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Abstract
Deep learning (DL), a subset of artificial intelligence (AI) based on deep neural networks, has made significant
breakthroughs in medical imaging, particularly for image classification and pattern recognition. In ophthalmology, applying
DL for glaucoma assessment with optical coherence tomography (OCT), including OCT traditional reports, two-dimensional
(2D) B-scans, and three-dimensional (3D) volumetric scans, has increasingly raised research interests. Studies have
demonstrated that using DL for interpreting OCT is efficient, accurate, and with good performance for discriminating
glaucomatous eyes from normal eyes, suggesting that incorporation of DL technology in OCT for glaucoma assessment
could potentially address some gaps in the current practice and clinical workflow. However, further research is crucial in
tackling some existing challenges, such as annotation standardization (i.e., setting a standard for ground truth labelling
among different studies), development of DL-powered IT infrastructure for real-world implementation, prospective
validation in unseen datasets for further evaluation of generalizability, cost-effectiveness analysis after integration of DL, the
AI “black box” explanation problem. This review summarizes recent studies on the application of DL on OCT for glaucoma
assessment, identifies the potential clinical impact arising from the development and deployment of the DL models, and
discusses future research directions.

Introduction

Glaucoma is a heterogeneous group of degenerative neural
disorders characterized by progressive loss of retinal
ganglion cells (RGCs) and their axons [1–3]. It is the
leading cause of irreversible blindness worldwide. The
number of patients with glaucoma is projected to be 111.8
million in 2040 [4]. Although the exact pathological

mechanisms of the disease onset and progression are not
fully understood, all types of glaucoma share similar clinical
features in structural changes (e.g., reduction of retinal
nerve fibre layer (RNFL) and ganglion cell with inner
plexiform layer (GCIPL) thickness, optic disc cupping,
neuroretinal rim narrowing), and functional damages (e.g.,
defect in visual field (VF) sensitivity) [5, 6].

Glaucoma patients usually present to ophthalmologists at
the late stage of the disease because glaucoma in the early
stage is usually asymptomatic with unnoticeable peripheral
vision loss. Studies have also reported that nearly or over
half of glaucoma patients in the communities remain
undiagnosed [7–12]. Since glaucomatous visual loss is
irreversible, earlier detection, prompt treatment, and con-
tinual disease monitoring are extremely vital to prevent
disease progression; hence, preservation of vision and
patients’ quality of life (QoL).

Optical coherence tomography (OCT), a technique that
collects optical backscattering signal for cross-sectional and
volumetric imaging of the biological tissues, has been
widely used for assessing glaucoma-related anatomy (e.g.,
anterior chamber angle closure) and structural damage (e.g.,
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reduction of RNFL thickness) in eye clinics soon after its
first demonstration [13]. A few studies also showed that
OCT could be a promising tool for glaucoma screening in
high-risk communities (i.e., among the older population)
[14, 15]. For example, a study conducted by Blumberg et al.
found that community-based OCT screening in an African-
American population (a high-risk group for POAG) could
potentially minimize glaucoma-related visual damage by
the reduction in the prevalence of undiagnosed glaucoma
from 75 to 38% [16]. Apart from identifying glaucomatous
structural damage, OCT is also sensitive in detecting glau-
coma progression in early-stage glaucoma, which may
facilitate glaucoma monitoring [17–19].

The detection of glaucomatous optic neuropathy (GON)
conventionally relies on the comparison of the measured
RNFL thickness (RNFLT) with the built-in normative
database in OCT, without a specific threshold of RNFLT for
diagnosing or excluding glaucoma. Moreover, RNFLT
measurement is affected by various factors, such as poor
image quality or myopia [20–22]. Hence, experienced
glaucoma specialists or highly trained human graders are
needed to interpret the OCT results, which would be time-
consuming and labour-intensive.

The term “Artificial Intelligence” (AI) was first coined in
1956 by John McCarthy and was defined as the simulation
of human intelligence by machines [23]. Machine learning
(ML) is a subset of AI that teaches a computer system to
perform a task or predict an outcome without explicitly
programmed [24, 25]. Deep learning (DL), a subfield of
ML, is at the cutting-edge field and is developing rapidly
due to the advances in computation and big data in recent
years. Particularly, the introduction of convolutional neural
network (CNN) brought a significant breakthrough in the
development of DL for image classification and pattern
recognition.

