 2015; Alfieri 
et  al., 2017; Watson et  al., 2019). Anaphase onset is initiated by 
APC/C-dependent ubiquitylation of cyclin B and securin, marking 
them for destruction by the proteasome (Irniger et al., 1995; King 
et  al., 1995; Murray, 1995). In addition to being a target of the 
APC/C, CDK1-cyclin B modulates APC/C activity toward different 
substrates through antagonistic phosphorylation of core APC/C 
subunits and the two coactivator subunits CDC20 and CDH1. CDK1-
cyclin B phosphorylation of the core APC/C is necessary for CDC20-
dependent ubiquitin ligase activity, whereas both CDC20 and CDH1 
are inhibited by mitotic phosphorylation (Kramer et  al., 2000; 
Yudkovsky et al., 2000; Kraft et al., 2003; Labit et al., 2012; Fujimitsu 
et al., 2016; Qiao et al., 2016; Zhang et al., 2016). Prior to mitosis 
when CDK1-cyclin B activity is low, the formation of active APC/
CCDC20 complexes is unfavorable since the core APC/C subunits are 
not phosphorylated. Under these conditions an autoinhibitory seg-
ment within the APC1 subunit reduces binding of the CDC20 coacti-
vator (Fujimitsu et al., 2016; Qiao et al., 2016; Zhang et al., 2016) 
and thus prevents ubiquitin–ligase activity toward cyclin B in late 
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S-phase and G2. Phosphorylation of the APC1 and APC3 subunits by 
CDK1-cyclin B relieves this inhibition and is a prerequisite for CDC20 
association with the core APC/C (Fujimitsu et al., 2016; Qiao et al., 
2016; Zhang et al., 2016). Conversely, CDH1 binding to the APC/C 
does not require activating phosphorylation of these core subunits 
(Zhang et al., 2016). Activation of the APC/C by CDH1 is prevented 
until late during exit from mitosis by two means. CDH1 is sequestered 
by an inhibitory factor EMI1 throughout S-phase and G2 (Hsu et al., 
2002; Miller et al., 2006). Additionally, CDK1-dependent phosphory-
lation of CDH1 prevents it from binding to the core APC/C during 
mitosis (Zachariae et al., 1998; Kramer et al., 2000). Thus, CDK1 pro-
motes formation of active APC/CCDC20 while simultaneously inhibiting 
formation of the APC/CCDH1 complex. However, in the absence of 
further regulation, this arrangement would result in cyclin B destruc-
tion immediately upon entry into mitosis without a delay to allow for 
chromosome alignment and segregation, or cell division.

During mitosis, the core APC/C becomes phosphorylated and 
CDC20 would be expected to activate its ubiquitin ligase activity 
toward cyclin B immediately on mitotic entry. This is prevented by 
two further mechanisms. First, CDC20 is phosphorylated by CDK1 
on entry into mitosis, reducing its affinity for the APC/C (Kramer 
et al., 2000; Yudkovsky et al., 2000). Second, CDC20 is sequestered 
into a diffusible inhibitor of the APC/C, the mitotic checkpoint com-
plex (MCC), until the process of chromosome alignment has been 
completed (Musacchio, 2015; Hayward et  al., 2019b). The MCC 
consists of four proteins, the checkpoint proteins MAD2, BUB3, and 
BUBR1 and CDC20 (Hardwick et al., 2000; Fraschini et al., 2001; 
Sudakin et al., 2001; Lara-Gonzalez et al., 2012; Musacchio, 2015). 
Formation of the MCC is triggered at unattached or incorrectly at-
tached kinetochores through the action of the spindle checkpoint 
kinase MPS1 (Abrieu et al., 2001; Stucke et al., 2002; Musacchio, 
2015). MPS1 promotes the accumulation of the MCC subunits at 
kinetochores through the phosphorylation of the outer kinetochore 
protein KNL1 (London et al., 2012; Shepperd et al., 2012; Yamagishi 
et al., 2012). MPS1-phosphorylated KNL1 acts as scaffold concen-
trating BUB1/BUB3 and BUBR1/BUB3 complexes at unattached ki-
netochores (Primorac et al., 2013; Overlack et al., 2015). BUB1 is 
further phosphorylated by MPS1, initiating the recruitment of MAD1 
(Ji et al., 2017; Qian et al., 2017; Zhang et al., 2017). Crucially, MPS1 
catalyzes the formation of the MCC through phosphorylation of the 
C-terminus of MAD1 (Faesen et al., 2017; Ji et al., 2017). MCC pro-
duction is further strengthened by phosphorylation of CDC20 by 
CDK1-cyclin B, which biases CDC20 toward preferential incorpora-
tion into the MCC rather than association with the APC/C (Yudkovsky 
et al., 2000; D’Angiolella et al., 2003). The mechanism remains un-
clear, but the simplest explanation is that phosphorylation increases 
the free pool of CDC20 available for incorporation into the MCC. 
Completing this regulatory circuit, CDK1-cyclin B1 directly aids the 
production of MCC by promoting the activation and recruitment of 
the checkpoint kinase, MPS1, to kinetochores (Morin et al., 2012; 
Vazquez-Novelle et al., 2014; Alfonso-Perez et al., 2019; Hayward 
et al., 2019a,b). This CDK1 cyclin B–dependent cycle of MCC pro-
duction and inhibition of APC/C thus prevents entry into anaphase 
until stable microtubule–kinetochore attachment has been achieved 
at all kinetochores.

CDK1-cyclin B therefore stabilizes the mitotic state in two ways 
and in doing so creates a crucial requirement for regulated phos-
phatase activity in mitotic exit. In mitosis, CDK1 inhibits APC/C ac-
tivity through phosphorylation of CDC20 and CDH1 and by activat-
ing the spindle checkpoint pathway. Conversely, CDK1-cyclin B also 
promotes mitotic exit by phosphorylating and thereby activating 
APC/C (Kraft et al., 2003). Thus, CDC20 can only activate the APC/C 

in mitosis until the early stages of anaphase when APC/C phosphor-
ylation is maintained. Maximal APC/CCDC20 activity in anaphase 
therefore requires differential dephosphorylation of the APC/C and 
CDC20. Simple logic dictates that CDC20 must be dephosphory-
lated before the core APC/C is dephosphorylated; otherwise active 
APC/CCDC20 complexes would not form. Later dephosphorylation of 
CDH1 would then explain the formation and activity of APC/CCDH1. 
The reported preference of the PP2A phosphatase for phosphory-
lated threonine compared with serine may explain differential de-
phosphorylation kinetics in mammalian cells (Cundell et al., 2016; 
Hein et al., 2017). For CDC20 a number of the important phosphor-
ylated regulatory sites are on threonine residues, whereas those on 
the APC/C and CDH1 are serine (Hein et al., 2017; Fujimitsu and 
Yamano, 2020). Thus, CDC20 would become dephosphorylated be-
fore the core APC/C and CDH1, resulting in APC/CCDC20 activity. 
However, in other organisms there is good evidence that PP1 rather 
than PP2A dephosphorylates CDC20 to activate the APC/C at mi-
totic exit (Kim et al., 2017).

