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Baseline immunity and impact of chemotherapy on immune
microenvironment in cervical cancer
Yi Zhang1,2, Minhua Yu1,2, Ying Jing1,2, Jiejun Cheng3, Caiyan Zhang4, Lin Cheng1,2, Haijiao Lu1,2, Mei-Chun Cai4, Jie Wu5,
Wenjing Wang1,2, Weihua Lou1,2, Lihua Qiu1,2, Li Tan6, Huaiwu Lu7, Xia Yin1,2, Guanglei Zhuang 1,2 and Wen Di1,2

BACKGROUND: We aimed to comprehensively evaluate the immunologic landscape at baseline and upon chemotherapy in
cervical cancer. The information should aid ongoing clinical investigations of checkpoint blockade immunotherapies in this disease
setting.
METHODS: A series of 109 cervical carcinoma patients was retrospectively assayed before and after neoadjuvant chemotherapy.
Tumour-infiltrating immune markers (CD3, CD4, CD8, CD20, CD56, CD68, PD-1, PD-L1) were assessed by immunohistochemistry.
RNA sequencing analysis was performed on matched pre- and post-treatment fresh-frozen tissues.
RESULTS: At diagnosis, diverse immune cell types including CD20+ B cells, CD3+ T cells, CD56+ natural killer (NK) cells, and CD68+
macrophages were detected in different proportions of cervical carcinoma. Unsupervised hierarchical clustering evidently showed that
CD4+ and CD8+ T cell abundance correlated with PD-L1 expression. Based on the immune infiltration patterns, the patients could be
stratified into four groups with prognostic relevance, namely, ‘immuno-active’, ‘immuno-medial’, ‘immuno-NK’, and ‘immuno-deficient’.
Neoadjuvant chemotherapy was associated with increased CD4, CD8, CD20, and CD56 signals, most prominently in good responders.
Transcriptomic data corroborated the improved anticancer immunity and identified immunosuppressive CD200 upregulation
following chemotherapeutic intervention.
CONCLUSIONS: A subset of cervical cancer harbours active immune microenvironment, and chemotherapy treatment may further
exert locoregional immunostimulation. Immune checkpoint inhibitors as combination or maintenance therapies warrant future
exploration in clinic.
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BACKGROUND
Cervical cancer is a significant cause of women’s mortality with
approximately 569,847 new cases and 311,365 deaths annually
worldwide.1 Currently, patients with advanced cervical cancer have
limited therapeutic options. In recent years, extensive epidemiolo-
gical, laboratory, and clinical investigations have been undertaken to
tackle this life-threatening problem. One notable progression is the
ground-breaking discovery of high-risk human papillomavirus (HPV)
as a major aetiological factor for cervical cancer.2 The subsequent
prophylactic HPV vaccination and effective screening of precancer-
ous lesions followed by preventive treatment have yielded a
dramatic reduction in the late-stage disease incidence.3,4 Although
we envision that cervical cancer will be eventually eliminated with
these efforts, until it can be optimistically accomplished after
decades,5 basic scientific advances still need to be made and novel
lifesaving medicines are imminently desired to overcome this global
threat of public health.6,7

It has been well established that tumour microenvironment,
especially the immune milieu, plays a crucial role in modulating
disease progression and response to anticancer therapies.8–10 As
expected, cellular and molecular indicators of positive immune
activities are typically associated with long-term patient survival,
and vice versa.11,12 Indeed, numerous studies have identified
certain immune contexture or immunity-related gene signatures
as prognostic biomarkers in a wide spectrum of human
malignancies.13–16 Along similar lines, accumulating data suggest
that the baseline immunologic state within tumour lesions
determines the clinical outcome following pharmacological
interventions, ranging from conventional chemotherapeutics to
targeted compounds.17–19 These anticancer agents may in turn
trigger immunogenic cell death and alter the composition and
phenotype of intratumoural immune infiltrates.20–22 By exerting
cytotoxic effects, many anti-neoplastic drugs often have the
tendency to stimulate the innate and acquired immune system,
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thereby facilitating tumour eradication.23–25 In fact, the ultimate
therapeutic efficacy as a result of administered regimens some-
times hinges on their capacity to engage functional immune
circuitries and restore immunosurveillance.26–29 Therefore, malig-
nant cells commonly co-opt multiple evasion mechanisms to
avoid immune attack,30–33 and a rational approach unleashing the
immunoreactivity holds considerable promise for potentially
curative remedies, as exemplified by the recent emergence of
cancer immunotherapies to reinstate the immunological control
of diverse neoplasms.34–36