DL is at the forefront in researches using fundus pho-
tography and OCT for glaucoma detection. Several studies
have demonstrated the application of DL on the detection of
referable GON from two-dimensional (2D) fundus photo-
graphs. For example, Li et al. found that a DL algorithm can
detect referable GON from fundus photographs with an area
under the receiver operating characteristic curve (AUROC)
of 0.986, a sensitivity of 95.6% and a specificity of 92.0%
[26]. In another study by Liu et al. [27], a DL model using
fundus photographs for GON detection achieved AUROC
of 0.996, with a sensitivity of 96.2% and a specificity of
97.7% in the primary validation.

Although the accuracies of these DL algorithms are high
on fundus photography, there are several remaining gaps.
Firstly, the reference standard of the ground truth label-
ling in these studies was limited to GON assessment based
on specialists’ subjective interpretation of 2D fundus pho-
tographs. However, the agreement of glaucoma detection on

2D fundus photographs among specialists was previously
proven to be poor or fair [28]. Secondly, these DL algo-
rithms only focused on glaucoma structural changes
detection from the top view of optic nerve head (ONH) and
retina, instead of considering the inner layers or the entire
structures.

Given the advancements in OCT (e.g., volumetric data,
quantitative measurement, good sensitivity and specificity
for structural changes detection) and its potential role for
glaucoma screening, OCT image interpretation using DL
has made significant progress over the last few years. In this
review, we summarise recent studies on the applications of
DL on OCT images (both posterior and anterior) for glau-
coma assessment, identify the potential clinical impact
arising from the development and deployment of the DL
models, and discuss future directions.

Overview of OCT in glaucoma

Comparing with fundus photography and ophthalmic fun-
dus examination, posterior segment OCT not only enables
the top view of the retina and ONH but also captures deeper
and three-dimensional (3D) view of the morphological
features and offers quantitative and topographical mea-
surements (Fig. 1). The introduction of spectral-domain
OCT (SD-OCT) and swept-source OCT (SS-OCT) in the
last two decades has further improved the axial resolution,
scanning speed, and diagnostic accuracy comparing with
previous OCT technologies [29–31]. Posterior segment
OCT is more and more widely used for GON detection in
clinics globally [32].

In clinics, glaucoma specialists usually review the tradi-
tional OCT reports, consisting of key parameters table,
thickness map and deviation map of RNFL and RNFL
profiles, quadrants and clock hours for GON detection.
Parameters generated by OCT automated segmentation
algorithm was compared to build-in normative database and
colour coded according to the distribution of normal scale.
Recent studies also demonstrated that Bruch’s membrane
opening (BMO), the innermost layer opening of the ONH
that could be captured by OCT, was an accurate and reliable
landmark for glaucoma evaluation. BMO-based minimum
rim width (MRW) measurement by OCT has become a new
standard for neuroretinal rim dimensions document [33–35].

In addition to imaging the posterior segment of the eye,
OCT can also image the anterior segment of the eye, namely
anterior segment OCT (AS-OCT). It acquires cross-
sectional images of the anterior segment and produces
quantitative measurements of biometric parameters to assess
risk factors for anterior chamber angle closure. In addition
to parameters of anterior chamber structures, such as angle
opening distance (AOD), anterior chamber area (ACA),
anterior chamber depth (ACD), anterior chamber width
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(ACW), scleral spur angle (SSA), trabecular iris space area
(TISA), information about lens (lens thickness and lens
vault), iris (iris area and pupillary diameter), and cornea
(central corneal thickness and white-to-white) are also
available [36]. AS-OCT plays an essential role in detecting
primary angle-closure diseases (PACD), including primary
angle-closure suspect (PACS), primary angle closure
(PAC), and primary angle-closure glaucoma (PACG).