In general, the modulation of CDK1 cyclin B–mediated phos-
phorylation by counteracting phosphatases remains poorly under-
stood, and this may reflect the involvement of multiple phospha-
tases acting on a diverse range of substrates. Both protein 
phosphatase 1 (PP1) and protein phosphatase 2A complexed to the 
B55 regulatory subunit (PP2A-B55) have been implicated as major 
CDK1-cyclin B opposing phosphatases (Wu et  al., 2009; Schmitz 
et al., 2010; McCloy et al., 2015; Cundell et al., 2016; Godfrey et al., 
2017). For PP2A-B55, unbiased proteomic screens have started 
identifying individual substrates as well as general motifs character-
izing PP2A-B55 targets in anaphase cells (McCloy et al., 2015; Cun-
dell et al., 2016). Indeed, the aforementioned phosphorylation of 
MPS1 by CDK1-cyclin B1 is removed by PP2A-B55 during anaphase 
(Hayward et  al., 2019a). In mammalian cells, PP2A-B55 has also 
been suggested as the enzyme responsible for CDC20 dephos-
phorylation (Hein et  al., 2017). However, depletion of PP2A-B55 
does not affect progression through the metaphase-to-anaphase 
transition (Cundell et al., 2013; Hayward et al., 2019a), which relies 
on normal APC/CCDC20 activation, making it unlikely that PP2A-B55 
is the only phosphatase carrying out this function. For PP1, which 
has three isoforms in human cells, α, β, and γ, substrates on chroma-
tin and kinetochores have been identified (Francisco and Chan, 
1994; Cohen, 2002; Wang et al., 2008; Yamashiro et al., 2008; Qian 
et  al., 2011; London et  al., 2012; Nijenhuis et  al., 2014; Nilsson, 
2019). In addition, the APC/C regulator and spindle checkpoint pro-
tein CDC20 has been reported to be a PP1 substrate in Caenorhab-
ditis elegans (Kim et al., 2017); however whether this form of regula-
tion is conserved in human cells has not been explored.

Here we investigate APC/C activation in mitotic exit and present 
evidence that PP1 is an important CDK1-counteracting CDC20 
phosphatase promoting rapid cyclin B destruction in human cells. 
By controlling APC/CCDC20-dependent destruction of cyclin B down-
stream of the spindle checkpoint, PP1 accelerates the metaphase-
to-anaphase transition and contributes to the timing of mitotic exit.

RESULTS
PP1 contributes to activation of APC/C during mitotic exit
Synchronous mitotic exit and entry into anaphase can be induced by 
chemical inhibition of either the spindle checkpoint kinase MPS1 or 
the mitotic master kinase CDK1 (Cundell et al., 2013). Despite the 
overall similar behavior, detailed biochemical analysis of mitotic exit 
reveals important differences between these two conditions (Sup-
plemental Figure S1, A, CDK-i, and B, MPS1-i). Inhibition of CDK1 
results in accelerated destruction of cyclin B1 when compared with 
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inhibition of the checkpoint kinase MPS1 (Supplemental Figure 
S1C). This agrees with the notion that CDK1-cyclin B directly op-
poses APC/C activation independently of the MPS1-dependent 
spindle checkpoint pathway. In principle, this could be explained by 
CDK1-counteracting phosphatases of the PP1 and PP2A families. 
However, previous work showed that silencing of PP2A-B55 does 
not delay the metaphase-to-anaphase transition in the absence of 
chromosome segregation errors (Cundell et  al., 2013; Hayward 
et al., 2019a). By contrast, PP2A-B56 is active throughout mitosis 
and is essential for chromosome alignment and checkpoint signal-
ing, making it difficult to probe any downstream role at the meta-
phase-to-anaphase transition (Espert et  al., 2014; Nilsson, 2019). 
We therefore focused on the role of PP1, in part because CDK1 in-
hibition results in accelerated dephosphorylation of the inhibitory 
T320 residue in PP1 with kinetics that parallel those for cyclin B de-
struction (Supplemental Figure S1, C and D). PP1 is phosphorylated 
and inhibited by CDK1 on a conserved C-terminal threonine, T320 
in the PP1α isoform and the equivalent residues in the PP1β and 
PP1γ isoforms (Dohadwala et al., 1994; Goldberg et al., 1995; Kwon 
et al., 1997). The dephosphorylation of this residue is thought to be 
an autodephosphorylation event and can therefore be used as a 
surrogate measure of PP1 activity (Wu et al., 2009).

To test whether PP1 activity contributes to the accelerated de-
struction of cyclin B upon CDK1 inhibition, we performed a bio-
chemical analysis of mitotic exit in the presence of the highly spe-
cific small molecule PP1 inhibitor (PP-i) tautomycetin, which inhibits 
all three PP1 isoforms but not PP2A (Choy et al., 2017; Hayward 
et al., 2019c). Tautomycetin prevented dephosphorylation of PP1-
pT320 (Figure 1, A, control, and B, PP-i), and the half-life of pT320 
increased from ∼2 min in the control to >60 min (Figure 1C). Cyclin 
B1 destruction was delayed in the presence of tautomycetin (Figure 
1, A, control, and B, PP-i), and the half-life increased from 4 to 12 
min (Figure 1D). This observation is consistent with the idea that PP1 
plays a role in the regulation of cyclin B stability in the initial phase 
of mitotic exit.

To identify which specific isoform of PP1 was responsible for 
this effect, HeLa cells were depleted of PP1 catalytic subunits, ar-
rested in mitosis, and then treated with CDK1 inhibitors. Since 
PP1α and PP1γ are reported to have overlapping functions during 
mitosis (Trinkle-Mulcahy et al., 2006; Liu et al., 2010), these two 
catalytic subunits were depleted simultaneously (siPP1α/γ). PP1β, 
which has been shown to have a role distinct from PP1α and PP1γ  
(Yamashiro et  al., 2008; Matsumura et  al., 2011; Kiss et  al., 
2019), was knocked down separately. High-resolution mitotic exit 
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FIGURE 1:  PP1 counteracts CDK1 regulation of APC/C during mitotic exit. (A, B) HeLa cells were arrested in mitosis 
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time courses with cell samples taken every 30 s were then col-
lected to monitor cyclin B destruction. In this assay, cyclin B1 and 
securin were rapidly degraded after CDK1 inhibition with a t1/2 of 
11 min (Figure 2, A and E, control), whereas codepletion of PP1α 
and PP1γ slowed the rate of cyclin B1 destruction to a t1/2 of 17 
min (Figure 2, B and E, siPP1α/γ). PP1β depletion did not alter the 
kinetics of cyclin B1 or securin destruction when compared with 
the control (Figure 2, C and E, siPP1β). Efficient PP1 depletion was 
confirmed for the different conditions by Western blotting (Figure 
2D). We conclude that PP1 activity reverses CDK1-dependent 
phosphorylation of proteins normally limiting APC/CCDC20 activity 
toward cyclin B1 and securin at the metaphase-to-anaphase transi-
tion (Figure 2F).

