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ABSTRACT 45 
 46 
Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly 47 
defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not 48 
previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population 49 
(n = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling 50 
from 241,424 volunteers (ClinicalTrials.gov NCT04334954). Enrolled participants provided medical, 51 
geographic, demographic, and socioeconomic information and 9,028 blood samples. The majority (88.7%) 52 
of samples were collected between May 10th and July 31st, 2020. Samples were analyzed via ELISA for 53 
anti-Spike and anti-RBD antibodies. Estimation of seroprevalence was performed by using a weighted 54 
analysis to reflect the US population. We detected an undiagnosed seropositivity rate of 4.6% (95% CI: 2.6 55 
– 6.5%). There was distinct regional variability, with heightened seropositivity in locations of early 56 
outbreaks. Subgroup analysis demonstrated that the highest estimated undiagnosed seropositivity within 57 
groups was detected in younger participants (ages 18-45, 5.9%), females (5.5%), Black/African American 58 
(14.2%), Hispanic (6.1%), and Urban residents (5.3%), and lower undiagnosed seropositivity in those with 59 
chronic diseases. During the first wave of infection over the spring/summer of 2020 an estimate of 4.6% of 60 
adults had a prior undiagnosed SARS-CoV-2 infection. These data indicate that there were 4.8 (95% CI: 61 
2.8-6.8) undiagnosed cases for every diagnosed case of COVID-19 during this same time period in the 62 
United States, and an estimated 16.8 million undiagnosed cases by mid-July 2020.  63 
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INTRODUCTION 64 
 65 
COVID-19, the disease caused by SARS-CoV-2 infection, presents with a spectrum of illness ranging from 66 
asymptomatic to severe disease and death. As with most respiratory viral diseases, it is difficult to estimate 67 
the true prevalence of the disease during a pandemic and the extent of its spread is only known after 68 
extensive study1-3. The majority of patients infected develop robust antibody responses against the viral 69 
spike (S), nucleocapsid (N), and envelope (E) proteins that can be detected via serologic testing4-8. Anti-S 70 
antibodies persist for months, and can neutralize infection9. Frequently, these neutralizing antibodies bind 71 
the receptor binding domain (RBD) of the spike protein, but antibodies against the spike S2 domain have 72 
also been observed10-15.  73 
 74 
To characterize the spread of SARS-CoV-2 infection in the United States, we evaluated seropositivity in a 75 
national survey of participants who had not previously been diagnosed with SARS-CoV-2 infection. We 76 
used quota sampling from a large pool of volunteers to obtain a representative sample and performed 77 
statistical weighting to generate prevalence estimates which provide a clear picture of the extent of SARS-78 
CoV-2 infection. To ensure accurate classification of seropositivity, we utilized our dual-antigen ELISA 79 
protocol that evaluated IgG and IgM antibodies against both the full spike ectodomain and the RBD7,16. 80 
These foundational considerations generated critical data needed to estimate spread during the pandemic 81 
and gain insight into the potential future outcomes.  82 
 83 
These results, including the subgroup analysis, give us a previously undescribed view into the spread of the 84 
pandemic by more clearly identifying the large numbers of individuals with undiagnosed infections during 85 
the initial months of the pandemic. These data are of great importance as we consider the impact vaccination 86 
may have on the future course of the pandemic and plan for current and future available vaccines to be 87 
administered. In addition, these data can also help us better assess the public health measures taken during 88 
the pandemic and how to take the best approaches forward to any future public health emergencies.    89 
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METHODS 90 
 91 