Overview of DL methods

The advantages of deep learning compared with traditional
machine learning

Early works on automated disease detection using tradi-
tional ML algorithms relied on the matching of hand-
engineered features designed by highly-trained domain
experts. The difficulty with these traditional approaches is
that it is necessary to choose which features are vital in
each given image. As pathologies exhibited large indivi-
dualized variations in the shape and size, feature extraction
becomes a formidable task. These methods also have
limited generalizability (i.e., the ability to apply ML
algorithms trained on a given dataset to another unseen
dataset). On the contrary, DL has an end-to-end learning
process with an annotated dataset as the input and the
classification as the output. DL models exploit multiple
layers of non-linear information processing, for feature
extraction and transformation as well as for pattern ana-
lysis and final classification. Thus, DL models have the
advantage to recognize the related patterns in images
automatically instead of handcrafting the optimum features
with domain knowledge. Theoretically, with automatic
feature learning and high-volume modelling capabilities,
DL can have much higher generalizability and be less

domain-specific as long as trained with various and
diversified datasets [37–39].

The advantages of convolutional neural network in medical
image processing

CNN architectures provide better generalizability by trans-
forming the input information into multiple levels of
abstractions and learning features in different pathologies
automatically. CNNs are feedforward networks that the
learning process happens from input images to output
classifications only [39]. CNNs built with different archi-
tectures have several variations, but in general, the standard
model of CNN includes the input layer, convolutional lay-
ers, pooling (or subsampling) layers, and non-linear layers.
The convolutional and pooling layers are often grouped into
modules. Either one or more fully connected layers follow
these modules. Modules are often stacked on top of each
other to form a deep network. Convolution operation is an
important characteristic of CNNs, and it is a dot-product
operation between a grid-structure set of weights and
similar grid-structured inputs drawn from different spatial
localities in the input. This operation is particularly useful
for image data, which has a high level of spatial or other
locality [40].

State-of-the-art methods with transfer learning, 2D-CNN,
3D-CNN, multi-scale CNN, and attention framework have
shown promising results in automated diseases detection on
medical images [41–43].

The necessary process of developing a deep learning
network

The fundamental datasets required for DL network devel-
opment (i.e., training and tuning sets), and performance

Fig. 1 Posterior segment
optical coherence tomography
(OCT) not only enables the top
view of the retina and optic
nerve head, but also captures
deeper and three-dimensional
(3D) view of the morphological
features. a an example of OCT
volumetric optic disc scan as
well as corresponding en face
fundus image generated by line-
scanning ophthalmoscopy; b an
example of OCT volumetric
macula scan as well as
corresponding en face
fundus image.
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evaluation (i.e., primary and external validation sets), are
depicted in Fig. 2. Usually, a training set is for the network
to learn all the features automatically, while a tuning set is a
small evaluation set to supervise the real-time performance.
If the network performs well during training but fits poorly
on tuning set, the overfitting issue exists. The modification
should be done accordingly, and learning curves should be
observed to find the best stopping epoch and avoid over-
fitting issue [44]. A non-overlapping primary validation set
(or testing set) is used to test the final performance after
training and tuning are done. These three types of sets are
usually split from the same one large dataset based on a
specific ratio. If the sample size of the dataset is limited, k-
fold cross-validation or leave-one-out cross-validation
strategies can be used to develop and evaluate the DL
model. To further validate the model performance on
unseen datasets and verify its generalizability, other inde-
pendent or unseen datasets are needed as external valida-
tion sets. A more generally good performance in all
validation datasets, including primary and external valida-
tions, means higher generalizability of the DL model. In
terms of DL-based disease detection, a large dataset with
good labels, proper network architecture, lots of computa-
tion, and high generalizability are important [45]. The ter-
minologies are summarised in Table 1.

Deep learning in glaucoma with posterior-segment
OCT

At present, posterior-segment OCT is still the primary
modality for glaucoma identification, and there are several

studies on DL-based GON detection and trained from
posterior segment OCT (Table 2). There were four cate-
gories of DL models with different input: (1) GON classi-
fication based on traditionally measured thickness,
thickness maps, deviation maps, and en face images; (2)
GON classification from segmentation-free OCT B-scans;
(3) GON classification from segmentation-free OCT volu-
metric scans; (4) “Machine-to-Machine” approach for OCT
measurements (i.e., RNFL thickness and BMO-MRW)
prediction from fundus photographs (Fig. 3). Details of
these studies are described as follows.

Deep learning models trained with measurements
or images extracted from OCT reports

From traditional OCT reports, quantitative measurements,
thickness maps, deviation map sand en face images can be
extracted as the input of DL models.