PP1 activity is required to trigger prompt cyclin B1 
degradation
To investigate the role of PP1 at the metaphase-to-anaphase tran-
sition without the need to use CDK1 inhibition, we performed a 
single-cell analysis using HeLa cells expressing green fluorescent 
protein (GFP)-tagged cyclin B1 (CCNB1) from the endogenous 
promoter (Alfonso-Perez et  al., 2019). This allowed us to follow 
cyclin B1 destruction in individual control cells passing through 
mitosis into anaphase and to compare control with PP1α/γ- or 
PP1β-depleted cells. In agreement with the biochemical data 
showing that PP1 is required for rapid cyclin B1 destruction, cells 
depleted for PP1α/γ showed delayed passage through mitosis. 
PP1α/γ-depleted cells took >100 min to reach anaphase from 
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nuclear envelope breakdown (NEBD) compared with 60–70 min 
for control or PP1β-depleted cells (Figure 3A). This could be 
largely attributed to a delay in the time taken to proceed from the 
completion of the metaphase plate to anaphase (Figure 3B). In 
good agreement with previous observations (Clute and Pines, 
1999), cyclin B1 was quickly degraded once chromosomes had 
aligned and established a metaphase plate in control cells, and 
this was followed by segregation of the chromosomes (Figure 3, C 
and D, siControl). However, codepletion of PP1α and PP1γ   de-
layed cyclin B1 destruction (Figure 3, C and E, siPP1α/γ), resulting 
in a significantly increased overall length of mitosis (Figure 3A) 
and specifically an extended metaphase-to-anaphase transition 
(Figure 3B). A subpopulation of cells displayed wild-type kinetics 
for cyclin B1 destruction, possibly due to incomplete or variable 
levels of PP1α/γ depletion. Depletion of PP1β had no obvious ef-
fect on cyclin B1 destruction compared with the control condition 
(Figure 3, B and F, siPP1β).

PP1 therefore promotes cyclin B destruction at the metaphase-
to-anaphase transition in unperturbed mitosis, confirming the data 
obtained under CDK1-inhibited conditions.

PP1 activity promotes timely progression from metaphase 
to anaphase
The effects of PP1 on cyclin B destruction can be most simply ex-
plained by a direct effect on APC/C activity. Indeed, this is the case 
in C. elegans, where it has been found that PP1 promotes APC/C 
activation downstream of the spindle checkpoint (Kim et al., 2017). 
In human cells, PP1 together with PP2A-B56 has been reported to 
counteract the MPS1-dependent phosphorylation of MELT motifs in 
KNL1 (Espert et al., 2014; Nijenhuis et al., 2014). Removal of PP1 
would therefore be expected to delay silencing of the spindle as-
sembly checkpoint. This could also explain, either fully or in part, the 
delayed degradation of cyclin B1 upon PP1 inhibition and in 
PP1α/γ−depleted cells. To investigate both possibilities and define 
when PP1 is acting, we imaged HeLa cells stably coexpressing 
CCNB1-mCherry from its endogenous promoter and a GFP-tagged 
version of the spindle checkpoint protein MAD2. This approach 
enabled us to test whether the period from spindle checkpoint 
silencing to the onset of anaphase was increased.

The defining hallmark of spindle checkpoint silencing is the 
loss of all MAD2-positive kinetochores. In control cells, complete 
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chromosome alignment coincided with the disappearance of the 
last MAD2-positive kinetochore, rapidly followed by loss of the 
CCNB1-mCherry signal and chromosome segregation (Figure 4, A 
and D, siControl). Inhibition of PP1 with tautomycetin delayed cyclin 
B1 destruction following loss of the last MAD2-positive kinetochore 
(Figure 4, B and D, PP-i). The effect observed resembled a CDC20 
depletion, in which spindle checkpoint silencing proceeded nor-
mally but cyclin B1 destruction was not initiated (Figure 4, C and D, 
and Supplemental Figure S4A, siCDC20). At 50 min after check-
point silencing, monitored by the disappearance of GFP-MAD2 
from kinetochores, PP1-inhibited cells retained the same level of 
cyclin B1 as CDC20-depleted cells, which are unable to target cyclin 
B for destruction (Figure 4E).

We then examined the relationship between checkpoint silenc-
ing and cyclin B destruction in PP1α/γ−depleted cells, focusing first 
on checkpoint silencing. The localization and subsequent efficient 
depletion of PP1 catalytic subunits was first confirmed by immuno-
fluorescence analysis (Supplemental Figure S2, A and B) and West-
ern blotting (Supplemental Figure S2C) of cells expressing GFP-
tagged PP1 catalytic subunits. Next, the analysis of spindle 
checkpoint silencing revealed that MAD2-positive kinetochores 
were observed for a longer period in PP1-inhibited or PP1α/γ-
depleted cells than in control cells (Supplemental Figure S3, A–C). 
Nevertheless, PP1α/γ-depleted or PP1-inhibited cells were able to 
silence the checkpoint and enter anaphase with a delay (Supple-
mental Figure S3, B, siPP1α/γ, and C, PP1-i). By contrast, PP2A-B56–
depleted cells arrested with sustained MAD2-positive kinetochores 

and failed to enter anaphase (Supplemental Figure S3, D, siB56, and 
E). In agreement with the idea that checkpoint silencing and cyclin B 
destruction are independently delayed in the PP1-depleted cells, 
both the times taken for spindle checkpoint silencing to complete 
and from loss of the last MAD2 signal to the onset of anaphase were 
increased (Supplemental Figure S3F). These observations are con-
sistent with a major role for PP2A-B56 in the spindle checkpoint and 
error correction pathways (Suijkerbuijk et  al., 2012; Kruse et  al., 
2013; Xu et al., 2013; Espert et al., 2014), with an additional contri-
bution by PP1 to the complete silencing of the spindle checkpoint 
(Nijenhuis et al., 2014).

We then measured the kinetics of cyclin B1 destruction in PP1-
depleted cells to test whether this was delayed even after the spin-
dle checkpoint had been silenced. In comparison to control cells, 
cyclin B1 destruction was delayed after the loss of MAD2-positive 
kinetochores in PP1α/γ−depleted cells (Figure 5, A, B, and D). At 50 
min after the loss of the last MAD2-positive kinetochore, control 
cells had completed destruction of cyclin B1 (Figure 5, D and E, si-
Control). By contrast, PP1-depleted cells retained ∼80% of the maxi-
mal level of cyclin B1 measured at NEBD (Figure 5, D and E, 
siPP1α/γ). Importantly, PP2A-B55 depletion did not change the ki-
netics of the metaphase-to-anaphase transition or cyclin B1 destruc-
tion followed by live cell imaging (Figure 5, C–E, siB55) or cyclin B1 
destruction and CDC20 dephosphorylation measured by biochemi-
cal analysis (Supplemental Figure S4, A–D).