Study Protocol: 92 
 93 
This study was designed to determine the seroprevalence of anti-SARS-CoV-2 antibodies in adults 18 years 94 
of age or older in the United States who had not been previously diagnosed with COVID-19. The primary 95 
endpoint was the weighted estimate of seroprevalence in the US. Secondary endpoints were weighted 96 
estimates for subgroups categorized by demographics/risk factors. An initial period enrolled a convenience 97 
sample of 593 volunteers prior to the quota sample. Participants across the US (all 50 states and DC) were 98 
then enrolled via telephone consent from a pool of volunteers who provided basic demographic data in 99 
response to the study announcement. Recruitment calls were made from three sites: NIAID Laboratory of 100 
Infectious Diseases Clinical Studies Unit, the University of Pittsburgh CTSI, and the University of Alabama 101 
at Birmingham CCTS. Selection of participants is described below. Selected participants were contacted 102 
by the study team, consented, and sent a blood microsampling kit and online questionnaire in REDCap 103 
(project-redcap.org). For a small subset of participants (n = 214) working on the NIH campus, serum was 104 
collected via venipuncture. This study (ClinicalTrials.gov NCT04334954) was approved by the National 105 
Institutes of Health Institutional Review Board and conducted in accordance with the provisions of the 106 
Declaration of Helsinki and Good Clinical Practice guidelines. All participants provided verbal informed 107 
consent prior to enrollment. 108 

 109 
Participant Selection  110 
 111 
All volunteers were emailed an initial survey to collect basic demographic characteristics. Survey responses 112 
were de-identified and aggregated by sub-category of state, type of locality approximated from zip codes, 113 
age, sex, race, and ethnicity (Figure 1). Target sample sizes for these sub-categories were determined from 114 
the U.S. census, and were updated every evening based on the characteristics of people who had already 115 
enrolled to assure that individuals in each sub-category were enrolled evenly over time. Within each sub-116 
category, participants were initially assigned a selection probability calculated from the target number as a 117 
proportion of the available pool. Specific sub-categories that had insufficient numbers were aggregated to 118 
estimate their impact on the overall distribution of the 6 main characteristics. If a particular characteristic 119 
had insufficient numbers, sample probabilities were boosted for volunteers who had the characteristic. For 120 
each day’s call list, the most representative of 20,000 randomly generated lists was used, each list drawn 121 
without replacement from the volunteer pool based on the sampling probabilities previously defined. 122 
Representativeness was assessed by estimating a weighted sum of squared differences from the desired 123 
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targets and picking the list with the lowest deviation. Unselected participants were eligible to be called at a 124 
later date. This algorithm is designed such that each cohort of invited participants is representative of the 125 
diversity of the US population with respect to the 6 sampling variables (see Statistical Supplement Section 126 
3.4). 127 

 128 
Sample Collection:  129 
 130 
Participants provided blood samples by mail using a Mitra microsampling kit (Neoteryx, Torrance, CA) or 131 
standard venipuncture. Microsampling kits contained visual instructions on the sampling process, bandages, 132 
gauze, lancets, and four 20 μl microsampling devices for a total collection of 80 μl of whole blood. 133 
Participants utilized the lancet to draw blood from their fingertip and collect blood onto each of the four 134 
microsamplers. Participants returned the dried microsamplers with desiccant via overnight shipping. Those 135 
who underwent venipuncture did so in the NIH Clinical Center phlebotomy lab where 18 ml of blood was 136 
collected in a serum separator and whole blood tube. Once received in the laboratory serum samples were 137 
processed, and microsamplers were stored dry at -80oC until elution and analysis.  138 

 139 
Serologic Assays: 140 
  141 
Antibodies from samples were analyzed using ELISA as previously described7,16-18. In order to maintain 142 
longitudinal quality control and ensure that the assays remained stable across multiple months of assay 143 
implementation, positive and negative controls were included on each assay plate and monitored for 144 
stability (Supplemental Fig. 1). Seropositivity cut points were defined by evaluating 300 true negative 145 
samples and 56 true positive samples. Positivity thresholds were based on the mean optical density 146 
(absorbance) plus 3 standard deviations (see Supplemental Materials for details). The final criterion of a 147 
Spike+ and RBD+ for any combination of IgG or IgM gave estimated sensitivity and specificity of 1, with 148 
raw values for recombinant antibody results reported in Supplemental Fig. 2 and Supplemental Table 1. 149 
Additionally, IgA was evaluated via previously described ELISA to further phenotype the participant’s 150 
serologic status. 151 