Asaoka et al. constructed and evaluated a CNN DL
model to diagnose early glaucoma (mean deviation >−5
dB) from OCT thickness obtained with the Topcon OCT-
1000 or OCT-2000 devices (Topcon Corporation, Tokyo,
Japan). The input features they used were the 8×8 grid
macular RNFL and GCIPL thickness. In order to deal with
the issue of the small dataset and prevent overfitting, they
also conducted transfer learning [46], a popular approach to
use a pre-trained DL model as the starting point for training
a model on another task. They found that the DL model
with transfer learning successfully increased the AUROC
value from 0.766 into 0.937 [47]. The DL model also
outperformed two traditional machine learning methods

Fig. 2 Illustration of basic process of a deep learning system
development and validation. Usually, a training set is for the network
to learn all the features automatically, while a tuning set is a small
evaluation set to supervise the real-time performance. A non-
overlapping primary validation set (or testing set) is used to test the
final performance after training and tuning are done. These three types

of sets are usually split from the same one large dataset based on a
specific ratio. To further validate model performance on unseen
datasets and verify its generalizability, other independent or unseen
datasets are needed as external validation sets. A more generally good
performance in all validation datasets, including primary and external
validations, means higher generalizability of the DL model.
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(i.e., random forest and support vector machine). The merit
of this study was that it showed the advantages of transfer
learning method in improving the DL model performance.
Moreover, the subjects with glaucoma were all at the early
stage, and the DL model had high sensitivity and specificity
in detecting these subjects.

Muhammad et al. [48] developed a hybrid DL method
(HDLM) to distinguish eyes that previously classified as
either healthy subjects/glaucoma suspects or confirmed mild
glaucoma. All subjects (in a total of 102 subjects, including
57 glaucomatous eyes and 45 healthy/suspected eyes)
undertook scans with an SSOCT device (DRI OCT-1
Atlantis; Topcon Inc., Tokyo, Japan) and a wide-filed cube
scan protocol covering both macula and optic disc regions
(12 × 9mm, 256 horizontal B-scans with 512 A-scans each).
The HDLM included a pre-trained CNN model (AlexNet)
for feature extraction task and a random forest model for the
classification task. The input was six kinds of images in png
format extracted from the OCT reports (1) RGC+ thickness
map; (2) RNFL thickness map; (3) RGC+ probability map;
(4) RNFL probability map; (5) en face projection; (6) a
combination of RNFL thickness, RGC+ probability, and
RNFL probability maps. With different input, the accuracies
of HDLM ranged from 63.7% to 93.1% while the AUROC
values ranged from 0.742 to 0.973. Overall, the input of the
RNFL probability map had the best accuracy, and RNFL
thickness map had the highest AUROC value. When
comparing with using OCT metrics or VF metrics, the
diagnostic performance of HDLM was higher in

distinguishing healthy/suspected eyes from eyes with early
glaucoma.

Another study conducted by Lee et al. [49] used SDOCT
with optic disc cube 200 × 200 and macular cube 512 × 128
protocols (Cirrus High-definition OCT, Carl Zeiss Meditec
Inc.) The DL model was developed by NASNet (neural
architectures search network), and the input was four kinds
of images: (1) GCIPL thickness map; (2) GCIPL deviation
map; (3) RNFL thickness map; (4) RNFL deviation map.
Four independent DL models were trained by each kind of
mentioned images as input and another “ensemble training
model” was trained by integrated features from four kinds
of images. The AUROC values of the ensemble model and
four independent models with single image modality were
0.990, 0.981, 0.986, 0.979, and 0.962, respectively. The
ensemble model achieved the best performance, which
proved that information extracted from four kinds of images
were all useful to the differentiation of glaucomatous eyes
from healthy eyes.

Deep learning models trained with 2D
segmentation-free OCT B-scans

Studies mentioned before were based on measured thick-
nesses, which can be influenced by RNFL or GCIPL seg-
mentation errors. Thompson et al. [50] developed a
segmentation-free DL algorithm based on SDOCT 2D cir-
cular B-scans, and they found it achieved better perfor-
mance for detecting glaucomatous structural changes

Table 1 Basic data set-up in deep learning model development and performance evaluation.