Because intermittent GFP-MAD2 signals at kinetochores are 
difficult to detect, it was possible that transient spindle checkpoint 
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activation in PP1-depleted cells was the cause of delayed cyclin B 
destruction. For this reason, we sought further evidence that the 
delay in cyclin B destruction observed in cells depleted of PP1 was 
independent of ongoing spindle checkpoint signaling. To do this we 
used an MPS1 inhibitor to rapidly block spindle checkpoint signal-

ing in live cells approaching metaphase and then measured the ki-
netics of cyclin B1 destruction in control and PP1-depleted cells. 
Addition of MPS1 inhibitor resulted in a rapid loss of kinetochore 
associated MAD2 within 2–4 min in all of the control and PP1-de-
pleted cells examined (Figure 6A). Thus, in this assay MPS1 inhibi-

tion rapidly blocks checkpoint signaling in a 
PP1-independent manner (Espert et  al., 
2014; Hayward et al., 2019c). Under these 
conditions, cyclin B1 destruction occurred 
with a half-life of ∼35 min in the control cells 
(Figure 6, A and B, siControl) and >90 min in 
the PP1-depleted cells (Figure 6, A and B, 
siPP1α/γ). At 30 min after MPS1 inhibition, 
cyclin B1 levels were 54.8 ± 19.8% of the 
starting value in control cells, whereas in 
PP1-depleted cells they remained at 90.4 ± 
11.0% (Figure 6C). Thus, the timing of cyclin 
B1 destruction but not silencing of MPS1-
dependent checkpoint signaling is altered 
in PP1-depleted cells.

Taken together, these results confirm 
that PP1 plays an important role in mediat-
ing the metaphase-to-anaphase transition, 
by contributing to spindle checkpoint si-
lencing and through subsequent down-
stream regulation of cyclin B destruction.

PP1 dephosphorylates the N-terminus 
of CDC20
The results presented so far support the 
view that the activity of PP1 is required to 
trigger the rapid APC/C-dependent de-
struction of cyclin B downstream of the spin-
dle checkpoint. The most parsimonious ex-
planation for this observation is that one or 
more of the core components of the APC/C 
or an APC/C coactivator are dephosphory-
lated by PP1. Because CDC20 has been de-
scribed as a PP1 target at the metaphase-to-
anaphase transition in C. elegans (Kim et al., 
2017), we decided to test the hypothesis 
that CDC20 may also be a critical PP1 target 
in human cells.

CDC20 is phosphorylated by CDK1 on 
six amino acids in the N-terminus of the pro-
tein (Figure 7A) (Yudkovsky et al., 2000; La-
bit et al., 2012). To investigate the kinetics of 
CDC20 dephosphorylation at the meta-
phase-to-anaphase transition in the pres-
ence and absence of PP1 activity, we first 
used PhosTag SDS–PAGE to visualize the 
phosphorylation status of CDC20. The 
PhosTag reagent binds to phosphate groups 
on proteins and thus results in reduced 
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mobility and enhanced separation of the phosphorylated species 
away from nonphosphorylated forms on SDS–PAGE (Kinoshita 
et al., 2006). A pronounced downshift in CDC20 was seen as control 
cells progressed from mitosis into anaphase following MPS1 inhibi-
tion, consistent with the expected dephosphorylation of CDC20 at 
the metaphase-to-anaphase transition (Figure 7B, Control). Com-
parison with cells in which PP1 was inhibited revealed this downshift 
to be PP1-dependent (Figure 7B, PP-i). The PP1-dependent down-
shift was also seen when samples from control and PP1-depleted 
cell lysates were compared (Figure 7C, siControl and siPP1α/γ). 
Western blotting with a CDC20 antibody specific for phosphory-
lated T70 supported the view that the downshift in CDC20 was 

caused by PP1-dependent dephosphorylation during mitotic exit 
triggered by MPS1 inhibition (Figure 7D, Control and PP-i). To allow 
a direct comparison to the biochemical data shown in Figure 1, 
CDK1 inhibition was also used to trigger mitotic exit. Under these 
conditions, CDC20 T70 was dephosphorylated in control cells within 
7.5 min (Figure 7E). As expected, pT70 dephosphorylation was 
more rapid than in the corresponding MPS1 inhibitor–treated cells 
(Figure 7D). In cells where PP1 was inhibited with tautomycetin, 
CDC20 pT70 was retained after 15 min (Figure 7E, Control and PP-i). 
Together, these results suggest that PP1 is an important CDC20 
phosphatase at the metaphase-to-anaphase transition and identify 
T70 as a key diagnostic site for this regulation.
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Phosphorylation-defective CDC20 obviates the need 
for PP1
If CDC20 is a major PP1 target at the point of anaphase onset, then 
a CDK1 phosphorylation–resistant form of CDC20 should be able to 
rescue the cell cycle delay observed upon PP1 depletion or inhibi-
tion. To test this idea, endogenous CDC20 was depleted and re-
placed with either GFP-CDC20WT or GFP-CDC206A, lacking the N-
terminal CDK1-phosphorylation sites. CDC206A localizes to 
kinetochores in checkpoint arrested cells, similar to the wild-type 
protein (Supplemental Figure S5A), but does not result in pT70 re-
activity at kinetochores (Supplemental Figure S5B). In the presence 
of PP1, both GFP-tagged CDC20WT and CDC206A rescued the cell 
cycle arrest observed upon CDC20 depletion (Figure 8, A and B), 
indicating that APC/C activity toward cyclin B is restored. Cells ex-
pressing GFP-CDC206A passed through mitosis slightly faster than 
cells expressing CDC20WT (Figure 8E). In these cells, the half-life of 
cyclin B destruction was shortened from 80 to 60 min (Figure 8, B 
and D) and the time taken from NEBD to anaphase reduced from 67 
to 42 min (Figure 8E). These effects were not due to differences in 
CDC20 levels, since these were comparable for all conditions 
(Figure 8F). The dominant effect on APC/C activity in the presence 
of endogenous wild-type CDC20 is consistent with the idea that in-
hibitory regulation is attenuated or lost for the GFP-CDC206A mu-
tant, similar to results obtained with a phosphorylation-deficient 
CDC20 mutant in C. elegans (Kim et al., 2017). This may be due to 
the enhanced interaction with the APC/C detected using coimmune 
precipitation (Supplemental Figure S5C).

When PP1 was depleted, a cell cycle delay at the metaphase-to-
anaphase transition was observed in cells rescued with CDC20WT 
(Figure 8, C and D). This delay was alleviated by replacement of the 
endogenous CDC20 with GFP-CDC206A (Figure 8, C and D). This 
supports the view that CDC20 is an important target for PP1 during 
mitotic exit. However, the half-life of mitosis was still slightly ex-
tended compared with cells expressing normal levels of PP1 and 
wild-type CDC20 (Figure 8E). This agrees with the notion that PP1 
may have other targets in addition to CDC20 regulating the onset of 
anaphase.