 152 
Statistical Analysis 153 

 154 
The previously described iterative quota sampling continuously matched the proportion of people in the 155 
study with the census estimated proportion of people in the country on 6 variables (Table 1, Figure 1). 156 
This ensured that each periodic sample of participants over the course of the study were representative, and 157 
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the time effects of the pandemic were approximately independent of those 6 variables. Each participant was 158 
asked demographic and health-related questions that matched ones on the Behavioral Risk Factor 159 
Surveillance System (BRFSS) survey, a large probability-based national survey19. Responses to those 160 
matching questions were used with BRFSS survey data to adjust estimators to account for important criteria 161 
that may be related to both selection probability and seropositivity but were not accounted for in the quota 162 
sampling. Those adjusted estimators used weighting based on the propensity of being a quota sample versus 163 
a BRFSS sample participant and poststratification to US census data. It additionally accounted for 164 
sensitivity and specificity. Confidence intervals were calculated for the final seroprevalence estimates 165 
accounting for both the variability of the weighting and of the sensitivity and specificity adjustment.  The 166 
ratio of undiagnosed cases over diagnosed cases was estimated as the final seroprevalence estimate times a 167 
factor calculated from the daily national population and diagnosed cases. For more methods and details see 168 
Section 3 of the Supplementary Materials. 169 

 170 
RESULTS 171 
 172 
Enrollment and Demographic Representation 173 
 174 
Recruitment took place from April 1, 2020 until August 4, 2020. During that time 11,283 participants were 175 
enrolled from a pool of 241,424 volunteers. Of these participants, 214 had blood collected via venipuncture 176 
and 11,069 were sent microsamplers. Over 80% of the microsamplers were returned (9,089 participants).  177 
Ultimately 9,028 participant samples were analyzed via ELISA for presence of SARS-CoV-2 antibodies. 178 
Of those, 8,058 participants had complete clinical questionnaire data and were included in the weighted 179 
analysis (Figure 1). The majority (>88%) of sample collection occurred within the 11-week period between 180 
May 10th to July 31st, 2020 (Supplemental Fig. 3). The six major demographic factors used in participant 181 
selection are summarized in Table 1. Participant sampling was highly representative of the U.S. population. 182 
When expanded to include the additional 10 demographic or health related factors captured by the BRFSS, 183 
many factors were well matched, but there were some differences: our sample population was more highly 184 
educated, employed, and had better access to healthcare (Table 1).  185 

 186 
Estimates of Seroprevalence 187 
 188 
There were 304 seropositive participants in the analysis set (Figure 2a,b). This gave a weighted estimate 189 
of 4.6% of the undiagnosed adults in the U.S. population that were seropositive for SARS-CoV-2 (95% CI: 190 
2.6% to 6.5%, n = 8058 complete testing and survey). Using this average rate over the study period, we 191 
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estimate that there were 4.8 undiagnosed cases per each diagnosed case over the course of the study (95% 192 
CI: 2.8, 6.8). In seropositive participants, 36.51% were IgG+IgM+IgA+, 28.29 % were IgG+IgM-IgA+, 193 
17.11% were IgG+IgM-IgA-, 13.16 % were IgG+IgM+IgA-, 4.28 % were IgG-IgM+IgA-, and 0.66 % were 194 
IgG-IgM+IgA+ (Figure 2a-c, Supplemental Fig. 4). 195 
 196 
We found regional variations of seroprevalence estimates across the US (Fig. 2d, 3). The Northeast and 197 
Mid-Atlantic Regions showed the highest rates of seropositivity whereas the lowest in the Midwest. Urban 198 
areas were estimated to have higher levels of seropositivity (5.3%) compared to rural areas (1.1% 199 
seropositivity) at the time samples were collected. Estimates of seroprevalence were calculated for other 200 
demographic subgroups (Figure 3). The youngest age group, 18-44, had the highest estimated 201 
seropositivity (5.9%). Estimated seroprevalence for females was 5.5% and 3.5% in males. The 202 
seroprevalence estimate for Black/African Americans was highest at 14.2% followed by participants who 203 
self-identified as other/unlisted race (11.1%), American Indian/Alaska Native (6.8%), followed by 204 
White/Caucasian (2.5%), while those identifying as Asian displayed the lowest seroprevalence estimate 205 
(2.0%). 206 
 207 
Participants who reported a known exposure to a SARS-CoV-2-infected individual had a higher 208 
seroprevalence estimate (15.6%) compared to those who did not (2.7%). In comparison to the national 209 
average (4.6%), those that worked from home had a lower seropositivity estimate of 3.0%. Those who 210 
reported prior vaccination (influenza 3.2% and/or pneumonia 2.3%) had a lower likelihood for undiagnosed 211 
seropositivity. Those who had health conditions associated with poor outcomes in SARS-CoV-2 infection, 212 
including coronary heart disease, asthma, and diabetes, displayed lower rates of seropositivity (Figure 4). 213 
Other health conditions were also correlated with a decreased seropositivity rate such as skin cancer, stroke, 214 
or arthritis.  215 
 216 
DISCUSSION 217 

