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Abstract
Cyanobacteria are photosynthetic prokaryotes that inhabit diverse aquatic and terrestrial environments. However, the
evolutionary mechanisms involved in the cyanobacterial habitat adaptation remain poorly understood. Here, based on
phylogenetic and comparative genomic analyses of 650 cyanobacterial genomes, we investigated the genetic basis of
cyanobacterial habitat adaptation (marine, freshwater, and terrestrial). We show: (1) the expansion of gene families is a
common strategy whereby terrestrial cyanobacteria cope with fluctuating environments, whereas the genomes of many
marine strains have undergone contraction to adapt to nutrient-poor conditions. (2) Hundreds of genes are strongly
associated with specific habitats. Genes that are differentially abundant in genomes of marine, freshwater, and terrestrial
cyanobacteria were found to be involved in light sensing and absorption, chemotaxis, nutrient transporters, responses to
osmotic stress, etc., indicating the importance of these genes in the survival and adaptation of organisms in specific habitats.
(3) A substantial fraction of genes that facilitate the adaptation of Cyanobacteria to specific habitats are contributed by
horizontal gene transfer, and such genetic exchanges are more frequent in terrestrial cyanobacteria. Collectively, our results
further our understandings of the adaptations of Cyanobacteria to different environments, highlighting the importance of
ecological constraints imposed by the environment in shaping the evolution of Cyanobacteria.

Introduction

Cyanobacteria are pioneer organisms and the most impor-
tant primary producers on our planet. The evolution of
oxygenic photosynthesis in Cyanobacteria changed the

Earth’s early environment, paving the way for the evolution
of complex life [1–4]. In turn, their autotrophic lifestyle
enabled Cyanobacteria to thrive in various habitats, ranging
from terrestrial ecosystems to aquatic ecosystems, fresh
waters to brackish waters, and hot springs to cold Arctic
environments [5–8]. Previous ecological and genomic stu-
dies have provided insight into the genomic adaptation of
Cyanobacteria to the local marine environment [5, 9, 10].
However, these studies majorly focus on marine picocya-
nobacteria groups, the genomic adaptation of Cyanobacteria
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to a wide range of environments remains poorly understood
due to the lack of well-balanced genome sampling.

Here, we report 163 newly generated genomes in Cyano-
bacteria, which greatly expanded genomic representation
from undersampled freshwater and terrestrial habitats. By
combining data from publicly available cyanobacterial gen-
omes with newly generated genomes, we built a reference
phylogeny of 650 cyanobacterial genomes using 834
cyanobacterial-specific benchmarking universal single-copy
orthologs (BUSCO). The resulting phylogenetic tree provided
high-resolution relationships among cyanobacterial subclades.
On the basis of the well-resolved cyanobacterial phylogeny,
comparative genomic analysis was performed among phylo-
genetic related strains isolated from the three most prevalent
habitat types: marine, freshwater, and terrestrial. In doing so,
we found that genomic size variations among cyanobacterial
strains were associated with habitat adaptation. Meanwhile,
hundreds of genes were characterized to be correlated with the
adaptation to various environments, including light wave-
lengths, trophic states, salinity, availability of water, etc. In
addition, we further investigated the mechanisms underlying
cyanobacterial habitat adaptation. Our results suggest that
horizontal gene transfer (HGT), as a source of genes that
confer cyanobacteria selective advantages for living in their
habitats, has significant contributions to habitat adaptation.
Altogether, our study provides insights into cyanobacterial
genome evolution and adaptation to diverse ecosystems.

Materials and methods

Genome sequencing assembly

A total of 163 cyanobacterial strains were sequenced for this
study. All axenic strains were provided by the Freshwater
Algae Culture Collection of the Institute of Hydrobiology.
Genomic DNA was prepared by the CTAB method fol-
lowed by purification with E.Z.N.A. Bacterial DNA Kit.
Paired-end libraries were constructed using the NEBNext
Ultra DNA Library Prep Kit following the manufacturer’s
instructions, and whole-genome sequencing (paired-end,
100 bp) was carried out on the Illumina HiSeq 2000 plat-
form. After the removal of adapters and low-quality reads,
sequencing reads were assembled using the SPAdes v3.1
genome assembler with k-mer lengths of 55, 77, and 100
[11]. Once assembled, the quality and accuracy of the
genome assembly were evaluated using CheckM [12] and
QUAST [13].

Genome datasets

The sequences of 727 Cyanobacteria/Melainabacteria
genomes were downloaded from NCBI on January 2018.

Together with the 163 genomes sequenced in this study, we
performed quality control for all genomes according to the
following criteria to reduce data redundancy and biased
genome representation of Cyanobacteria.

First, we calculated average nucleotide identity (ANI)
and alignment fraction values for each pair of genomes
using the ANI calculator with default settings (http://enve-
omics.ce.gatech.edu/ani/). Genomes from the same strain
with an ANI greater than 99.9% and alignment fraction
exceeding 95% were marked as redundant genomes, and
they were then dereplicated by filtering out one of the
genomes at random. The remaining genomes formed a
representative Cyanobacteria genome dataset (hereafter
referred to as the Cyano dataset; 650 strains). To obtain a
more reliable genome dataset, we assessed the quality of
each genome using CheckM, which determines the esti-
mated completeness of a genome and detects possible
contamination based on lineage-specific sets of single-copy
genes. We further compiled a high-quality dataset com-
prising 519 Oxyphotobacteria strains and 7 Melainabacteria
strains (hereafter referred to as the Cyano HQ dataset) in
which genomes were only included if they were nearly
complete (compeleteness ≥90%) with low contamination
(less than 5% contamination).