Function Terminology Explanation

Model
development

Training set A non-overlapping set split from the same dataset of tuning and testing sets to build
the deep learning model with different hyperparameters or even different architectures.

Tuning set (or development set/
validation set)

A non-overlapping set split from the same dataset of training and testing sets to
estimate the accuracy of different models during training, fine-tune parameters
continuously, and select the optimum model.

Model
performance
evaluation

Testing set (or primary validation
set/ internal validation set)

A non-overlapping set split from the same dataset of training and tuning sets to
evaluate the performance of the selected optimum model.

External validation (or unseen
testing set)

One or more datasets different from the dataset of training, tuning and primary
validation sets to further evaluation the model performance and verify its
generalizability.

k-fold cross-validation The whole dataset is divided into k equal folds. The (k-1)-folds are combined as
training set for model development and the remaining one-fold is as the testing set for
final performance evaluation. The process is repeated k times, and each fold is used as
testing set for once. The average performance should be reported. k-fold cross-
validation is usually used when data is limited.

Leave-one-out cross-validation A special case of k-fold cross-validation when k equals the total number of data (i.e.,
total number of labelled images in the dataset). Only one image is left out to test the
model performance and the remaining images are used for training. The process is also
repeated k times. Leave-one-out cross-validation is usually used when data is very
limited.
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comparing with conventional RNFL thickness parameters
(AUROC: DL model vs RNFL thickness= 0.960 vs 0.870).

Wang et al. [51] developed a DL model not only using
2D SDOCT B-scans but also paired VF indices as addi-
tional information for discriminating glaucomatous chan-
ges. They applied semi-supervised learning and multi-task
technique to train the DL model and found these advanced
strategies improved the DL model performance on detection
of glaucomatous structural changes from OCT 2D B-scan
images.

Deep learning models trained with 3D
segmentation-free OCT volumetric data

Maetschke et al. [52] proposed a DL technique to classify
eyes as healthy or glaucomatous directly from raw and
unsegmented OCT volumes, being free from the influence
of segmentation error or artefacts. The DL method had a
significant higher AUROC value comparing with the best-
performing classical ML method (0.940 vs 0.890). The
merit of this study was that it computed class activation
maps (CAM) to identify the regions in an OCT volumetric
scan that the DL algorithm deemed to be necessary for
glaucoma detection. According to CAM, the neuroretinal
rim, optic disc cupping, and the LC were the areas sig-
nificantly associated with glaucoma identification. Though
the performance was promising, the dataset used in this
study was relatively small, covering only POAG patients,

and no external validation was done to evaluate the
robustness of the DL algorithm.

Ran et al. [53] developed and validated a 3D DL model
on a much larger dataset consisted of 6921 SDOCT optic
disc volumetric scans. In this study, the 3D DL model
trained with volumetric data significantly outperformed a
2D DL with en face images as input in all the datasets. The
3D DL model also achieved comparable performance to
two specialists with more than ten years’ experience in
glaucoma. The heatmaps generated by CAM showed that
the regions with most discriminative power for the 3D DL
model to detect GON was similar to what ophthalmologists
usually observe in clinics. One of the strengths of this study
was that the 3D DL model had been validated on three
independent datasets covering different ethnicities in mul-
tiple geographical locations. The consistent and good per-
formance proved the generalizability of the 3D DL model
on totally unseen independent datasets.

Russakoff et al. [54] developed a DL model from
SDOCT macular cube scans to classify referable and non-
referable glaucoma. They considered severity levels of
myopia. According to their results, the proposed 3D DL
model based on macular volumetric data achieved greater
AUROC comparing with retinal segmentation pre-
processing and performed reasonably well across all
levels of myopia. However, the AUROC values in external
datasets were lower, which demonstrated that the DL model
should be further refined for higher generalizability.