 218 
This study demonstrates that spread of the SARS-CoV-2 virus in the US during the first six months of the 219 
pandemic was more widespread than has been suggested by data reporting diagnostic test-confirmed cases. 220 
Similar to responses to other respiratory viruses, such as influenza, many individuals develop asymptomatic 221 
or mild disease that is not medically attended and therefore never diagnosed. Our findings indicate that 222 
there are nearly five individuals with a previous asymptomatic infection for every diagnosed case. 223 
Furthermore, patterns of our seroprevalence data match well with those of diagnosed cases reported during 224 
a similar timeframe.20 For example, the greater seropositivity estimated in densely populated urban areas 225 
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follows the observed initial spread of SARS-CoV-2. In comparison to the national average, we found that 226 
the Midwest, South, and West had lower seroprevalences during the study timeframe, which preceded a 227 
substantial increase in infections in these regions detected by viral testing.  228 
 229 
Our data suggest that the youngest age group had the highest undiagnosed seroprevalence, which is 230 
consistent with observations that they display less severe symptoms than older patients21. We also found 231 
higher undiagnosed seroprevalence in females, possibly suggesting a higher risk for asymptomatic disease.  232 
Participants with chronic diseases that are more likely to be associated with severe clinical manifestations 233 
of COVID-19, including diabetes, heart disease, and asthma, had a lower prevalence of asymptomatic 234 
SARS-CoV-2 infection in comparison to the national average. Those with known exposure to SARS-CoV-235 
2 infected individuals had a higher estimated incidence of undiagnosed seropositivity. We also found that 236 
Black, African American, and Hispanic participants had higher undiagnosed seropositivity, correlating with 237 
national data on disease burden in these sub-groups. 238 
 239 
This study is the first to report a representative sample across the US and to evaluate regional, demographic 240 
and socioeconomic differences in the prevalence of asymptomatic SARS-CoV-2 infection. In contrast, 241 
other reports of seroprevalence data focus on a specific group of individuals or geographic location22. Our 242 
results provide new insight into the spread of SARS-CoV-2. Our estimate of the national undiagnosed 243 
exposure rate provides information on the scope of infection during the first six months of the pandemic. 244 
This work extends findings from smaller foundational studies of limited populations23-37 by generating an 245 
accurate estimate of nationwide and subgroup prevalence.  246 
 247 
Our results estimate that there are approximately 4.8 undiagnosed cases (95% CI 2.76-6.81) for every 248 
identified case of COVID-19, suggesting a potential 16.8 million undiagnosed cases by mid-July 2020 in 249 
addition to the reported 3 million diagnosed cases in the United States. These data suggest a higher level of 250 
infection-induced immunity exists in the population and the size of those with this immunity is even greater 251 
now as the virus continued to spread in the months since this study was performed. Further long-term 252 
studies of immunity in the population will be necessary to further understand durability of response to the 253 
vaccine versus infection, how infection-induced immunity impacts vaccine response and performance, and 254 
if herd immunity can play a role in controlling SARS-CoV-2 spread.  In addition, further subgroup analysis 255 
of our data will be useful in clarifying the spread of disease in the presence of public health measures and 256 
how we may be able to refine and further target those measures in the future.   257 
 258 
 259 
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Limitations 260 
 261 
Although we were able to recruit a cohort with demographics representative of the general US population, 262 
our study has several limitations. First, although extensive statistical adjustments were made, our study 263 
cohort is based on a non-random volunteer sample which can have selection bias. However, many 264 
traditional random sampling studies using probability sampling design have very low response rates, calling 265 
into question the advantages of that practice38,39. Our study population also exhibited some differences from 266 
the general US population, such as higher education level and access to healthcare that had to be adjusted 267 
for with statistical weighting. We utilized both census and behavioral data to weight our results though it is 268 
possible that there are variables associated with disease transmission that are not accounted for in our 269 
weighting. 270 
 271 
CONCLUSIONS 272 
 273 
These data suggest a much larger spread of the COVD-19 pandemic than originally thought and have 274 
implications in basic understanding of SARS-CoV-2 spread, epidemiologic characteristics of its spread and 275 
prevalence in different communities, and potential impact on decisions involved in vaccine rollout. 276 
Continued large-scale surveillance of SARS-CoV-2 immunity is in progress, discriminating infection-based 277 
and vaccine-induced antibody responses, and mathematical models will be generated to understand the 278 
pandemic, vaccine performance, public health measure efficacy, and providing insight for our approach to 279 
handling the next virus with pandemic potential.  280 
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TABLES & LEGENDS 308 