Collection of metadata

A variety of habitats were included in the analysis. Habitats
of the 650 cyanobacterial strains (Cyano dataset) were
derived from their isolation source. The isolation source for
each strain was determined manually by searching IMG
metadata, NCBI Biosample, PCC, ATCC, and the scientific
literature. On the basis of their isolation sources, we cate-
gorized the genomes into five major habitats: marine,
freshwater, terrestrial, thermal spring, and host-associated;
genomes whose source of isolation was not among these
major habitats were labeled as belonging to other habitat;
and genomes without isolation information were labeled as
belonging to unknown habitat.

Genome annotation

We performed genome annotation with a rapid prokaryotic
sequence annotation algorithm implemented in Prokka v1.12
[14]. For functional annotation, predicted ORFs were sear-
ched using DIAMOND against the Clusters of Orthologous
Groups (COG) database and Kyoto Encyclopedia of Genes
and Genomes database (KEGG) based on sequence simila-
rities (identity ≥ 60%, coverage ≥ 50%). Pfam domains were
identified by profiling predicted ORFs against the Pfam-A
database (E-value ≤ 10–5) using hidden Markov models
(HMM) implemented in HMMER 3.1b1 (http://hmmer.ja
nelia.org/) [15].
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Phylogenomic analyses

To obtain a more comprehensive evolutionary landscape of
Cyanobacteria, the Cyano dataset was chosen to infer
phylogenetic relationships. We generated two data matrices
from the genomes of 604 Oxyphotobacteria strains and 46
Melainabacteria strains.

(1) AMPHORA data matrix: 31 universal single-copy
genes were identified in the cyanobacterial genomes
using the AMPHORA2 pipeline [16]. The inter-
mediate alignments were trimmed to remove poorly
aligned positions using trimal [17] with default
settings.

(2) BUSCO data matrix: We used a HMM-based search
to retrieve 834 cyanobacterial-specific BUSCOs
(BUSCO cyanobacteria_odb9) [18] from each gen-
ome. Each BUSCO was aligned using MAFFT [19]
with the options –localpair, –maxiterate= 1000, and
the aligned data were trimmed with trimal with
default settings.

For each data matrix, masked alignments were con-
catenated into a supermatrix, and phylogenetic analysis was
conducted at the CIPRES Science Gateway v.3.3. web
interface [20] using the maximum likelihood methods with
the IQ-TREE [21] program under the LG+GAMMA
model. Ultrafast bootstrap support values were calculated
from 1000 replicates. Trees were rooted with the Melaina-
bacteria group, which was recently recognized as the closest
relative of Cyanobacteria [22, 23]. All trees were visualized
using iTOL (http://itol.embl.de/) [24].

Comparison of genome sizes and analysis of gene
category enrichment

As low-quality genomes might introduce biases in the ana-
lysis, we limited the current and subsequent analyses
focused on the Cyano HQ dataset. We calculated the
approximate genome size per strain based on the following
formula: approximate genome size equals actual assembly
genome size/estimated coverage/(1+ estimated contamina-
tion). Then, the estimated genome sizes for strains isolated
from marine, freshwater, and terrestrial habitats were com-
pared using t-tests and PhyloGLM tests through the R
package phylolm [25]. The annotated KO (KEGG Orthol-
ogy) numbers of each high-quality genome were mapped to
gene categories as defined by KEGG. t-tests and PhyloGLM
tests were used to infer the enrichment and depletion of 22
prokaryotic-related gene categories across genomes of mar-
ine, freshwater, and terrestrial cyanobacteria. P values were
corrected for multiple testing with the Benjamini–Hochberg
correction [26].

Identification of genes involved in light adaptation

We chose cpcAB encoding the phycocyanin (PC) pigment,
cpeAB encoding the phycoerythrin (PE) pigment, pcb
encoding accessory chlorophyll-binding proteins, and genes
involved in far-red light photoacclimation (FaRLiP) as
defined by Gan and Bryant [27] for analysis. The sets of
protein sequences for each gene were downloaded from the
NCBI database. To generate HMM profiles, the reference
sequences for each gene family were aligned with MAFFT,
followed by alignment trimming using trimal. We used
hmmbuild to build HMM profiles based on the trimmed
alignments, and hmmsearch was employed to search
all high-quality genomes with the profiles (cutoff E-value=
1e−5). For each gene family, we set a score cutoff, and hits
above the preset cutoff were further examined by manual
inspection to confirm homology. We hypothesized that if a
certain gene plays an important role in light adaptation to a
specific habitat, that gene should be a core gene in that
specific habitat but not in other habitats, or the copy number
of that gene should significantly outnumber those in other
habitats. Thus, we applied two statistical analyses to infer
the enrichment and depletion of aforementioned gene
families in genomes of marine, freshwater, and terrestrial
cyanobacteria: the hypergeometric test and PhyloGLM.
Both methods were performed through the R packages
phytools [28] and phylolm [25] with two versions: one
based on presence/absence data and the other based on
gene/domain copy numbers. For these two methods, an
FDR-corrected P value threshold of 0.05 was used in our
analysis.