Hallmarked by HPV-driven carcinogenesis, cervical cancer is
presumed to possess immunogenicity by nature.37–39 Meanwhile,
persistent viral infection could also induce host immune tolerance,
thus leading to a more complicated scenario.40,41 Surprisingly, in-
depth characterisation of its immunologic landscape has been
rather scanty with only a few reports focussing on specific cell
subsets.42–45 We reasoned that a more thorough understanding of
the immune components and their interrelation with empirical
treatments would provide enormous opportunities for improving
patient management and optimising therapeutic protocols. In
this study, using immunohistochemical (IHC) staining and RNA
sequencing (RNA-seq), we systematically surveyed various
immune cell populations present in different stages of cervical
cancer at baseline or upon neoadjuvant chemotherapy (NACT).
These integrated analyses allowed for a critical evaluation of
tumour-infiltrating immune profiles and might contribute to the
ongoing development of immunomodulatory therapies in cervical
cancer.

METHODS
Patient cohort
The study was conducted in accordance with ethical guidelines of
the U.S. Common Rule and was approved by the Ethics Committee
of Ren Ji Hospital. Appropriate written informed consent was
obtained from each patient. All patients were treated at the
Department of Obstetrics and Gynecology, Ren Ji Hospital, and
their clinical records and tissue specimens were retrospectively
retrieved. Formalin-fixed and paraffin-embedded (FFPE) sections
were obtained in pathologic examination. For RNA-seq analysis,
fresh-frozen tumour tissues were collected during diagnostic
biopsy (pre-chemotherapy) and debulking surgery (post-che-
motherapy). A total of 14 patients (28 paired samples) were
assayed. Magnetic resonance imaging (MRI) data were provided
by the Department of Radiology, Ren Ji Hospital. Detailed clinical
characteristics of the patient cohort are described in Supplemen-
tary Table 1.

Chemotherapy response evaluation
The clinical response to NACT was assessed according to the
Response Evaluation Criteria in Solid Tumours. The evaluation was
performed by an experienced radiologist (J.C.) on the basis of
MRI images following 1–2 cycles of chemotherapy treatment.
A complete response (CR) was defined as the disappearance of the
initial lesions. A partial response (PR) was defined as the detection
of at least a 30% reduction in the sum of the longest dimensions
of the primary tumours. Progressive disease (PD) was defined as a
>20% increase in the sum of the longest dimensions of the target
lesions or the development of new lesions. Stable disease (SD)
implied that none of the above applied. Patients with CR or PR
were defined as good responders, and patients with SD or PD
were defined as poor responders.

Immunohistochemistry
IHC was performed on 5-μm-thick FFPE tissue sections. Slides were
baked, deparaffinised in xylene, passed through graded alcohols,
and antigen retrieved with 10 mM citrate buffer, pH 6.0 in a
steam pressure cooker. Pre-processed tissues were treated with

peroxidase block (Dako) to quench endogenous peroxidase
activity, blocked using protein block (Dako), and incubated with
primary antibodies (Supplementary Table 2). Slides were then
washed in 50 mM Tris-HCl, pH 7.4 and incubated with horseradish
peroxidase-conjugated secondary antibodies. Immunoperoxidase
staining was developed using the DAB system according to the
manufacturer’s instructions (Dako). Slides were counterstained
with haematoxylin, dehydrated in graded alcohol and xylene, and
cover-slipped using mounting solution.