Fig. 3 There were four categories of deep learning (DL) models
with different input. These input were: (a) OCT measurement images
extracted from the traditional OCT report, including retinal nerve fibre
layer (RNFL) thickness map, RNFL deviation map, optic disc en face
fundus image, ganglion cell with inner plexiform layer (GCIPL)
thickness map, GCIPL deviation map, and macula en face fundus

image; (b) OCT segmentation-free 2D B-scans; (c) OCT
segmentation-free 3D volumetric scans; (d) “Machine-to-Machine”
approach to predict OCT quantitative measurements, such as RNFL
thickness, GCIPL thickness, and Bruch’s Membrane Opening-based
minimum rim width (BMO-MRW), from fundus photographs.
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Deep learning models using “machine-to-machine”
approach to predict OCT measurements from
fundus photographs

There were DL models using “Machine-to-machine”
approach to predict OCT measurements from fundus pho-
tographs, in order to obtain objective and quantitative esti-
mates when OCT may not be available.

Felipe et al. proposed a DL approach with paired fundus
photograph and RNFL thickness generated from SDOCT,
intending to quantify glaucomatous structural damages on
optic disc fundus photographs. The DL algorithm was
trained to assess optic disc photographs and predict SDOCT
average RNFL thickness. According to their results, the
predicted RNFL thickness obtained from DL showed a
strong correlation with the actual measurement by SDOCT,
and the mean absolute error (MAE) of the predictions was
approximately seven μm. The AUROC of using these pre-
dicted values to discriminate glaucomatous eyes from nor-
mal eyes (AUROC, 0.944) was almost identical to using
actual SDOCT RNFL thickness values (AUROC, 0.940).
The activation heatmaps showed that the locations in the
fundus photographs as the most important for the DL
algorithm to predict were very close to the optic disc and
adjacent RNFL [55].

Thompson et al. trained a DL algorithm using BMO-
MRW from SDOCT as a reference. The BMO-MRW is a
relatively new parameter that has been introduced for the
evaluation of the neuroretinal rim on SDOCT, and it helped
the DL algorithm to quantify the amount of glaucomatous
neuroretinal damage on optic disc photographs. A strong
correlation was seen between predictions and observed
values, and the MAE was 27.8 μm. The AUROC values for
discriminating glaucomatous from healthy eyes with the DL
predictions and actual SDOCT global BMO-MRW mea-
surements were 0.945 and 0.933, respectively. The DL
algorithm also showed high accuracy for glaucoma detec-
tion with quantitative and objective reference from SDOCT.
The heatmaps showed that the region of interest for the DL
algorithm was also the optic disc [56].

In summary, the performance of DL models trained with
posterior segment OCT (either optic disc or macula cube
scans), including OCT measurements, thickness maps or
deviation maps, en face images, B-scans, and volumetric
scans, were all promising. There were cons and pros of
different modalities: (1) training with OCT measurements
required less computation power but was vulnerable to image
artefacts and segmentation error; (2) training on thickness
and deviation maps could, to some extent, illustrate the
distribution of RNFL or GCIPL thickness, but still could not
directly show the structural changes; (3) training on 2D
circular B-scan around optic disc could obtain structural
information directly from peripapillary area, but other

glaucomatous characteristics were regardless; (4) training on
3D volumetric scans could make full use of all the glaucoma-
related information that even human eyes might not notice,
but the training process costed more graphics processing unit
(GPU) memory and more extended time.

Deep learning in glaucoma with anterior-segment
OCT

Angle-closure is the primary fundamental problem in
PACD, a spectrum with similar pathologies, including
PACS, PAC, and PACG [57]. Though PACG is less pre-
valent than POAG, it accounts for 50% of all glaucoma
blindness worldwide and is probably the most visually
destructive form of glaucoma. To some extent, PACG is
preventable if the angle closure progress can be halted in the
early stages.

Some studies proved the possibilities of applying DL to
identify angle closure (Table 2). Fu et al. [58] developed a
DL automated detection model for the presence of angle
closure on AS-OCT images from a time-domain OCT
(Visante AS-OCT). They compared performance between
the DL algorithm and a method using quantitative features,
and they found that the DL algorithm achieved much better
performance with an AUROC value of 0.960. In their fol-
lowing study [59], the group refined their DL algorithm by
combing multilevel clinically relevant regions and further
evaluated its performance on AS-OCT images from an
SDOCT device (i.e., Cirrus HDOCT), and the results were
also very good. Xu et al. [60] developed DL algorithms to
detect not only yes/no angle closure in any quadrant, but
also yes/no PACD (i.e., PACD was defined with more than
2 or 3 quadrants of angle closure) on AS-OCT images. In the
testing dataset, the proposed DL model achieved excellent
performance with AUROC values of 0.928 for angle clo-
sure, 0.964 for PACD based on 2-quadrant definition, and
0.952 for PACD based on 3-quadrant definition, respec-
tively. The differentiation of angle closure in any quadrant,
as well as yes/no PACD, can potentially reflect the severity
of angle closure. In Hao et al.’s study, instead of just binary
classification, they developed a multi-scale region CNN-
based classification for synechia angle, narrowed angle, and
open angle. A more detailed classification would be poten-
tially significant to guide individualized clinical manage-
ment at different stages. The proposed model achieved an
AUROC of 0.914, higher than other DL networks without
using multi-scale region-based method [61].