Genome-wide surveys of habitat-enriched genes/
domains

Among the five habitat categories, marine, freshwater, and
terrestrial habitats are the most prevalent habitats where
cyanobacterial strains are found, and the Cyano HQ dataset
comprised 99, 184, and 127 strains from these habitats,
respectively. Pairwise comparisons were conducted for
genes/domains derived from the genomes from these three
habitats to determine habitat-associated genes/domains. We
followed the method described in Levy et al. [29]. Briefly,
we clustered genes/domains according to their functional
annotation, and statistical analyses were subsequently per-
formed to examine whether the clusters of genes/domains
were significantly enriched or depleted in specific habitats.
The hypergeometric test and PhyloGLM test were per-
formed with two versions: one based on presence/absence
data and the other based on gene/domain copy numbers.
Hypergeometric testing identifies the overall enrichment of
gene/domain copies from strains from specific habitat
without taking phylogenetic relationships into account.
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PhyloGLM takes both situations into account to reduce
false-positive enrichments resulting from strains’ shared
ancestry. An FDR-corrected P value threshold of 0.05 was
used in our analysis. We defined the gene or domain
associated with habitat adaptation if at least one statistical
test showed enrichment of the gene in the specific habitat
(FDR adjusted P value < 0.05). To further distinguish uni-
versal adaptation to certain habitats from local adaptation to
specific ecological niches, we considered genes/domains to
be universally habitat-enriched if they were detected in
more than 75% of strains belonging to that habitat. Here, we
describe an example of the comparison of KO clusters
(K00556; tRNA (guanosine-2′-O-)-methyltransferase)
among marine genomes, freshwater genomes, and terrestrial
genomes using the hypergeometric test based on gene copy
number. We first retrieved all genes annotated as K00556 in
cyanobacterial genomes. Next, we calculated the copy
numbers of K00556 in marine genomes, freshwater gen-
omes, and terrestrial genomes, respectively, by tracing
genes back to their encoding genomes. If hypergeometric
test showed that the copy number of K00556 in marine
genomes was significantly larger than the copy numbers of
freshwater genomes and the copy numbers of terrestrial
genomes, the KO cluster was referred to as a marine-
enriched cluster. Further, if K00556 were detected in more
than 75% of marine strains, the KO cluster was considered
as a universal marine-enriched cluster.

Identification of HGT candidates

We employed a modified BLAST-based HGT detection
approach to identify genes acquired from noncyanobacterial
strains. The fundamental principle of the approach is similar
to existing HGTector software [30]. The accelerated
BLAST-compatible software DIAMOND was used to speed
up the process of aligning the query sequences against the
reference database [31]. We constructed two custom data-
bases: one derived from the NCBI nonredundant protein
database (last accessed January 20, 2018), in which taxon
IDs were mapped to protein accession numbers based on the
protein accession to taxid file (ftp://ftp.ncbi.nlm.nih.gov/
pub/taxonomy/accession2taxid/prot.accession2taxid.gz), and
the other consisting of all predicted protein sequences from
650 cyanobacterial genomes. For the protein sequences from
each genome, two BLASTp searches were carried out
against the constructed databases with the same settings:
–evalue 1e−10, –max-target-seqs 5000. We next merged
the results of these two BLASTp searches and sorted the
BLAST hits according to the E-value. BLAST hits were
filtered if multiple hits originated from one strain, and only
the best hit was retained to overcome the putative taxon-
sampling bias of the database. The top 500 hits exhibiting
different taxon IDs were retained for further HGT detection

analysis. Taxonomic classification was assigned for each hit
with dump files downloaded from the NCBI Taxonomy
database, and each hit was subsequently categorized into
three different lineages (self-group: Oxyphotobacteria, close
group: Melainabacteria, distal group: other taxonomy). We
next calculated the percentage of strains from the distal
group (distalg_pct). Protein sequences were reported as
HGT candidates if they satisfied the following criteria: (1)
the hit count cutoff was 50 to avoid sequences that might
derive from assembly or annotation errors; and (2) the
threshold of distalg_pct was 80%.

We additionally employed birth–death models to detect
HGT events using the program count [32]. Since the gene
family table was required, we built gene families with the
following procedures: (1) all versus all BLASTp searches of
the protein sequences of genomes were conducted with an
E-value threshold of 1e−5 and a coverage threshold of
70%; and (2) homologs were clustered using the Markov
clustering algorithm [33] with an inflation parameter of 1.6.
Each homolog was considered a gene family. Then, the
family history was inferred based on a Wagner parsimony
approach using Count with the default settings.