 US Population (BRFSS) CoV2 Serosurvey Population 

 n % 
weighted  

n % (%) 
  

Selection Criteria           
Region  

     
North East 91307 21.19 17.6 1508 16.7 
Midwest 67110 15.57 16.97 1445 16.01 
Mid-Atlantic 80979 18.79 16.91 1833 20.3 
South/Central 60482 14.03 15.35 1293 14.32 
Mountain/Southwest 86204 20 15.89 1392 15.42 
West/Pacific 44866 10.41 17.27 1557 17.25 
Age Group           
18 - 45 125081 28.59 46 3837 42.51 
45 - 70 207749 47.49 39.84 3783 41.91 
70 - 95 104605 23.91 14.17 1407 15.59 
Sex           
Male 197411 45.24 48.66 4318 47.83 
Female 238911 54.76 51.34 4710 52.17 
Urban/Rural       

Urban 365714 84.9 93.48 8550 94.78 
Rural 65234 15.1 6.52 471 5.22 
Race           
White only 345710 81 73.41 6986 77.4 
Black only 37862 8.87 12.9 830 9.2 
Others 43219 10.13 13.69 1210 13.41 
Ethnicity           
Hispanic 36941 8.53 17.06 1495 16.56 
Not Hispanic 395931 91.47 82.94 7532 83.44 
       

Additional Weighting 
Criteria           

Children  
     

Yes 113408 26.21 35.81 2943 32.88 
No 319281 73.79 64.19 6009 67.12 
Education           
<=HS 151606 34.79 41.07 240 2.68 
College 119979 27.53 30.88 1284 14.35 
>=College 164229 37.68 28.05 7422 82.96 
Homeowner           
Own 305545 70.36 66.49 6635 74.12 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.27.21250570doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250570


 

 12 

Rent 107208 24.69 27.32 1861 20.79 
Others 21535 4.96 6.19 456 5.09 
Employment           
Employed 219493 50.75 57.74 6364 71.09 
NLF 174920 40.45 31.38 2129 23.78 
Unemployed 38053 8.8 10.88 459 5.13 
Health Insurance           
Yes 400028 91.86 87.85 8697 97.31 
No 35433 8.14 12.15 240 2.69 
Flu Vaccinated  