All these studies showed promise and potential to apply
DL into PACD identification on AS-OCT images. How-
ever, AS-OCT modality might not be suitable for glaucoma
screening among the population, as it only detected anterior
angle structures and may fail to classify subjects with open
angle glaucoma, the most common type of glaucoma.
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Limitations and further advancements

Though DL can potentially facilitate and enhance OCT as a
tool for glaucoma assessment with reasonable efficiency
and accuracy, there are still some limitations from the cur-
rent literature:

1. The prediction from the DL models is still a “black
box” process even though a few studies generated
heatmaps to demonstrate the regions where the AI
were paying attention.

2. The generalizability of the DL models in unseen
datasets is yet to determine.

3. All the DL models were developed and validated on
retrospectively collected datasets.

4. Other morphology and pathology (e.g., pathological
or high myopia related changes) may influence
the performance of the DL model for glaucoma
assessment.

More efforts and advanced developments are warranted
to further the research in this field for glaucoma assess-
ment. From the clinical perspective, it is essential to build a
large well-labelled database with data collected from
multiple centres worldwide. It will increase the diversity of
the database, reduce the bias caused by data-related
factors, such as race/ethnicity, diseases severity, variances
in imaging protocols. It will be prudent to establish
standardized guidelines for data collection, data sharing,
ground truth labelling, reference standard, and results
reporting. Ultimately, multi-centred collaboration and
mutual data sharing could be the best approach to build
a large and diverse dataset, covering heterogeneous
imaging protocols and devices, hierarchical clinical set-
tings, as well as various disease severity and subjects’
characteristics.

From the technical perspective, one of the major draw-
backs of the DL method itself is the requirement of a large
amount of high-quality and well-labelled data for training
and validation in order to archive an acceptable diagnostic
performance. However, training on large dataset consumes
a lot of GPU memory. Advanced techniques, such as model
compression or input downsize, are yet to apply to reduce
the GPU memory. Moreover, it is still a big challenge to
obtain large-scale medical images in real-world settings as
aforementioned. Thus, more sophisticated data augmenta-
tion methods should be taken into consideration, such as
transfer learning [46], digitally generating artificial lesions
inserted into normal images [62], or inserting real lesions to
other locations of normal or abnormal images [63], and
generative adversarial networks (GANs) [64]. Furthermore,
even with a large amount of data, lack of high quality and
reliable ground truth labelling may also reduce its effec-
tiveness in DL training. More state-of-the-art methodolo-
gies, such as semi-supervised or unsupervised learning
should be applied to refine existing DL models and tackle
the issues of limited well-labelled data. These methods have
already shown the promise in brain tumour segmentation
[65], clinical decision support in health-IoT (the Internet of
Things) service [66], and OCT image analysis [67]. In
addition, though some DL models performed well in pri-
mary validation, there are still present pertinent challenges
for real-world application among different settings due to
the diversities in devices and imaging protocols, variances
in ocular physiological anatomy, imbalance in the data
distribution. Thus, the present DL models should be refined
by cutting-edge technologies, such as domain adaptation
[68], to obtain higher generalizability.