Since CDC20 is a key part of the MCC, it was important to test 
whether CDC206A was defective for spindle checkpoint function. 
When GFP-CDC206A cells were treated with both high and low 
doses of nocodazole, the cells showed a normal cell cycle arrest 
(Figure 8G). Thus, the ability to trigger and sustain a spindle check-
point response, that is, MCC formation and inhibition of APC/
CCDC20, was not grossly compromised by expression of phosphory-
lation-resistant GFP-CDC206A. We therefore conclude that CDC20 
is one of the key targets for dephosphorylation by PP1 at the meta-
phase-to-anaphase transition, independent of its role in the spindle 
checkpoint. The rescue of both rapid cyclin B destruction and cell 
cycle progression in PP1-depleted cells by CDC206A is thus a reflec-
tion of the need for PP1-mediated dephosphorylation of CDC20 to 
enable timely progression into anaphase.

DISCUSSION
CDC20 regulation by PP1
The metaphase-to-anaphase transition marks the point of no return 
for correction of errors in chromosome alignment and is a perilous 
stage during eukaryotic mitosis (Nasmyth, 2001). Mechanistically 
this is clearly understood since the release of APC/C inhibition at 
this point results in the activation of separase and consequently the 
loss of sister chromatid cohesion at all chromosomes simultaneously 
(Uhlmann, 2001). To ensure the synchronized separation and segre-
gation of all the chromosomes, it is therefore crucial that the APC/C 

can be rapidly activated, yet is not triggered prematurely. Untimely 
APC/C activity at the metaphase–anaphase transition is prevented 
by both the spindle assembly checkpoint and phosphorylation of 
the APC/C coactivator CDC20 (Labit et al., 2012; Fujimitsu et al., 
2016; Hein and Nilsson, 2016; Hein et al., 2017; Zhang et al., 2016). 
Phosphorylation of the N-terminal region of CDC20 has two notable 
consequences. First, to reduce the affinity of CDC20 for APC/C and 
second, to bias its incorporation into the MCC rather than APC/C 
(D’Angiolella et al., 2003; Hein and Nilsson, 2016). Thus, CDC20 has 
to be dephosphorylated in order to achieve full APC/C activity in 
exit from mitosis (Labit et al., 2012). On the basis of the data pre-
sented here, we conclude that in human cells PP1 is needed for 
timely CDC20 dephosphorylation at the metaphase-to-anaphase 
transition. Supporting the view that this is a conserved mechanism 
of APC/C regulation, PP1 has a similar role in C. elegans (Kim et al., 
2017).

Our analysis thus sheds light on how PP1 regulates the meta-
phase-to-anaphase transition. However, some mechanistic details 
need to be explored further. There are two simple possibilities to 
explain how CDC20 dephosphorylation could promote cyclin B 
destruction. First, dephosphorylated CDC20 has already been 
shown to bind more readily to the APC/C (Kramer et  al., 2000; 
Labit et  al., 2012; Hein and Nilsson, 2016), as we confirm here 
(Supplemental Figure S5C). Second, the dephosphorylation of 
CDC20 at the metaphase-to-anaphase transition may also increase 
MCC turnover once the MPS1-dependent checkpoint signal stops 
and MCC production ceases. These possibilities are not mutually 
exclusive, and understanding the molecular consequences of 
CDC20 dephosphorylation is thus an important goal for future 
studies.

Local pools of PP1 in checkpoint signaling and APC/C 
regulation
A number of distinct pools of PP1 have been reported to contrib-
ute to the regulation of the metaphase-to-anaphase transition in 
mammalian cells. PP1 catalytic subunits bind to regulatory subunits 
via conserved short, linear motifs, the best characterized of which 
is the RVxF motif (Egloff et al., 1997; Terrak et al., 2004). Several 
RVxF-dependent PP1-interaction partners have been identified at 
attached kinetochores, including the outer kinetochore proteins 
KNL1 and Astrin and the mitotic motor proteins CENP-E and 
KIF18A (Kim et al., 2010; Liu et al., 2010; De Wever et al., 2014; 
Hafner et al., 2014; Conti et al., 2019). Additionally, the spindle and 
kinetochore–associated Ska complex also recruits PP1 in an RVxF-
independent manner (Sivakumar et  al., 2016). All of these PP1 
complexes have been suggested to contribute to timely anaphase 
onset and would be good candidates to promote CDC20 dephos-
phorylation at attached kinetochores. Alternatively, it is conceiv-
able that the bulk of CDC20 dephosphorylation takes place in the 
cytosol and involves a further, discrete, pool of PP1 or even the 
global pool of PP1. Consistent with this view, most of the check-
point-dependent pool of CDC20 bound to BUB1 and BUBR1 will 
have already left the kinetochore prior to the metaphase-to-ana-
phase transition (Lischetti et al., 2014; Di Fiore et al., 2015; Vleugel 
et al., 2015). Identification of the PP1 pool relevant for CDC20 de-
phosphorylation is thus an important question to address in the 
future.

Timely roles for PP1 and PP2A in APC/C regulation and 
checkpoint signaling
PP2A-B55, PP2A-B56, and PP1 have all been reported to act on 
and regulate components of the APC/C and spindle checkpoint 
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then induced to express either GFP-CDC20WT or GFP-CDC206A. Cell cycle progression and CCNB1-mCherry levels were 
followed by live cell imaging. DNA was visualized with SiR-DNA. (B) CCNB1 levels for individual cells are plotted in the 
line graph. Gray lines show CCNB1 levels in cells depleted with siCDC20 but without induction of the GFP-CDC20 
transgene. (C) HeLa Flp-In TRex cells expressing CCNB1-mCherry were codepleted of siPP1α/γ and siCDC20 and then 
induced to express either GFP-CDC20WT or GFP-CDC206A. Cell cycle progression and CCNB1-mCherry levels were then 
followed by live cell imaging. DNA was visualized with SiR-DNA. (D) CCNB1 levels for individual cells are plotted in the 
line graph. (E) Scatter plots showing the mean time ± SD at which cells entered anaphase or the end of the movie was 
reached for siCDC20 uninduced (n = 12, gray), siControl with GFP-CDC20WT (n = 20, green) or GFP-CDC206A (n = 15, 
orange), and siPP1α/γ with GFP-CDC20WT (n = 41, green) or GFP-CDC206A (n = 33, orange). (F) Western blot of cells 
depleted of endogenous CDC20 and expressing GFP-CDC20 as in A, arrested with 330 nM nocodazole for 14 h. 
**** denotes p < 0.0001. (G) Cells depleted for endogenous CDC20 (siCDC20) and induced for GFP-CDC20WT (WT) or 
CDC206A (6A) were treated with nocodazole at the indicated concentrations for 14 h, and the mitotic index was plotted.