IHC staining quantification
Areas of necrosis or artefacts were ignored. Microscopically, the
cell membrane in the slices was stained. The slides were examined
using a bright field microscope and were scored using a four-point
scale. First, for progression-free survival (PFS) survival analysis, the
immune cellular staining of each antibody was semi-quantitatively
scored as ‘−’ (no or <5% positive cells), ‘+’ (5–25% positive cells),
‘++’ (26–50% positive cells), and ‘+++’ (>50% positive cells).
Both tumour and immune cell staining of programmed death-
ligand 1 (PD-L1) were scored. The IHC signals were enumerated in
ten random ×20 fields, and cell counts were normalised to the
area of tumour tissues. The samples with staining scores of ‘−’
were considered as the negative group, whereas those with
staining scores of ‘+’, ‘++’, and ‘+++’ were combined into the
positive group. Second, in order to perform correlation analysis
and quantitative comparison before and after NACT accurately,
the slides were also scanned with an Aperio ScanScope system
(Leica Biosystems) and quantified using the Aperio ImageScope
software v12.1 with Positive Pixel Count v9 (PPCv9) algorithm for
statistical analysis.

RNA-seq and analysis
We performed RNA-seq analysis on 14 patients (28 samples) with
matched pre- and post-chemotherapy fresh-frozen tissues. Total
RNA was extracted from shavings of fresh-frozen specimens using
the RNeasy Plus Kit (Qiagen) according to the manufacturer’s
protocol. RNA purity and integrity were assessed by the
NanoPhotometer spectrophotometer (Implen) and RNA Nano
6000 Assay Kit on Bioanalyzer 2100 system (Agilent Technologies),
respectively. Total RNAs with RNA Integrity Number of >8 were
subjected to next-generation sequencing. Total amount of 3 µg
RNA for each sample was used as input materials for library
preparation with the NEBNext Ultra Directional RNA Library Prep
Kit (NEB). The index-coded libraries were clustered on a cBot
Cluster Generation System using the TreSeq PE Cluster Kit v3-cBot-
HS (Illumina) and sequenced on an Illumina Hiseq X Ten platform
to generate 125 bp paired-end reads (Novogene). Clean data were
obtained from FastQ raw data by removing adapter, poly-N
sequences, and low-quality reads. All the downstream analyses
were based on the clean data with high quality. Index of the
reference genome was built using Bowtie v2.0.6 and paired-end
clean reads were aligned to the reference genome (Ensembl hg38
human genome) using TopHat v2.0.9.46 The mapped reads of each
sample were assembled by Cufflinks (v2.1.1) in a reference-
based approach.47 Differential expression analysis was performed
using Cuffdiff (v2.1.1). P-values were adjusted using the
Benjamini–Hochberg procedure for controlling the false discovery
rate. Genes with an adjusted P value of <0.05 were considered
differentially expressed. The sequencing data have been depos-
ited in the NCBI BioProject database (http://www.ncbi.nlm.nih.
gov/bioproject/) under the accession number SRP173984.

Statistical analysis
Statistical analyses were performed with the R language and
Graphpad Prism 6. Unsupervised hierarchical clustering was
conducted to define the immune subtypes based on the
evaluated markers. Pearson correlation analysis was used to test
the associations between different immune measurements.
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Cumulative survival rate was calculated by the Kaplan–Meier
method and analysed by log-rank test. Cox proportional models
were used to determine the hazard ratio that represents the
relative risk of events among patients in the different groups.
Gene ontology and pathway analyses were performed using
Metascape (http://metascape.org).48 Single sample gene set
enrichment analysis implemented in the Bioconductor ‘GSVA’
package was applied to generate compound scores for the
indicated gene signatures.49 CIBERSORT was employed to
estimate the relative abundance of diverse immune cell infiltrates
from gene expression profiles.50 Antigen receptor repertoire
present in bulk RNA-seq data was inferred by MiXCR.51

Comparisons between two conditions were based on two-sided
Student’s t test. P values of <0.05 were judged to be statistically
significant.