Results and discussion

Genomic data yield a well-resolved phylogeny for
Cyanobacteria

To infer the cyanobacterial phylogeny, two datasets
compiled from a total of 650 taxa were analyzed (163 taxa
reported in this study; Supplementary Table S1): (1) a
multigene dataset including 31 universal core genes that
has been adopted by many researchers and (2) a genomic
dataset including 834 cyanobacterial-specific BUSCOs.
Across the phylogenetic tree, the higher-order groups
were generally in line with the described taxonomic
scheme that proposed eight orders: Gloeobacterales,
Synechococcales, Spirulinales, Chroococcales, Pleur-
ocapsales, Oscillatoriales, Chroococcidiopsidales, and
Nostocales [34, 35]. In addition, we assigned the newly
characterized Gloeomargarita lithophora Alchichica-D10
to the Gloeomargaritales order, according to its special
phenotypic characteristics and important phylogenetic
position, reported as the closest relative to the original
plastid endosymbiont (Fig. 1, Supplementary Fig. S1)
[36–38].

Compared to previous phylogenomic studies, our ana-
lyses incorporated a greater number of phylogenetically
diverse cyanobacterial strains [35, 36]. Especially the gen-
omes sequenced in this study expanded genomic repre-
sentation from undersampled freshwater and terrestrial
environments (freshwater genomes: 73 out of 163;
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terrestrial genomes: 76 out of 163). The resulted phylo-
genies inferred from the multigene dataset (Amphora) and
the genomic dataset (BUSCO) are largely congruent.
Nevertheless, the resolution of phylogeny is lower for the
multigene dataset than the genomic dataset. There are
73.0% of internodes (474 out of 649 internodes) in the
multigene tree received high support values (ultrafast
bootstrap value ≥ 95%), while 92.3% of internodes (599 out
of 649 internodes) in the genomic tree received high support
values (ultrafast bootstrap value ≥ 95%; Supplementary
Fig. S2a). Topological discordances between two trees
mainly arise when internodes of the multigene tree are
weakly supported, whereas internodes of the genomic tree
are highly supported (Supplementary Fig. S2b). Our geno-
mic tree corroborated previously recognized basal rela-
tionships of Oxyphotobacteria, in which Gloeobacterales
diverged first, followed by the early branching of Syne-
chococcales, with Gloeomargaritales branching in a suc-
cessive pattern [39, 40]. One major reorganization of our
genomic tree stems from the placement of Crinalium
epipsammum PCC 9333 and Chamaesiphon minutus PCC
6605 (subclade B3, Supplementary Fig. S2). Previous stu-
dies recovered a sister group relationship between subclade
B3 and subclade B2 formed by Spirulinales. Pleur-
ocapsales, and Chroococcales, with low statistical support
[39]. Our results alternatively supported a sister group
relationship between a clade formed by the subclade B3
plus 17 newly sequenced terrestrial genomes and a clade
formed by Chroococcidiopsidales+ Nostocales+Oscilla-
toriales, with strong statistical support (Supplementary
Fig. S2). Overall, our study integrated a more comprehen-
sive sampling of taxa and genes, and the improved resolu-
tion of the evolutionary history of Cyanobacteria
demonstrated that the genome-scale dataset significantly
improved the robustness of inference.

Habitat adaptation has shaped the genomic
properties of Cyanobacteria

We retrieved habitat information for each strain and mapped
the habitat traits onto the genomic tree (Fig. 1). Despite
broad lifestyle diversity, we observed that strains that shared

the same habitat frequently formed branching clusters,
indicating that lifestyles are evolutionarily conserved rather
than randomly distributed among cyanobacterial lineages.
To further validate the conservative pattern of lifestyles, the
habitat data were tested for phylogenetic signals by com-
paring the performance of models with and without phy-
logenetic signals [41]. We found a strong phylogenetic
signal in the habitat data, suggesting that closely related
strains tend to retain similar lifestyles over time (lambda=
0.975, P value < 0.01; one-sample t-test; lambda value
ranges from 0 to 1, lambda equals one means maximum
phylogenetic signal; Supplementary Table S2). The highly
phylogenetically conservative mode of lifestyles implies
that the genetic changes among cyanobacterial genomes
might reflect the adaptation to different environment
niches [42].

To assess the genomic variations among strains derived
from different habitats, we performed comparative genomic
analyses on strains isolated from the three most prevalent
habitat types: marine, freshwater, and terrestrial. Low-
quality genomes and genomes of the Melainabacteria group
were excluded, resulting in 519 high-quality genomes.
Strains derived from other habitats were not incorporated
into further analyses due to their sparsely represented
genomic data. Among the remaining strains, 99 live in
marine habitats, 184 in freshwater habitats. and 127 in
terrestrial habitats. We found that the genome sizes of ter-
restrial cyanobacteria were on average larger than the gen-
omes of marine and freshwater cyanobacteria, while marine
cyanobacteria generally exhibited smaller genome sizes
than the other cyanobacteria (P value < 0.05, t-test). When
the influence of evolutionary history was taken into account,
the same pattern was observed (P value < 0.05, PhyloGLM;
Fig. 2a). It has previously been hypothesized that prokar-
yotes with streamlined genome are likely to occupy low-
complexity ecosystems, while prokaryotes with large gen-
ome are likely to occupy relatively turbulent ecosystems
[43–46]. As the complexity of marine, freshwater, and ter-
restrial ecosystems is gradually increased considering the
abiotic characteristics of corresponding habitats, such as
winds are more turbulent than ocean currents, the tem-
perature fluctuates more widely in the land than in the
ocean, and the availability of water is more stable in the
ocean than in the land, and the environmental variability of
freshwater habitat falls in between [47], the differential
pattern of genome sizes observed in marine, freshwater, and
terrestrial cyanobacteria in our study further supports a
hypothesis.