PP1α/γ-depleted mitotic HeLa cells into anaphase was triggered with MPS1 inhibitor. The mean ± SD of phospho-
CDC20 (top band in the PhosTag blot) relative to total CDC20 is plotted in the line graph (n = 3). (D) CDC20 was 
immunoprecipitated from synchronized cells treated with MPS1 inhibitor as in B, and samples were taken every 10 min. 
The immunoprecipitates were blotted for pT70-modified CDC20 and the total amount of CDC20. The mean level ± SD 
of pT70 relative to total CDC20 is plotted in the line graph (n = 2). (E) Synchronous progression of mitotic HeLa cells 
pretreated with DMSO or PP1 inhibitor into anaphase was triggered with CDK1 inhibitor, and samples were collected 
every 7.5 min. CDC20 was immunoprecipitated and the immunoprecipitates blotted for pT70. CDC20 pT70 levels 
relative to total CDC20 are plotted in the bar graphs as mean ± SD (n = 2).

pathways (Hein et al., 2017; Kim et al., 2017; Fujimitsu and Yamano, 
2020). Like PP1, PP2A-B55 is inhibited by CDK1-cyclin B and has 
also been suggested to be an important CDC20 phosphatase in 
mammalian cells (Mochida and Hunt, 2012; Hein et al., 2017). How-
ever, due to the temporal properties of its regulatory mechanism, 
PP2A-B55 becomes active in anaphase B only when cyclin B levels 
fall below a threshold level (Cundell et  al., 2013, 2016). PP1 has 

been reported to be involved in the activation of PP2A-B55 through 
the dephosphorylation of the Gwl/MASTL kinase (Heim et al., 2015; 
Ma et al., 2016; Rogers et al., 2016; Ren et al., 2017) and could thus 
be considered an upstream regulator of PP2A-B55. PP2A-B55 ac-
tion on CDC20 is therefore most likely restricted to a later point in 
anaphase, perhaps at the switch to APC/C regulation by CDH1 and 
destruction of late anaphase substrates. Consistent with this idea, 
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and in agreement with previous work (Cundell et al., 2013; Hayward 
et al., 2019a), we did not see any impact on the kinetics of cyclin B 
destruction at the metaphase-to-anaphase transition when PP2A-
B55 was depleted (Figure 5 and Supplemental Figure S4B).

Unlike PP1 and PP2A-B55, PP2A-B56 is thought to retain full ac-
tivity in mitosis, and CDK1-dependent phosphorylation of PP2A-
B56 recognition sites may in fact increase its activity toward key sub-
strates (Kruse et al., 2013; Smith et al., 2019). Interestingly, a specific 
pool of PP2A-B56, attached directly to the APC/C, has been impli-
cated in vertebrate CDC20 dephosphorylation during mitosis (Lee 
et  al., 2017; Fujimitsu and Yamano, 2020). Owing to the unique 
properties of PP2A-B56, we propose that this may promote the dy-
namic turnover of CDC20 phosphorylation during early mitosis, to 
create a limited level of APC/C activity prior to anaphase (Figure 9). 
One intriguing possibility is that PP2A-B56 is therefore important for 
the CDC20-dependent, spindle assembly checkpoint–independent 
destruction of cyclin A during the first few minutes of mitosis 
(Wolthuis et  al., 2008; Di Fiore and Pines, 2010; van Zon and 
Wolthuis, 2010). By contrast, as the APC/C becomes active down-
stream of checkpoint silencing, PP1 promotes dephosphorylation of 
CDC20 and decisively tips the balance toward APC/CCDC20 activa-
tion, destabilization of the mitotic state, and consequently mitotic 
exit. The APC/CCDC20 active state is then consolidated by PP2A-B55, 
the activation of which is also initiated by PP1 (Heim et al., 2015; Ma 
et  al., 2016; Rogers et  al., 2016; Ren et  al., 2017), ensuring that 
CDC20 is completely dephosphorylated in anaphase.

In summary, we suggest that the involvement of three major mi-
totic phosphatases, PP1 and PP2A-B55 and -B56, in modulation of 

CDK1-dependent phosphorylation of CDC20 is crucial for restrict-
ing APC/CCDC20 activity to a narrow window at the metaphase-to-
anaphase transition. Each of these phosphatases has unique spatial 
and temporal regulatory properties necessary for its role, depicted 
schematically in the model shown in Figure 9. PP2A-B56 is not inhib-
ited by CDK1 and is thus well-placed to initiate spindle checkpoint 
silencing and mitotic exit. Owing to its regulatory properties, nota-
bly direct inhibition by CDK1-cyclin B (Dohadwala et al., 1994), PP1 
may be particularly important downstream of PP2A-B56 to promote 
APC/C activity and hence mitotic exit. PP2A-B55 then acts slightly 
later to trigger the events of late anaphase (Cundell et al., 2013, 
2016). This provides a compelling reason why PP1 is required in ad-
dition to PP2A to counteract CDK1 activity and thus promote mi-
totic exit and the transition into anaphase.

MATERIALS AND METHODS
Chemicals and antibodies
General laboratory chemicals and reagents were obtained from 
Sigma-Aldrich and Thermo-Fisher Scientific. Drugs were dissolved 
in dimethyl sulfoxide (DMSO) unless specifically indicated. Inhibitors 
were obtained from Sigma-Aldrich (CDK1 inhibitor flavopiridol, 
5 mM stock), Tocris Bioscience (MPS1-inhibitor AZ3146, 20 mM 
stock; PP1 and PP2A–inhibitor calyculin A, 1 mM stock; PP1-inhibi-
tor tautomycetin, 2.5 mM stock), Insight Bioscience (proteasome 
inhibitor MG132, 20 mM stock), and Merck (microtubule polymer-
ization inhibitor nocodazole, 0.66 mM stock). Thymidine (Sigma-
Aldrich; 100 mM stock) and doxycycline (Invivogen; 2 mM stock) 
were dissolved in water.
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Commercially available polyclonal (pAb) or monoclonal (mAb) 
antibodies were used for β-actin (horseradish peroxidase [HRP]-con-
jugated; mouse mAb, Abcam, [AC-15] ab49900), tubulin (mouse 
mAb; Sigma, [DM1A] T6199), PP1α (rabbit pAb, Bethyl, A300-
904A), PP1α-pT320 (rabbit pAb, Abcam, Ab62334), PP1β (rabbit 
pAb, Bethyl, A300-905A), PP1γ (goat pAb, Santa Cruz, sc6108), 
B55α/PPP2R2A (mouse mAb, Cell Signalling, 5689S), securin (rabbit 
pAb, Abcam, Ab79546), CDC27/APC3 (mouse mAb clone C-4, 
Santa Cruz, sc13154), CDC20 (mouse mAb clone E-7, Santa Cruz, 
sc-13162; mouse mAB, clone AR12, Millipore UK, MAB3775; mouse 
mAb, clone BA8, Bio-Techne (R&D Systems), NB100-2646—these 
three antibodies were mixed for immunoprecipitations. CDC20 
(rabbit pAb, Santa Cruz, sc-8358) was used for Western blotting.

Antibodies against CDC20-pT70 were raised in rabbits using 
phospho-peptide CSKVQT(pT)PSKPG and affinity-purified using an 
immobilized form of the same peptide (Moravian). Secondary don-
key antibodies against mouse, rabbit, guinea pig, or sheep and la-
beled with Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 647, Cy5, 
or HRP were purchased from Molecular Probes and Jackson Immu-
noResearch Laboratories, respectively. Affinity-purified primary and 
HRP-coupled secondary antibodies were used at 1 µg/ml final con-
centration. For Western blotting, proteins were separated by SDS–
PAGE and transferred to nitrocellulose using a Trans-blot Turbo sys-
tem (Bio-Rad). Protein concentrations were measured by Bradford 
assay using Protein Assay Dye Reagent Concentrate (Bio-Rad). All 
Western blots were revealed using enhanced chemiluminescence 
reagent (GE Healthcare).