RESULTS
Patient characteristics
The study cohort contained 109 cases of cervical cancer with high-
quality FFPE tissues and clinicopathological information available
(Supplementary Table 1). The median age of the patients was 52
years (range, 25–83 years). The histological diagnosis was mainly
squamous cell carcinoma (89.9%) and adenocarcinoma (9.2%) of
different International Federation of Gynecology and Obstetrics
stages (IA–IVA). Forty (36.7%) and sixty-nine (63.3%) subjects
received upfront radical hysterectomy and NACT followed by
surgery or chemoradiotherapy, respectively (Supplementary
Fig. 1a). We were able to obtain 92 treatment-naive samples
and 60 chemo-exposed specimens from the diagnostic biopsies
or surgical procedures, among which 43 pairs were matched

pre- and post-NACT tissues. In total, 152 (92 treatment-naive and
60 chemo-exposed) FFPE blocks underwent IHC examination, and
28 fresh-frozen tumours (14 pre-NACT and 14 post-NACT) from the
NACT group were subjected to RNA-seq analysis (RJCC1–14, all
squamous cell carcinomas).

Patterns of baseline immune infiltrates in cervical cancer
To systematically analyse the immune makeup of cervical cancer,
CIBERSORT,50 a computational method for inferring the relative
abundance of diverse cell infiltrates from bulk tumour transcrip-
tomes, was initially conducted on the gene expression data
(RJCC1–14, 28 data sets) profiled by RNA-seq. This framework
pinpointed that the major representative immune cell types were
B cells, T cells, natural killer (NK) cells, and macrophages
(Supplementary Fig. 1b). Based on these findings, we assembled
a panel of monoclonal antibodies to probe each subset-specific
marker, as well as immune checkpoint molecules including
programmed death-1 (PD-1) and PD-L1 (Supplementary Table 2).
These eight immunologic parameters displayed divergent positive
staining ratios in the 92 untreated samples. We observed CD3+
pan T cells (66.3%), CD4+ helper T cells (47.4%), CD20+ B cells
(41.1%), and CD68+ macrophages (75.8%) in a prevalent
population of cervical tumours, whereas CD8+ cytotoxic T cells
(32.6%), CD56+ NK cells (30.5%), PD-1 (15.8%), and PD-L1 (31.6%)
signals were restricted to a smaller fraction of cancer patients
(Fig. 1a). While most immune markers were comparable between
cervical adenocarcinoma and squamous cell carcinoma, histotype-
specific CD20 and CD56 positivity was noted (Supplementary
Fig. 2).
In order to better understand the complex immune characteristics

in cervical cancer, we quantified the immune stains and assessed
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their interrelationships by analysing pairwise correlation between
the evaluated variables. Unsupervised hierarchical clustering of
Pearson correlation coefficients (R) was visualised in a heatmap,
which identified a dominant array of co-modulated markers,
including CD3, CD4, CD8, CD20, CD68, PD-1, and PD-L1 (Fig. 1b).
There was a statistically significant positive correlation between
PD-L1 intensity and CD3+, CD4+, or CD8+ tumour-infiltrating
lymphocytes (TILs) (Fig. 1c), consistent with the known role of T cell-
derived cytotoxicity as a driver of PD-L1 expression.52 Among the 29
cases (31.6%) showing PD-L1 staining, PD-L1 was mostly expressed
on tumour cell surface (29.5%) and only sporadically detected in
immune cells (2.1%; Fig. 1d). Taken together, these results indicated
that cervical cancer at baseline contained both innate and adaptive
immune cells, as well as immune checkpoint expression within the
tumour microenvironment.

