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Abstract

Variations in the gut microbiome have been associated with changes in health state such as Crohn’s disease (CD). Most
surveys characterize the microbiome through analysis of the 16S rRNA gene. An alternative technology that can be used is
flow cytometry. In this report, we reanalyzed a disease cohort that has been characterized by both technologies. Changes in
microbial community structure are reflected in both types of data. We demonstrate that cytometric fingerprints can be used as
a diagnostic tool in order to classify samples according to CD state. These results highlight the potential of flow cytometry to
perform rapid diagnostics of microbiome-associated diseases.

Introduction

Variations in the gut microbiome have been associated with
changes in health state, such as obesity, inflammatory bowel
diseases and diabetes [1-3]. Characterization of the micro-
biome is mostly done through analysis of the 16S rRNA
gene. Because sequence-based surveys are becoming stan-
dardized, microbiome analysis shows great potential to be
included in precision medicine [4]. Yet, sequence-based
surveys are still budget limited and time intensive [5, 6].
Flow cytometry is a single-cell technology, able to
measure up to thousands of individual cells in mere sec-
onds. When applied to microbial communities, both
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morphological and physiological characteristics are recor-
ded for every cell [7]. The aggregation of these cellular
characteristics describes the status of a microbial commu-
nity, which can be summarized by creating a cytometric
fingerprint. This cytometric fingerprint, in turn, can be used
to quantify community dynamics in order to relate it to
space, time, or other external variables, such as a case and
control status. Because of the strong connection between the
microbiome and human health [8, 9], cytometric finger-
prints have the potential to be used as a diagnostic tool to
rapidly identify microbiome-associated diseases [10]. As
such, they have been used to quantify changes in microbial
community composition to study colitis in murine models
[11], and therefore can serve as an information-rich alter-
native to quantify microbial diversity [12—14].

In this study, we reanalyzed the recently published data of
a disease cohort containing samples diagnosed with Crohn’s
disease (CD) (n=29) and a healthy control (HC) group
(n = 66). All samples have been analyzed independently by
both flow cytometry and 16S rRNA gene amplicon
sequencing [15]. The original study suggested a clear dif-
ference in microbial community composition between CD
and HC samples based on 16S rRNA gene sequencing. In
this work, we set forth to demonstrate that these differences
are reflected in the cytometry data as well, and in addition,
compare the predictive power of both technologies in a
straightforward way. We used PhenoGMM, an adaptive
cytometric fingerprinting strategy based on Gaussian mix-
ture models, to cluster individual cells in operational groups
[16]. This results in a relative cell count contingency table
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that describes samples by groups of phenotypically similar
cells instead of grouped sequences. Random Forest classi-
fication was applied to classify unseen samples according to
the disease state based on both types of data (Fig. 1). 16S
rRNA gene amplicon sequencing resulted in a perfect
identification (average area under the ROC curve (AUROC)
= 1.0), with flow cytometry doing marginally worse (mean
AUROC =0.94). To assess the reproducibility of the
workflow, flow cytometry train and test samples were
additionally split according to the day at which they were
measured (i.e., day 1, 2, or 3). The average AUROC resulted
in values between 0.87 and 0.96 (SI Fig. 1).

We quantified the within-sample diversity in terms of
richness (Dg) and evenness (D,) for both types of data.
Cytometric diversity, based on similarly grouped cells, was
moderately correlated with taxonomic diversity based on
genus abundances (Spearman’s rs(D3%, DE™M) = 0.30, P =
33x107% ryDIS DEM) =031, P=2.5x10"7). Both
taxonomic diversity (Fig. 2a) and cytometric diversity
(Fig. 2b) were statistically significant markers in function of
CD vs. HC, in which both the richness and evenness of gut
microbiota were significantly lower for CD compared to HC
samples (Mann-Whitney U test: P<1x107%). We also
assessed which cytometric groups captured significant
changes according to the disease state; 132 contained sig-
nificantly more cell counts for CD than HC, while 103
groups contained significantly more cell counts for HC than

CD (Mann—Whitney U test, adjusted P <0.05 after
Benjamini-Hochberg correction). The locations of these
groups revealed a clear structure (Fig. 2c). In other words,
structural differences in microbial community composition
between healthy and disease state were captured by the
cytometric fingerprints, which could be summarized in
terms of the cytometric diversity.