Molecular biology and siRNA reagents
Human CDC20, PP1α, and PP1γ were amplified from human testis 
cDNA (Marathon cDNA; Takara Bio) using Pfu polymerase (Agilent 
Technologies). CDC20 expression constructs were made using 
pcDNA5/FRT/TO vectors (Invitrogen) modified to encode the EGFP 
or FLAG reading frames; PP1 constructs were made using a modi-
fied pcDNA5/FRT/TO vector encoding a C-terminal GFPtag. Muta-
genesis to introduce phospho-site mutations and resistance to 
CDC20 small interfering RNA (siRNA) oligo #14 was performed us-
ing the QuikChange method (Agilent Technologies). DNA primers 
were obtained from Invitrogen. For the knockdown of the catalytic 
subunits of PP1α and PP1γ, siRNA duplexes 5′-UGGAUUGAUU-
GUACAGAAAUU-3′ and 5′-GCGGUGAAGUUGAGGCUUAUU-3′ 
targeting the 3′-UTR of PPP1CA and PPP1CC, respectively, were 
used in Figures 2, 3, and 7 and Supplemental Figure S4. Duplexes 
targeting the ORFs 5′-CAUCUAUGGUUUCUACGAU-3′ and 
5′-GAACGACCGUGGCGUCUCU-3′ for PPP1CA or 5′-GCGGAG
AGUUUGACAAUGC-3′ and 5′-UAGAUAAACUCAACAUCGA-3′ 
for PPP1CC were used in Figures 5, 6, and 8 and Supplemental 
Figures S2 and S3. PP1β was depleted using a 3′-UTR duplex 
5′-GGGAAGAGCUUUACAGACAUU-3′ targeting PPP1CB. CDC20 
was depleted using siRNA duplex #14 5′-CGGAAGACCUGCC-
GUUACA-3′ (ThermoFisher). PP2A-B55 and PP2A-B56 were tar-
geted with siRNA duplexes that have been described previously 
(Hayward et al., 2019a,c).

Cell culture and CRISPR procedures
HeLa cells were cultured in DMEM with 1% (vol/vol) GlutaMAX (Life 
Technologies) containing 10% (vol/vol) bovine calf serum at 37°C and 
5% CO2. For plasmid transfection and siRNA transfection, Mirus LT1 
(Mirus Bio LLC) and Oligofectamine (Invitrogen), respectively, were 
used. CCNB1-mCherry was integrated into the endogenous CCNB1 
locus of the parental HeLa Flp-In TRex cell line (Invitrogen). Doxycy-
cline-inducible, single copies of the GFP-CDC20 or GFP-CDC206A 

transgenes were then integrated into HeLa Flp-In TRex CCNB1-
mCherry cells. CRISPR/Cas9-edited HeLa cells with an inserted GFP 
tag in the C-terminus of the CCNB1 gene product and HeLa cells 
stably expressing GFP-MAD2 have been described before (Alfonso-
Perez et  al., 2019; Hayward et  al., 2019a). Doxycycline-inducible 
PP1α-GFP and PP1γ-GFP were integrated into HeLa Flp-IN TRex cells 
(Invitrogen) (Tighe et al., 2004).

High-resolution mitotic exit time courses for Western 
blotting
HeLa cells were seeded at 1,200,000 cells/dish onto 15 × 15 cm 
dishes per condition and grown for 72 h. Nocodazole, a microtubule 
depolymerization agent, was added to 100 ng/ml (330 nM) for 20 h 
to arrest the cells in mitosis. For experiments with siRNA knock-
down, cells were seeded at 600,000 cells/dish and grown for 24 h 
before transfection with the appropriate siRNA duplexes for 72 h. 
Nocodazole was added to the dishes for the final 20 h of depletion. 
The mitotic cells were harvested by shake off and washed in 2 × 
25 ml 1× phosphate-buffered saline (PBS) and 1 × 25 ml Opti-MEM, 
both of which had been preequilibrated to 37°C, 5% CO2. Wash 
centrifugations were carried out for 5 min at 200 × gav, 37C. The 
cells were then resuspended in preequilibrated Opti-MEM to give 
15,000,000 cells/ml. The cells were incubated for 25 min (37°C, 5% 
CO2) to allow them to rebuild bipolar mitotic spindles, with gentle 
mixing every ∼5 min. While the cells were incubating, 500 μl of fla-
vopiridol buffer (480 µl preequilibrated Opti-MEM + 20 µl, 5 mM 
flavopiridol) was made and prewarmed to 37°C. Where more than 
500 µl of flavopiridol was required, this was scaled accordingly. Fla-
vopiridol buffer was added to the cells at a 1:10 dilution, giving a 
final concentration of 20 µM. The cells were immediately mixed 
through inversion and pipetting before being split in half. Owing to 
the frequency of early timepoints, one 2 ml aliquot was kept incu-
bating at 37°C, 5% CO2, and gently mixed every 5 min to ensure 
stable conditions. The other half was placed in a 37°C water bath 
and sampled accordingly. At each time point, 50 µl of cells was 
added to 25 µl of 3× sample buffer and boiled for 5 min. Samples 
were diluted 1:2 with 1× sample buffer prior to Western blotting. 
Typically, 6 µg was loaded on each Western blot but this was in-
creased to 10 µg as required. Where necessary, drugs were added 
at the start of the 25 min incubation, to ensure maximal inhibition 
prior to the addition of flavopiridol. For MPS1 inhibition time courses 
(and for the comparative CDK1 inhibition time course in Supple-
mental Figure S1), drug treatments and washes for nocodazole re-
lease were performed in complete media (DMEM with 1% [vol/vol] 
GlutaMAX [Life Technologies] containing 10% [vol/vol] bovine calf 
serum) at 37°C and 5% CO2. MPS1 inhibitor (MPS1-i; AZ3146) was 
prediluted in complete media and prewarmed to 37°C before being 
added to cell suspensions (1.5 × 107 cells/ml) to a final concentration 
of 2 µM. For sample collection, cells were treated with 50 nM 
calyculin A to prevent further dephosphorylation events during 
centrifugation and 1× PBS wash before being resuspended in lysis 
buffer supplemented with phosphatase and protease inhibitors for 
snap-freezing.

Analysis of CDC20 phosphorylation
For analysis of CDC20 phosphorylation 10% (wt/vol) polyacrylamide 
separating gels were prepared with 100 µM MnCl2 and 25 µM Phos-
Tag reagent (Wako Chemicals; AAL-107S1). Double concentrations 
of ammonium persulfate and N,N,N’,N’-tetramethylethane-1,2-di-
amine were used to aid polymerization. Typically, 10 µg of lysate was 
loaded for PhosTag gels. Prior to transfer, gels were equilibrated 
with 3 × 3 min washes in transfer buffer (20 mM Tris, 150 mM glycine, 
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0.1% [wt/vol] SDS, 20% [vol/vol] MeOH, 20 mM EDTA) and subse-
quently 3 × 3 min washes in transfer buffer without EDTA (20 mM 
Tris, 150 mM glycine, 0.1% [wt/vol] SDS, 20% [vol/vol] MeOH).