Association of immune infiltrates with patient prognosis
We explored the prognostic impact of baseline immune markers
in cervical cancer and found CD8+ T cell infiltration as the most
promising candidate to be associated with beneficial clinical
outcome regardless of neoadjuvant treatment (Supplementary
Fig. 3a). We further considered the combination of immunologic
features and performed unsupervised hierarchical clustering of
eight attributes. Four subgroups were revealed and arbitrarily
designated as cluster 1 (16.8%), cluster 2 (37.9%), cluster 3 (26.3%),
and cluster 4 (18.9%) (Fig. 2a). Cluster 1 (termed ‘immuno-active’)
exhibited marked positivity for nearly all IHC markers other than
CD56 and PD-1, hence resembling typical immunoreactive
tumours (Fig. 2b). Cluster 2 (termed ‘immuno-medial’) showed
moderate levels of immune contents (Fig. 2c). Cluster 3 (termed
‘immuno-deficient’) represented the immunologically inert proto-
type with low immune cell densities (Fig. 2d). Cluster 4 (termed
‘immuno-NK’) was uniquely defined by prominent CD56+ NK cells
(Fig. 2e). We found that the ‘immuno-deficient’ group (cluster 3)
had relatively shorter PFS than the ‘immuno-active’ group (cluster
1), and the ‘immuno-medial’ group (cluster 2) displayed inter-
mediate risk of relapse (Fig. 2f). Interestingly, patients categorised
as ‘immuno-NK’ (cluster 4) demonstrated a PFS advantage
compared to those in the ‘immuno-deficient’ and ‘immuno-
medial’ classes (Fig. 2f). Of note, we discovered tertiary lymphoid
structures (TLSs) characterised by ectopic intratumoural aggre-
gates of B and T lymphocytes (Fig. 2g and Supplementary Fig. 1b),
which preferentially existed in the ‘immuno-active’ tumours
(45.8%) and tended to correlate with improved PFS (Fig. 2h).
Therefore, the magnitude and composition of baseline immune
infiltrates aided the stratification of cervical cancer patients into
distinct molecular subtypes with prognostic relevance.

Immune augmentation upon NACT
Sixty-nine patients with locally advanced disease were first dosed
with primary chemotherapeutic regimens and subsequently
evaluated to further receive surgical resection (62 patients) or
chemoradiotherapy (7 patients). This neoadjuvant setting,
although controversial,6 offered an unprecedented opportunity
to investigate the potential impact of conventional systemic
intervention on tumour microenvironment for rational combina-
tion with immunotherapeutics and to explore the predictive
determinants of chemosensitivity for patient-tailored medicine. To
this end, we collected 60 specimens from debulking surgery after
platinum-based doublets (mostly cisplatin) and carried out IHC
assessment using the same aforementioned antibody panel.
Compared to the baseline (92 samples), cervical cancer following
chemotherapy (60 samples) experienced a significant reduction in
Ki67 and PD-L1 positivity (Fig. 3a), in line with drug-invoked
tumour cell death. By contrast, the densities of multiple immune
markers, including CD4, CD8, CD20, CD56, and PD-1, were
evidently increased in chemo-treated samples (Fig. 3a).
Treatment-conferred enrichment of CD4+, CD8+, CD20+, and

CD56+ TIL was verified by performing paired analysis (Fig. 3b) and
inspecting representative IHC images (Fig. 3c) in the 43 cases with
matched pre- and post-NACT sections. Although immunomodu-
latory effects of NACT were considerably variable among these 43
individuals, an expansion of each immune cell population was
noted in >50% of the patients without exception (Supplementary
Fig. 4a). Of particular relevance, we also observed CD14+ myeloid
cell depletion by NACT (Supplementary Fig. 4b), which was shown
to foster robust T cell reactivity in HPV16-based vaccination.53,54 In
addition, TLSs were markedly induced and arose de novo in some
cases (Supplementary Fig. 4c). These data suggested that NACT
fostered pronounced immune augmentation in cervical cancer.

Patterns of immune augmentation upon NACT
We sought to delineate the overall patterns of immunostimulation
by NACT in more detail. Analogous to the earlier immune profiles,
the NACT cohort with paired samples (43 patients) could be
hierarchically divided into ‘immuno-active’, ‘immuno-medial’,
‘immuno-deficient’, and ‘immuno-NK’ subtypes as well. The most
striking TIL accumulation occurred in the initially classified
‘immuno-deficient’ tumours (Fig. 4a). Chemotherapeutic-elicited
immunogenic phenotype was also manifested by frequent gain of
CD56+ NK cells across all four molecular clusters (Fig. 4a). We
further compared TIL levels with respect to the clinical outcome
by segregating NACT-treated patients (65 out of 69 evaluable) into
good responders (with CR or PR) and poor responders (with SD or
PD) (Supplementary Fig. 5). As expected, 44 good responders
exhibited better PFS than 21 poor responders (Fig. 4b). Of interest,
decreased Ki67 and PD-L1 signals, as well as intensified CD4, CD8,
CD20, CD56, and PD-1 staining, were specifically observed in good
responders (Fig. 4c) but not in poor responders (Fig. 4d). Although
the limited number of cases and events did not allow for definitive
assessment on the predictive value of immune augmentation,
elevated abundance of diverse lymphatic cell populations, similar
to the TIL-enriched status regardless of medication, tended to be
positively associated with chemotherapy response (Supplemen-
tary Fig. 6). Collectively, the immunomodulatory action of NACT
was affected by both baseline immunity and therapeutic efficacy.