It is important to emphasize that it is not the aim of this
study to benchmark our flow cytometry results with those of
16S rRNA gene sequencing. Both technologies generate
different data types and have their own distinct methodo-
logical and computational biases, especially in the case of
complex matrices such as fecal material [17]. In the studied
data set, samples for flow cytometry analysis were prepared
differently than those for the marker gene analysis because
flow cytometry analysis aims to measure individual bac-
terial cells. As such, our computational workflow con-
sidered the successfully extracted and nucleic acid-stained
single-cell fraction of the community, and missed any
residual particle-associated cells and extracellular DNA.
Marker gene analysis considers bulk DNA derived from
both particle-attached cells, dead and living cells, free DNA,
and is sensitive to DNA extraction efficiencies and gene
copy number variations [18]. These baseline differences in
methodological biases can be further amplified by the level
of sample homogenization, which has been the subject of
intense research [19, 20]. Many disease states, including
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Fig. 2 Microbial diversity estimations and cytometric structure for
CD (rn=29) vs. HC (n =66). Statistical differences were assessed
using a Mann—Whitney U test. Each boxplot displays the first and third
quartile and the median line. Whiskers extend from the quartiles to 1.5
times the interquartile range. Points that lie outside this range are
visualized as outliers. a Within-sample diversity based on genus
abundances as derived from 16S rRNA gene amplicon sequencing.

CD, are also associated with differences in fecal moisture
content, which may affect both cell and DNA extraction
efficiencies and therefore necessitates further scrutiny and
optimization of flow cytometry and marker gene analysis of
fecal samples [21]. However, given these possible biases,
we observed a consistent outcome for both approaches,
which supports recent research showing that methodologi-
cal variability caused by sample storage conditions out-
weighs sample homogenization variability [20].

Flow cytometry has become a vital part of clinical
diagnostics [22], which is reflected by the fact that most
major hospitals have a flow cytometry instrument at their
disposal. This makes its application to the human micro-
biome readily available, yet cytometric analyses of the
human microbiome are rarely considered. An exception is a
recent analysis of different stages of chronic kidney disease
[23] or the study of a simplified intestinal microbial com-
munity [24]. Although flow cytometry does not allow to
inspect the genetic make-up of the microbial community, it
may enable rapid (i.e., within hours) and affordable (i.e.,
$214 per day for the analysis of 100 samples [25]) screening
of microbiome-associated diseases.

Materials and methods
Sample and data collection
Flow cytometric and sequencing data from the disease cohort
were retrieved from the original study by Vandeputte et al.
[15]. The cohort consists of 29 patients diagnosed with CD vs.
66 HC samples. The CD cohort is fully described in [26], HC

samples were taken from the Flemish Gut Flora Project [27].
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b Within-sample diversity based on cytometric fingerprinting.
¢ Location of the means of each flow cytometric operational group in
the FL1-H-FSC-H scatterplot. Groups are annotated whether they
contain significantly more cell counts for CD than HC (CD >HC),
significantly less cell counts for CD than HC (CD < HC) or whether
differences were not significant (NS), P-values were corrected for
multiple testing using a Benjamini—Hochberg correction.

In brief, frozen aliquots of fecal material were analyzed by
flow cytometry. Before freezing, samples were first mechani-
cally homogenized. Next, aliquots were diluted 100,000 times
in physiological solution and filtered using a sterile syringe
filter with a pore size of 5 um. 1 ml of the microbial suspension
was stained with 1 ul Sybr Green I (1:100 dilution in dime-
thylsulfoxide; shaded 15min incubation at 37 °C; 10,000
concentrate). Flow cytometric measurements were performed
using an Accuri C6 (BD Biosciences), according to the pro-
tocol of Prest et al. [28]. Forward and side scatter were col-
lected and used for further analysis, along with fluorescence
information collected by the FL1 (533/30nm) and FL3
(>670 nm) detectors. The flow rate was set at 14 ul per minute
and the acquisition rate did not exceed 10,000 events
per second. A threshold value of 2000 was applied on the FL1
channel. Instrument settings were identical for all samples, and
measured twice at three different days, resulting in six replicate
samples per patient. The coefficient of variation (CV) regarding
the total cell counts per sample (n = 6) is lower than 0.66, with
an average CV of 0.23 (SI Fig. 2).