We next investigated whether certain functional categories
were preferentially affected under the course of environ-
mental adaptation. Enrichment analyses focusing on 22
functional groupings of KEGG annotations were carried out
using statistical tests with and without phylogenetic signals

Fig. 1 Phylogenomics of Cyanobacteria phyla. The maximum
likelihood phylogenetic tree was estimated on the basis of 834
cyanobacterial-specific benchmarking universal single-copy orthologs
from 650 genomes implementing IQ-TREE under the LG+ Γ model.
The names of 163 genomes reported in this study are highlighted in
green. Both colored circles at the tips of branches and colors of
branches reflect the ecological habitats of the strains. The known
oxygenic Cyanobacteria group was labeled as Oxyphotobacteria.
Monophyletic taxonomic groups were also labeled for clarity. Boot-
strap support values for internodes can be found in the trees deposited
in iTOL.
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(PhyloGLM and t-test). The enrichment analyses showed that
the majority of functional categories were enriched in ter-
restrial cyanobacteria compared with strains from marine and
freshwater environments (Fig. 2b). Categories such as reg-
ulatory, transport and motility have greatly been expanded in
terrestrial strains (FDR adjusted P value < 0.05; Supple-
mentary Fig. S3), consistent with the extensive interactions
of these strains with the environment pressure factors [48].
There are more functional categories showing significant
differences in marine–terrestrial genomic comparison than

those seen in freshwater–terrestrial genomic comparison,
which can be explained by more similar environmental
conditions between terrestrial and freshwater habitats (Sup-
plementary Fig. S3). Conversely, the free-living marine
cyanobacteria have undergone reduction of gene families for
the majority of functional categories in comparison with the
functional categories of freshwater and terrestrial genomes
(Fig. 2b), reinforcing the genome streamlining scenario for
the evolution of marine cyanobacteria which inhabit less
variable environments [43, 45, 49]. On the other hand, the
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Fig. 2 A genome-wide comparison of marine, freshwater, and
terrestrial strains. a Density plot of genome sizes of marine, fresh-
water, and terrestrial strains. Double asterisks indicate a significant
difference between two habitats inferred from both the t-test and
PhyloGLM test (P value < 0.05). b Pairwise functional comparison
among marine, freshwater, and terrestrial genomes using 22 gene
categories based on KEGG annotation. Gene categories colored light
blue, light pink, turquoise and spring green denote metabolism, genetic
information processing, environmental information processing, and

cellular processes, respectively. Bar charts represent the total number
of counted genes for each gene category in statistical tests. The
enrichment or depletion of each gene category based on PhyloGLM
results is illustrated by heat maps. Blank cells indicate that there is no
significant difference between genomes corresponding to the two
habitats. Colored cells indicate significantly more genes in genomes
from one habitat compared to another (P value < 0.05). It should be
noted that some high estimated values (dark color cells) for categories
including few genes were more likely to be subject to overestimation.
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majority of functional categories were enriched in freshwater
genomes when comparing freshwater cyanobacteria to mar-
ine cyanobacteria, while the functional categories were
underrepresented in freshwater genomes when comparing
freshwater cyanobacteria to terrestrial cyanobacteria, sug-
gesting that the intermediate degree of environmental fluc-
tuation in freshwater habitat shaped the genomic content of
freshwater cyanobacteria.

Genes associated with light sensing and absorption
were habitat-enriched

Cyanobacteria convert light energy into chemical energy
through photosynthetic complexes. Thus, it is critical for
Cyanobacteria to sense and respond to different light
environments. Phototaxis has been characterized as one of
the strategies that enables organisms to locate optimal light
conditions and avoid UV irradiation [50]. Phototaxis studies
on model organisms have shown that pixJ, which encodes a
protein containing a light-sensing domain, might be a key

gene mediating cyanobacterial phototaxis [51–53]. To
investigate the potential capacity for phototaxis, we
screened the pix gene cluster (pixJILHG) in cyanobacterial
genomes. We observed that the pix gene cluster occurred in
the majority of terrestrial genomes but was absent in major
groups of freshwater and marine cyanobacteria (Supple-
mentary Fig. S4). In addition, gene enrichment analyses
showed that the pix gene cluster was significantly enriched
in terrestrial cyanobacteria compared with marine and
freshwater cyanobacteria (Fig. 3a). Our results suggest that
the presence of pix gene cluster in terrestrial cyanobacteria
enables them to move toward optimal light conditions and
avoid UV irradiation, so that they can better cope with
changing light conditions in the land.