Evaluation of immunologic properties with RNA-seq
We leveraged the RNA-seq data of 14 fresh-frozen sample pairs
(RJCC1–14) to validate the relationship between antitumour
immunity and neoadjuvant treatment. NACT caused discrepant
changes of gene expression in each patient and, across the cohort,
resulted in 45 upregulated and 4 downregulated transcripts
(Fig. 5a and Supplementary Fig. 7). Gene ontology and pathway
analyses of differentially expressed genes pinpointed multiple
significantly altered modules related to immune activation upon
chemotherapy, i.e. ‘TNFA signalling via NFKB’ and ‘inflammatory
response’ (Fig. 5b). We conducted gene set variation analysis
(GSVA) with predefined transcriptional signatures for a range of
biological processes and found that cell proliferation was indeed
impaired, whereas relative amounts of CD8+ T cells, NK cells, and
mast cells were increased following NACT (Fig. 5c). In addition, by
specifically analysing various immune checkpoints (Supplemen-
tary Fig. 8), we identified a significant upregulation of the
immunosuppressive CD200 molecule (Fig. 5d), which might serve
as a potential immunotherapeutic target in chemo-treated cervical
cancer. CIBERSORT algorithm confirmed the enlarged fractions of
CD4+ and CD8+ T cell subsets in the majority of residual lesions
(Fig. 5e); on the contrary, there were relatively fewer remaining
macrophages and T regulatory cells, both considered negative
mediators of immune function. Finally, the deep transcriptome
sequencing enabled computational inference of antigen receptor
diversities reflected by T cell receptor and immunoglobulin
repertoires using the MiXCR pipeline.51 More complementarity
determining region 3 clonotypes were extracted from chemo-
exposed tumours in 10 out of 14 sequenced subjects (Fig. 5f),
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implying enhanced lymphocyte infiltration. We concluded that the
RNA-seq experiment substantially verified our IHC findings of
chemotherapy-coupled immunostimulation in cervical cancer.

DISCUSSION
In this study, by integrating IHC and RNA-seq analysis, we presented
a rational approach for detailed interrogation of immune micro-
environment in a large series of cervical cancer. Our data revealed
divergent baseline immunologic states that stratified patients into
distinctive prognostic subgroups. Brief exposure and clinical
response to NACT seemingly incited a favourable reshaping of
antitumour immunity against cervical carcinoma. These findings
not only hold promise to better understand the impact of
tumour–immune interactions on disease behaviour and manage-
ment but also provide the foundation to investigate synergistic
treatment options of combining conventional chemotherapy with
immunotherapeutic agents.
We employed a robust in silico deconvolution framework to

estimate the immune constituents from bulk gene expression
profiles,50 which indicated the highest degree of infiltrating B cells,
T cells, NK cells, and macrophages in cervical tumours. It is
noteworthy that the computational measurements were at best
approximate, and a definitive cellular composition and abundance
can be conceivably resolved using single-cell RNA-seq technology
in the future.55,56 Nevertheless, these prevalent TIL populations
were independently validated by immunostainings and collec-
tively segregated samples into four molecular subtypes. As with
numerous other cancer types,57 cervical malignancies were vastly

heterogeneous in the breadth of immune cell infiltration.
Remarkably, we found that B cells and T cells sporadically formed
into TLSs, which were reported to play a direct role in the priming
of antitumour immunity.58–62 In addition, a unique subset of
patients was revealed to contain disproportionate intratumoural
NK cells and has exceptionally inferior risk of disease progression
compared to other molecular subtypes. This observation accords
with the notion that NK cells are key to cancer immunosurveil-
lance as both cytolytic effectors of the innate immune system and
emerging regulators of the adaptive immune cascade.63,64 Taken
together, our in-depth characterisation of the immune portraits
reinforced the immunogenic nature of virally driven cervical
cancer.
Chemotherapy, including the mainstay cisplatin in cervical