Figure 4 displays a potential clinical workflow with the
deployment of a well-developed and validated DL system
for glaucoma detection in primary, secondary or tertiary
settings. Before the final implementation in real-world

Fig. 4 A potential clinical
workflow with deployment of
deep learning-based clinical
support system for glaucoma
detection with OCT images in
primary, secondary and
tertiary settings. Subjects
undergo SD-OCT scanning first
to screen for glaucoma, and the
images will be the input of the
AI system. The technicians will
then make referral suggestions
based on the output (i.e., refer to
ophthalmologists due to
“Yes GON”, or observation only
due to “No GON”).
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clinical settings, the following issues in both clinical and
technical domains should be addressed:

1. Patients’ data privacy and security, including ethical
and legal issues, are the primary concerns. Advanced
techniques should be used to prevent data leakage,
and clinicians should also be familiar with the
working principles of the DL-based clinical decision
support system to protect patients’ safety.

2. A fully automatic DL-based infrastructure for facil-
itating the workflow (e.g., image extraction from OCT
machines and sending to GPU) should be built and
developed for further clinical implementation.

3. Prospective studies should be conducted to analyze
the cost-effectiveness, efficiency, and accuracy of
implementing DL system into the present clinical
workflow. In addition, the prospective studies should
also be aimed for model refinement, as well as for
quality assurance to monitor the consistency and
accuracy of the DL system over time.

4. The interpretability of the output from the DL model is
also vital in clinics to ensure the safety of patients. As
DL models extract and learn features automatically
without manual feature extraction, it is quite difficult
to reveal and explain the operation process (i.e., “black
box” issue). Several methods were used in previous
studies, such as using CAM to highlight the target

objects recognised DL models and to reveal areas
potentially related to the location of pathologies or the
locations of the most significant features for identifica-
tion (Fig. 5). Further researches should be conducted
to better visualize the learning process in the “black-
box” and improve the interpretability of the DL model.

5. The schemes of DL system’s clinical deployment [69]
should also be considered. There will be different
kinds of possible applications, including screening,
triage, diagnosis, and prognosis. When incorporating
into the existing clinical workflow, clinicians play an
essential role. Though fully automated DL-based
decision support system is ideal, it still requires human
intelligence to determine the clinical management
individually based on patients’ condition and medical
history, as many cases in the real-world scenario may
not be fully evolved in training and validation. Thus,
teleglaucoma [70] can be a potentially better scheme,
i.e., to implement the DL-based clinical support
system in screening settings for automated diseases
detection and to be supervised by experienced
glaucoma specialists off-site for referral decisions at
the same time.

6. Appropriate educations should be conducted to
patients, technicians and clinicians, with the aim of
increasing their acceptance and understanding of the
DL-based clinical decision support system.

Fig. 5 Examples of heatmap generated by class activation map
(CAM) for glaucomatous optic neuropathy (GON) detection gen-
erated with a previously published DL algorithm [53]. a The cross-
sectional view of original OCT optic disc scans, b the en face view of
original OCT optic disc scans, and c the corresponding en face fundus
image. The feature maps, i.e., the intermediate outputs of the network

layers, before the global average pooling layer as well as the para-
meters of the fully connected layer were taken to obtain the heatmap.
The sum of the feature maps weighted by the parameters were taken to
generate the CAM. For this particular deep learning model, the red-
orange-coloured regions (i.e., retinal nerve fibre layer and neuroretinal
rim) have the most discriminative power to differentiate GON.
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7. Legitimate concerns about how such schemes might
operate, particularly outside the confines of the hospital
should be emphasized and discussed adequately.

Conclusion

The application of DL on OCT for glaucoma assessment
has been shown to be efficient, accurate, and promising.
Further research is crucial in tackling some existing chal-
lenges, such as annotation standardization (i.e., setting a
standard for ground truth labelling among different studies),
development of DL-powered IT infrastructure for real-
world implementation, prospective evaluation in unseen
datasets for further evaluation of generalizability, cost-
effectiveness analysis after integration of DL, and the AI
“black box” explanation problem, before further applying
DL on OCT for glaucoma assessment such as computer-
aided diagnosis, screening, and triage in different settings.

Literature search

We searched databases of PubMed, Medline, Web of Sci-
ence, Google Scholar, and Scopus for studies published in
English up to 31st May 2020, using these keywords:
“glaucoma”, “glaucomatous optic neuropathy”, “optical
coherence tomography”, “artificial intelligence”, “machine
learning”, “deep learning”, “deep neural network”, and
“convolutional neural network”. The reference lists from the
selected articles were checked to obtain additional relevant
articles not included in the databases.
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