An alternative well-known light adaptation strategy
referred to as complementary chromatic adaptation is based
on altering the pigmentation of phycobilisomes [54]. The
PC pigment encoded by cpcAB genes mainly absorbs red
light, and the PE pigment encoded by cpeAB mainly
accumulates under green light [55]. Thus, cyanobacterium
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complexes. Phycobilisomes composed of the phycocyanin pigment
(PC) encoded by the cpcA and cpcB genes are effective in absorbing
red light, phycobilisomes composed of PC and the phycoerythrin
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that produces PC could efficiently harvest red light, while
cyanobacterium that produces both PC and PE could effi-
ciently absorb green light. In addition, some strains of
Prochlorococcus are known to produce a unique antennal
pigment (divinyl chlorophyll) encoded by pcb genes, which
can efficiently absorb blue light [56]. Based on the
enrichment analysis of genes coding for antenna proteins,
we observed that cpcAB genes were depleted in marine
cyanobacteria. In contrast, cpeAB genes were enriched in
marine cyanobacteria, and pcb genes encoding chlorophyll-
binding proteins were exclusive to marine cyanobacteria
(Fig. 3a, Supplementary Fig. S4). Additional assessment of
light-harvest complex synthesis potential showed that the
majority of freshwater and terrestrial cyanobacteria possess
only PC pigment, and less than 20% of freshwater and
terrestrial strains have the potential to form phycobilisomes
composed of PC and PE pigments. In contrast, a substantial
fraction of marine cyanobacteria showed the potential to
form phycobilisomes composed of PC and PE pigments
(marine: 41%). Meanwhile, 31% of marine cyanobacteria
with the ability to synthesize chlorophyll-binding proteins
as antenna complex. Given the fact that lights that could
penetrate into the ocean are predominantly green and blue
lights [51], our results suggest that marine cyanobacteria
have adjusted their pigment components to adapt to the light
conditions of the ocean.

Notably, it has recently been demonstrated that some
cyanobacterial strains can use far-red light for growth
through “FaRLiP” [27, 57]. Given that far-red wavelengths
are enriched in soil or underplant-canopy environments, it
might be expected that FaRLiP function exists in numer-
ous terrestrial strains [58]. However, our analyses incor-
porated 127 high-quality terrestrial genomes, and our
results showed that the distribution of the highly conserved
FaRLiP cluster, comprising paralogs of genes encoding
photosynthetic complexes, was unrelated to the terrestrial
habitat: the FaRLiP cluster was found in 24 genomes of
cyanobacteria, only four of them were isolated from ter-
restrial habitat, the rest of them originated from various
habitats (marine: three, freshwater: five, thermal springs:
eight, host-associated: two, others: one, unknown habitat:
one; Fig. 3a, Supplementary Fig. S4, Supplementary
Table S3). This observation indicated that the presence of
FaRLiP might reflect the local adaptation of strains as
previously suggested by Kühl et al. [59] that some ter-
restrial strains used the FaRLiP function to cope with
shaded environment, rather than a universal strategy
adopted by terrestrial cyanobacteria under the course of
environmental adaptation. Taken together, these results
indicate that genes related to light sensing and absorption
are ecologically important genes that confer selective
advantages for Cyanobacteria that inhabit distinct ecolo-
gical niches.

Hundreds of genes/domains were involved in
habitat adaptation

Besides the variation in light conditions, other environ-
mental changes (e.g., trophic states, salinity, metal con-
centration, availability of water, and temperature) can also
influence the survival and adaptation of organisms in spe-
cific habitats. To identify those genes associated with
habitat adaptation, we conducted two statistical tests, the
phylogeny-dependent PhlyloGLM test and the phylogeny-
independent hypergeometric test, to infer the enrichment
and depletion of genes/domains in genomes of marine,
freshwater, and terrestrial cyanobacteria. In general, the
genes/domains identified by the PhyloGLM test broadly
overlapped with those identified by the hypergeometric test
(Supplementary Figs S5–7). We identified up to 325 COGs
(among which 181 genes were universally enriched), 231
(71) KOs, and 1139 (720) PFAMs that were significantly
marine environment correlated; 178 (89) COGs, 93
(37) KOs, and 444 (232) PFAMs that were significantly
freshwater environment correlated; and 748 (366) COGs,
544 (366) KOs, and 1066 (444) PFAMs that were sig-
nificantly terrestrial environment correlated (Supplementary
Tables S4–21).

Previous studies have primarily focused on the molecular
mechanisms by which marine picocyanobacteria survive in
saline and oligotrophic waters [44]. In a further attempt to
identify key biological mechanisms involved in habitat
adaptation in diverse members of marine cyanobacteria, we
performed gene enrichment analysis across genomes of
marine, freshwater, and terrestrial strains to find out marine-
enriched genes. Osmolytes are compatible solutes that
regulate osmotic stress of organisms in high-salinity envir-
onments [60]. We observed that three marine-enriched
genes involved in osmolyte biosynthesis were missing in
many nonmarine genomes but present in the majority of
marine genomes (related to the biosynthesis of manno-
sylglycerate, glucosylglycerol, and mannosylglucosylgly-
cerate, see Table 1, Fig. 4a). In addition to the biosynthesis
of osmolytes, we observed an putative ion transporter gene
that might mediate sodium efflux for salt tolerance (yrbG)
was widely distributed in marine cyanobacteria [61]
(Table 1, Fig. 4b). We also noted that the sodN gene
encoding nickel-containing superoxide dismutase was pre-
valent in marine cyanobacteria, whereas nonmarine strains
harbored iron-containing superoxide dismutase (sod2).
Compared with freshwater and terrestrial, the iron con-
centration of marine environments is relatively low. Thus,
utilizing the sodN gene rather than the sod2 may have
conferred a selective advantage in marine strains (Fig. 4c,
Supplementary Tables S4 and S10). In addition, we found
significant differences between marine and nonmarine
strains in nutrient acquisition, such as sulfate/thiosulfate and
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nitrate/nitrite uptake. Marine cyanobacteria preferentially
utilize monomer permease (sulP) [62] and transporter (nrtP)
[63], rather than the ABC transporters used in nonmarine
strains (cysAPUW and nrtABCD; Fig. 4d, e, Supplementary
Tables S4 and S13).