Frozen aliquots of faecal material were also analyzed by
16S rRNA gene amplicon sequencing. Taxa were identified
at the genus level based on similar 16S rRNA genes and the
genus table was used as reported by Vandeputte et al. [15].
Procedures and data analysis are fully described in the
original publication.

Analysis

The flow cytometry data were analyzed according to the
following steps, which are laid out in more detail below: (1)
preprocessing of the data (background and noise removal),
(2) deriving cytometric fingerprints using a Gaussian
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mixture model, (3) performing patient status classification,
and (4) calculating cytometric diversity metrics.

(1) Preprocessing: all channels were transformed by f
(x) = asinh(x). A fixed gating strategy, different from
the original publication, was applied to all samples to
remove noise in the FL1-SSC space (see SI Figs. 3
and 4). Additional automated denoising was per-
formed using the FlowAl package (v1.4.4., target
channel: FL1, changepoint detection: 150) [29].

(2) Cytometric fingerprinting: each patient was character-
ized by six replicate samples. The FSC-A, SSC-A,
FL1-A, and FL3-A channels were included in the
analysis. Cytometric fingerprints were determined
using a Gaussian mixture model. After train and test
set creation (see below), 400 mixtures were fitted to
26,784 cells, based on a concatenation of data from 93
training patient times 288 cells per patient to determine
the fingerprint template. The number of cells was
determined by the replicate that contains the lowest
number of cells in the entire data set; this amounted to
48 cells, and therefore, 288 cells per patient. Next, the
fitted mixture model was used to assign cells to
specific mixtures per patient, including test samples. In
this step, replicate samples were subsampled to the
lowest number of cells available for that specific
patient, and then pooled. The number of included cells
was between 288 and 39,414 cells per patient (SI Fig.
5), with a median value of 6078 cells. Finally, cell
fractions were determined, resulting in a contingency
table of relative cell counts per patient. This
methodology, called PhenoGMM [16], is available as
a wrapper function in the R package PhenoFlow [14].

(3) Patient status classification: the cell count contingency
table was compared to the genus abundance table to
perform classification according to the patient status
(CD vs. HC). Train and test sets were created using a
leave-pair-out cross-validation strategy [30]. One CD
sample and one HC were randomly left out as test
samples, with the remainder used as samples for
training. The training set was used to derive
cytometric fingerprints and train a Random Forest
classifier with 400 trees [31]. The hyperparameters
were optimized with the remaining training set using
stratified tenfold cross-validation and a random grid
search [32]. Hundred random combinations of
hyperparameter values were evaluated with the
AUROC as a performance metric. The maximum
number of variables that were considered at an
individual split for a decision tree was randomly
drawn from {1,...,K}, in which K denotes the
number of mixtures or genera, and the minimum
number of samples for a specific leaf was randomly

drawn between 1,...,5. Cross-validation, Random
Forest classification, and performance evaluation were
performed using the scikit-learn machine learning
library [33]. ROC curves were created based on
pooled predictions of the test set. AUROC values
were calculated after averaging predictions per test
pair [30]. Twenty-nine different test pairs were created
in such a way that each CD sample was left out once.
Two additional steps were carried out to address the
robustness of the analysis. First, the whole procedure
was repeated ten times per test pair. Second, to
address variability between measurements at different
days, train and test samples were split according to the
day at which they were measured and the procedure
was repeated.

(4) Microbial diversity: the within-sample diversity was
calculated based on relative cell and genera abun-
dances for all samples. This was done using the Hill
numbers [34], defined as Dy =S and D, = 1/(Z}_; p?).
S denotes the number of genera or non-empty mixtures
and p; the relative abundance of genus or mixture i.
Correspondence between taxonomic diversity and
cytometric diversity was assessed using Spearman’s
correlation with SciPy’s spearmanr() function [35].
Statistical differences between CD and HC cytometric
and taxonomic diversity and cytometric groups were
assessed according to a Mann—Whitney U test, using
SciPy’s mannwhitmeyu() function. P-values for the
latter were adjusted using a Benjamini-Hochberg
correction, by means of the multipletests() function
from the statsmodels package [36].

Data availability

The genus table can be accessed as supporting information
to the original publication [15]. Denoised raw flow cyto-
metry data can be accessed via FlowRepository (ID:FR-
FCM-ZYVH). Code and data to reproduce the analysis
supporting the paper can be accessed via https://github.com/
prubbens/PhenoGMM_CD.
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