     
Yes 234727 59 50.62 6198 73.73 
No 163124 41 49.38 2208 26.27 
Cardiovascular Disease           
Yes 52284 12.07 9.07 354 3.98 
No 380985 87.93 90.93 8541 96.02 
Pulmonary Disease  

     
Yes 84102 19.33 18.53 1671 18.96 
No 350913 80.67 81.47 7140 81.04 
Immune Disease           
Yes 170115 39.14 29.29 2039 23.1 
No 264571 60.86 70.71 6787 76.9 
Diabetes       

Yes 60703 13.9 11.41 482 5.41 
No 375876 86.09 88.59 8430 94.59 

      
Table 1: Characteristics of serosurvey population in comparison to United States population. Census 309 
and Behavioral Risk Factor Surveillance System (BRFSS, 2018) data on selection criteria were utilized for 310 
quota-based sampling. Other values from BRFSS were utilized for statistical weighting. The comparisons 311 
between the estimated proportions in the United States (BRFSS) versus our sample population for the 312 
SARS-CoV-2 serosurvey are displayed in this table.  313 
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FIGURES AND LEGENDS 314 

 315 

 316 

Figure 1: Serosurvey overview and statistical workflow. A flow chart of donor recruitment through data 317 
analysis displaying steps in data acquisition and any attrition from data sets if applicable. Key: Ovals = 318 
starts and ends, gray rectangles = subsets of participants in this study, blue parallelograms = individuals 319 
from outside data sets that contribute to adjusted prevalence estimates, blue rounded rectangles = analysis 320 
processes. 321 
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 322 

Figure 2: Geographic distribution of undiagnosed seropositivity in the United States in summer 2020. 323 
Raw serology data for (a) IgG and (b) IgM and (c) IgA against SARS-CoV-2 Spike and Receptor Binding 324 
Domain (RBD). Cut points for positivity are shown as red dashed lines, data are optical density (OD). (d) 325 
Serologic phenotype of antibody presence in seropositive participants (e) US Map showing seropositivity 326 
in six regions surveyed: Northeast = ME, NH, VT, MA, NY, CT, RI, PA, NJ, 7.5% (95% CI: 3.7 – 11.3%); 327 
Midwest = MN, IA, WI, IL, IN, MI, OH, 1.6% (95% CI: 0.06-2.3%); Mid-Atlantic = MD, DE, DC, VA, 328 
WV, KY, TN, NC, SC, GA, 8.6% (1.3 – 15.8%); South/Central = FL, MS, AL, LA, AR, MO, KS, OK, 329 
3.0% (1.2 – 4.5%); Mountain/Southwest = TX, NM, AZ, CO, UT, WY, NE, SD, ND, MT, ID, 4.5% (0.09 330 
– 7.9%); West/Pacific = WA, OR, NV, CA, AK, HI, 1.9% (0.02 – 3.2%). One person in diagram represents 331 
100 participants, orange represents weighted prevalence estimate within the geographic region.  332 
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 333 

Figure 3: Undiagnosed seroprevalence in main demographic categories. Six main categories utilized 334 
during quota-based sampling: region, age, sex, race, ethnicity, and urban/rural. Seropositivity estimates of 335 
samples that had a full clinical questionnaire completed and successful sampling. Data are weighted 336 
estimates ± 95% confidence intervals. Dashed line = weighted national seroprevalence estimate. * = n value 337 
too low to make proper weighted estimate, raw positivity displayed.  338 
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 339 

Figure 4: Seroprevalence estimates of health and behavioral traits. Seropositivity estimates of samples 340 
that had a full clinical questionnaire completed and successful sampling. Data are weighted estimates ± 341 
95% confidence intervals. Dashed line = weighted national seroprevalence estimate.   342 
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