Although the genome sizes of freshwater Cyanobacteria
were on average larger than the genomes of marine Cya-
nobacteria, the number of genes/domains that were speci-
fically enriched in freshwater strains was much smaller than
that in marine strains. We found that genes involved in the
synthesis of bidirectional NiFe hydrogenase were sig-
nificantly correlated with freshwater habitats (hoxHYEFU;
Table 1, Fig. 4f, Supplementary Table S14). Bidirectional
NiFe hydrogenase is a key enzyme in hydrogen metabolism
that regulates reducing equivalent pools (NADH) to balance
the oxidation/reduction state, especially when cells are
under microaerobic or anaerobic conditions [64, 65]. Thus,
we assume that freshwater cyanobacteria tend to be equip-
ped with bidirectional NiFe hydrogenase to cope with
microaerobic or anaerobic conditions such as those in
bloom-forming periods. Moreover, the pyruvate ferredoxin
oxidoreductase gene, which encodes an oxygen-sensitive
fermentative enzyme was found enriched in freshwater
cyanobacteria (Fig. 4g). This result also provides an evi-
dence that the genomes of freshwater cyanobacteria are
more prone to be shaped by microaerobic or anaerobic
conditions. In addition to metabolic functional enrichment,
the enriched genes/domains of freshwater lineages were
indicated to be ecologically relevant, including genes
associated with gas vesicle synthesis (gvpLFK; Fig. 4h,
Supplementary Table S11), which can confer the capacity
to float toward optimal light and oxygen conditions [66],
and a gene encoding arsenite transporter (arsB; Fig. 4i,
Supplementary Table S14), which can confer the resistance
to the prevalent environmental toxin arsenic in aquatic
systems [67].

Terrestrial habitats experience frequent environmental
changes in terms of temperature, the availability of water
and nutrients and ultraviolet irradiation [68]. The fluctua-
tions in terrestrial ecosystems might impose strong selective
pressures on microbial cells. In line with the scenario that
terrestrial cyanobacteria expanded their gene repertoire to
cope with fluctuating environments, the genomes of ter-
restrial cyanobacteria were found to harbor extensive spe-
cific enriched genes/domains (Supplementary Tables S15,
S18, and S21). Among these genes/domains, we found that
the treZY cluster and sucrose synthase gene were sig-
nificantly enriched in terrestrial strains. These genes are
related to the biosynthesis of trehalose and sucrose that are
related to desiccation-protective in organisms (Table 1,
Fig. 4j) [69]. Meanwhile, another desiccation-resistance-
related gene cluster—opuACBD gene cluster, which
encodes a putative ABC-type osmoprotectant uptakeTa
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system, was also found to be enriched in terrestrial cyano-
bacteria (Fig. 4k) [70]. Collectively, these genes may have
been utilized by terrestrial cyanobacteria to get through the
dry periods in the land. On the other hand, two enzymatic

antioxidant-encoding genes [71] (involved in the detox-
ification of reactive oxygen; Table 1, Fig. 4l) as well as a
UV DNA damage repair endonuclease [72] (Fig. 4m,
Supplementary Tables S18 and S21) were significantly
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correlated with terrestrial habitats, suggesting their impor-
tant roles in adaptation to sun-exposed environments. In
addition, increases in gene sets corresponding to the che-
motaxis regulator system as well as putative transporters
were found in terrestrial genomes in the majority of ana-
lyses. Examples of enriched transporters included the
spermidine/putrescine transport system and putative iron
complex transport system (Fig. 4n–p). This finding suggests
that terrestrial cyanobacteria have adapted to survive in the
terrestrial environment through the sensing and uptake
of diverse nutrients. Accordingly, we found that the pre-
sence of multiple genes facilitating increased metabolic
capacities was significantly correlated with terrestrial habi-
tats (Supplementary Tables S15, S18, and S21), indicating
that strains that can utilize abundant resources in the
environment present a selective advantage in terrestrial
ecosystems [46]. A detailed illustration of the distribution of
the discussed enriched genes/domains is provided in Sup-
plementary Figs. S8–10.