cancer, has traditionally been considered largely immunosuppres-
sive due to its direct haematologic toxicity. However, such view is
challenged by cumulative evidence showing that it can enhance
certain facets of locoregional immune response in a variety of
human cancers.21–23,29,65 Along this line, we discovered that
preoperative chemotherapy indeed converted cervical lesion into
a site permissive for antitumour immunity, as exemplified by
selective enrichment of CD4+, CD8+, CD20+, and CD56+ TIL. The
molecular mechanisms underlying the inflammatory effects of
cytotoxic chemotherapeutics have been predominantly attributed
to the drug-evoked immunogenic cell death, involving for
instance surface calreticulin exposure,66 HMGB1 secretion,67

autophagic ATP release,68 NLRP3 inflammasome activation,69

cytokine production,70 and instigation of antigen-presenting
dendritic cells.71 Alternatively, recent work showed that standard
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chemotherapy was able to reduce immunosuppressive myeloid
cells and enhance T cell responses to therapeutic HPV16
vaccine in cervical cancer.53,54 Of note, myriad preclinical and
clinical studies have also unveiled differential immunostimulatory
capacities of different chemotherapeutic agents.72,73 Given the
pleiotropic functions of chemotherapy, additional work is
deserved to fully elucidate the mechanistic determinants respon-
sible for the augmenting immune activities.
Although ongoing trials with immune checkpoint inhibitors in

cervical cancer have shown early promising outcome, clinical
responses are generally modest and variable.74 A disappointing
3% objective response rate (ORR) was observed in a Phase 1/2 trial
of 42 women who received ipilimumab (anti-CTLA-4) as mono-
therapy.75 In KEYNOTE-028 with pembrolizumab (anti-PD-1), ORR
was 17% and median duration of response was merely

5.4 months.76 Most recently, the KEYNOTE-158 Phase 2 basket
trial presented an interim ORR of 12.2%, leading to the accelerated
approval of pembrolizumab in advanced PD-L1-positive cervical
cancer.77 Overall, the potency of immune-based regimens is
limited in unselected patient populations and should be tailored
according to clinicopathological or molecular attributes. Illumi-
nated by current study, we propose the following paradigm
shift toward precision immunotherapy for cervical cancer. The
‘immuno-active’ tumours may experience spontaneous immuno-
genicity considering pronounced basal lymphocyte infiltration
and PD-L1 expression and are likely poised to benefit from
immunomodulatory medicine regardless of chemotherapeutic
education. For the ‘immuno-medial’ or ‘immuno-active’ subtypes,
combined or induction chemotherapy is a plausible option to
provoke iatrogenic immunogenicity. The ‘immuno-NK’ cluster
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illustrates an opportunity for pharmacological inhibition of NK cell
checkpoints.78 Therefore, an improved understanding of the
immune status at baseline and upon specific treatments could
yield valuable insights into more optimised and efficacious
therapeutic modalities of cervical cancer.

Several limitations of this exploratory study have to be
acknowledged. First, our investigations were retrospective in
nature with potential biases owing to missing clinical records and
unpredictable tissue availability. Second, these preliminary results
stemmed from one patient cohort in a single institution without
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internal and external validation data sets. Third, we mainly relied
on conventional protein markers to define immune cell types and
ideally the corroborative RNA-seq analyses should have included a
larger number of subjects. Finally, the prognostic and predictive
significance of chemo-induced TIL remodelling was underpow-
ered to determine and future efforts with adequate sample size
are warranted in this respect.

CONCLUSIONS
In summary, we provided for the first time a comprehensive
snapshot of baseline immunologic features within cervical tumour
microenvironment and further uncovered the association
between NACT effects and an immunostimulatory phenotype.
Expanded studies in the prospective setting are required to verify
these findings, which may have clinical implications for tailoring
immune-based treatment in women with cervical cancer.
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