Analysis with anti–CDC20-pT70 antibodies was carried out on 
CDC20 immunoprecipitates. For CDC20 immunoprecipitations, 
1.8 × 106 cells per sample were lysed for 15 min on ice, with vortex-
ing briefly every 5 min, in lysis buffer supplemented with phospha-
tase and protease inhibitors (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
1% [vol/vol] IGEPAL® CA-630, 0.5 M β-glycerol phosphate, 10 mM 
NaF, 100 nM okadaic acid, 100 nM calyculin A, 1 mM phenymethyl-
sulfonyl fluoride, phosphatase inhibitor cocktail 1:100 [Sigma-
Aldrich] or protease inhibitor cocktail 1:250 [Sigma-Aldrich]). Vol-
umes of lysis buffer were calculated during sample collection to give 
lysate concentrations of ∼1 mg/ml. Cells were then centrifuged at 
14,000 × gav for 15 min at 4°C to produce a cleared lysate, which was 
analyzed by Bradford assay. For the experiment in Figure 6C, CDC20 
was isolated from 0.35 mg of lysate by 90 min incubation at 4°C with 
20 µl Protein-G Dynabeads (ThermoFisher; 10004D) and 2 µg of 
each of three anti-CDC20 mAbs: clone E-7, clone BA8, clone AR-12. 
For the experiment in Figure 7E, CDC20 was isolated from 1 mg of 
lysate by 1 h incubation at 4°C with 40 µl Protein-G Dynabeads and 
3 µg mAb clone E-7. Dynabeads were washed 3× with lysis buffer 
and 3× with wash buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
0.1% [vol/vol] IGEPAL® CA-630) and resuspended in 100 µl 2.5× 
Laemmli sample buffer. For immunoprecipitation of GFP-CDC20, 
20 µl Protein-A Dynabeads was used with 2.5 µg anti-GFP (rb pAb; 
Abcam ab290) or anti-mCh (rb pAb; Abcam ab167453) for control.

Functional analysis of CDC20 and CDC206A

For CDC20 siRNA rescue experiments, HeLa Flp-In TRex cells ex-
pressing CCNB1-mCherry from the endogenous promoter and 
GFP-CDC20WT or GFP-CDC206A from the Flp-In site were used. 
CDC20 siRNA rescue was performed by induction with 2 µM doxy-
cycline of GFP-CDC20 transgenes (WT and 6A) resistant to siRNA 
oligo #14 for 6 h prior to 48 h siRNA depletion of endogenous 
CDC20 using oligo #14. A second induction was performed 18 h 
later. For live cell imaging and sample collection for immunoprecipi-
tation, cells were treated for 18 h with 2 mM thymidine 18 h after 
transfection with the siRNA duplexes. The thymidine was removed 
by three washes with DMEM, with 2 µM doxycycline re-added in the 
final wash. For immunoprecipitation samples, 330 nM nocodazole 
was added 8 h after thymidine release for 4 h, and cells were col-
lected by mitotic shake-off. For live cell imaging SiR-DNA (Spiro-
chrome) was added to the final wash of the thymidine release at a 
concentration of 100 nM, and imaging commenced 9 h later.

Time lapse imaging of MAD2 and CCNB1
For the live cell imaging of spindle checkpoint silencing and cyclin B 
destruction, ∼50,000 GFP-MAD2 CCNB1-mCherry HeLa cells were 
seeded into 35-mm dishes with 1.5-thickness cover glass bottom 
(Fluorodishes; Applied Precision). After 24 h, cells were then trans-
fected with siRNA duplexes. After 35 h of transfection, 2 mM thymi-
dine was added to the media. After a further 18 h, the thymidine 
was removed by three washes with 2 ml of DMEM and imaging was 
started 9 h later. SiR-DNA (Spirochrome) was added to the final 
wash at a concentration of 100 nM. For experiments using a PP1 
inhibitor, 5 µM tautomycetin was added to cells 30 min before imag-
ing started.

Time lapse imaging was performed using a spinning disk confo-
cal system (Ultraview Vox; PerkinElmer) mounted on an inverted mi-
croscope (IX81; Olympus) equipped with an EM charge-coupled 
device (CCD) camera (C9100-13; Hamamatsu Photonics) and con-

trolled by Volocity software. CDC20 rescue assays were imaged on 
a Deltavision Elite system using an inverted microscope (IX81; Olym-
pus) and equipped with a QuantEM EMCCD camera (Photometrics). 
Cell were placed in a 37°C and 5% CO2 environmental chamber 
(Tokai Hit) on the microscope stage with lens heating collar. Imaging 
was performed using a 60× NA 1.4 oil immersion objective lens.

To monitor chromosome congression, checkpoint silencing, and 
cyclin B1 destruction, HeLa CCNB1-mCherry GFP-MAD2 cells were 
treated with 100 nM SiR-DNA to allow live visualization of DNA. The 
cells were then imaged using 8% 561 nm laser power with 100 ms 
exposure for CCNB1-mCherry, 6% 488 nm laser power with 80 ms 
exposure for GFP-MAD2, and 2% 647 nm laser power with 20 ms 
exposure for SiR-DNA. Nineteen axial planes were captured 0.6 µm 
apart (for each wavelength) at an interval of 2 min for 10 h. These 
images were then used to determine the point of last chromosome 
congression from the SiR-DNA and the time at which the last GFP-
MAD2 foci disappeared. CCNB1-mCherry fluorescence intensity 
was measured over time using ImageJ. Images were Z-projected to 
sum the intensity across the volume of the whole cell. A region of 
interest (ROI) was drawn around each cell, and the integrated den-
sity was then measured in these regions over time and normalized 
by dividing by the area. Background levels were measured by col-
lecting the integrated density of a 4-µm-diameter circular ROI adja-
cent to the cell and again normalized by dividing by the area of the 
ROI; this value was then subtracted from the normalized signal.

For live cell imaging with the addition of the MPS1 inhibitor 
AZ3146, HeLa cells expressing GFP-MAD2 and CCNB1-mCherry 
were treated as above but seeded into imaging dishes covered with 
lids containing a preformed hole to facilitate drug addition. Cells 
were imaged at intervals of 2 min, and cells in mitosis were visually 
scanned to identify cells approaching metaphase. After four cap-
tured time points, MPS1-i diluted in 200 µl DMEM was added to the 
cells to a final concentration of 2 µM. After drug addition, imaging 
was continued for 1–2 h.

Statistical analysis
Statistical analysis of live cell imaging data and intensity measure-
ments was carried out in Excel and GraphPad Prism. Statistical tests in 
Figure 3 were unpaired t tests with Welch’s correction for unequal SD 
and Mann–Whitney tests in Figures 4, 5, and 8. Unless stated other-
wise, the measurements for graphs are derived from a compilation of 
three independent experiments. For Western blot analysis, represen-
tative examples of two to three independent repeats are shown.
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