The role of HGT in habitat adaptation

HGT is known to have a crucial impact on the evolution of
bacterial genomes [73–75]. To assess whether HGT has also
played an important role in explaining the genetic patterns
observed in cyanobacterial habitat adaptation, we inferred
HGT events in cyanobacterial genomes by using a BLAST-
based HGT detection approach and COUNT software
[30, 32] (see “Materials and methods”). The BLAST-based
approach detected 117,938 gene transfer events in 519 high-
quality cyanobacterial genomes, and 96,980 gene transfer
events were found using COUNT. Although the predicted
numbers of HGT events between these two methods were
different, their results were positively correlated (Spear-
man’s ρ= 0.40, P= 5.01 × 10−21; Supplementary Fig. S11).
Hence, we focused on the results of the BLAST-based
approach, as it included genes that could not be assigned to
any gene families. Predicted HGT events showed significant
variation among the tested cyanobacterial genomes, ranging
from 9 events to 1064 events (Fig. 5a, Supplementary
Table S22). We compared the distributions of HGT count

across cyanobacterial genomes from five defined habitats.
Our results showed that host-associated genomes exhibit
highest HGT frequency. This is in line with previous studies
that frequent HGT event occurred in host-associated gen-
omes as a sign of host adaptation [76]. Notably, terrestrial
genomes have comparable HGT frequency to host-
associated genomes, and exhibit higher HGT frequency
than marine and freshwater genomes (Fig. 5b). Since gen-
ome size has a significant effect on the HGT rate [77] and a
strong positive correlation between genome size and HGT
frequency was observed in our analysis (Spearman’s ρ=
0.65, P= 6.47 × 10−63; Supplementary Fig. S12a), we fur-
ther compared the rate of predicted HGT to genome size
across different habitats. Similar trends were observed that
terrestrial genomes show a comparable rate of HGT to host-
associated genomes, and have a higher rate of HGT than
marine and freshwater genomes (Supplementary Fig. S12b).
Hence, we hypothesize that frequent HGT events occurred
in terrestrial genomes also indicate a sign of habitat adap-
tation, and the genome expansions of terrestrial cyano-
bacteria might be attributed to comparatively large number
of genes acquired through HGT, which help terrestrial
cyanobacteria succeed in fluctuating environments.

To assess whether HGT preferentially affected a certain
function, we examined the functional annotations of puta-
tive transferred genes. Inspection of KEGG function
revealed that among the putative transferred genes, the
functions of many genes remained unknown (34%). Among
the remaining 77,818 annotated transferred genes, more
than half of the genes (51.2%) were categorized as being
related to metabolic functions, 14.1% were related to
environmental information processing, 13.2% were related
to cellular processes, and 12.8% were related to genetic
information processing (Supplementary Table S23). These
results were consistent with the “complexity hypothesis”
that fundamental genes are less likely than peripheral and
operational genes to be horizontally transferred [78, 79]. Of
note, it was observed that gene families enriched in specific
habitat can be attributed to the frequent HGT from donors
inhabiting the same habitat (Fig. 6, Supplementary
Table S24). For example, the acquired gene encoding gly-
cine betaine transporter showed tendency to have marine-
specific activity, such a preference may reflect the necessity
of protecting cells from osmotic stress in marine environ-
ments (Fig. 6a); a large number of acquired genes that
encode type III restriction enzyme were detected in fresh-
water cyanobacteria, while the number is reduced in non-
freshwater cyanobacteria (Fig. 6c), and many terrestrial
cyanobacteria seems to have acquired xylB gene (xylulo-
kinase) for xylose metabolism via HGT, in accordance with
the need of efficient utilization of xylose in terrestrial eco-
system (Fig. 6e). The analysis of gene trees of the habitat-
enriched genes further shows that the acquisition of

Fig. 5 Predicted HGT events across the Cyanobacteria tree of life.
a The phylogenetic tree is a subtree of the genomic tree in Fig. 1 from
which low-quality genomes were pruned. Colored circles at the tips of
branches indicate the habitat from which the strains were isolated. The
inner layer denotes the estimated genome size of each strain. The outer
layer displays the predicted number of horizontal transfer events per
genome using a BLAST-based approach. b Distribution of predicted
HGT of high-quality genomes corresponding to marine (n= 99),
freshwater (n= 184), terrestrial (n= 125), host-associated (n= 33),
thermal springs (n= 26), and others (n= 24) environments. Boxes
with different letters on top show statistically significant differences at
a P value < 0.01 according to the t-test.
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adaptive genes occurred multiple times and from multiple
donors (Supplementary Fig. S13). Taken together, our
results indicate that the successful Cyanobacteria adaptation

to specific habitat is associated with the acquisition and
maintenance of foreign genes, which might confer fitness
advantages to organisms in specific environments.
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Data availability

Cyanobacterial strains reported in this study could be found
and ordered in Freshwater Algae Culture Collection at the
Institute of Hydrobiology, China (http://algae.ihb.ac.cn/english/
Cultrues.aspx). The genomes reported in this study are publicly
available from the NCBI Bioproject database under the
accession number PRJNA598298. The high-resolution
phylogenetic trees of Cyanobacteria based on the BUSCO
dataset and multigene dataset were deposited on iTOL (https://
?itol.embl.de/tree/1836397239155351578467673, https://itol.
embl.de/tree/1836397145361531569311402). Additional ana-
lytic results are available through figshare (https://figshare.com/
s/6b64fa50e1fa720e3587).
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