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Abstract

Non-type 2 inflammation (Non-T2)-mediated asthma is difficult to define due to lack of signature 

biomarkers. It exists in the absence of T2-high or eosinophilic inflammation and includes 

neutrophilic and paucigranulocytic subtypes. Several cell types and cytokines, including Th1, 

Th17, IL-6, and IL-17, contribute to mechanisms of non-T2 asthma. Neutrophil extracellular traps 

(NETs) and inflammasome activation likely play a role in severe neutrophilic asthma. Several 

mechanisms lead to uncoupling of airway hyperresponsiveness and remodeling from airway 

inflammation in paucigranulocytic asthma. Recent research on transcriptomics and proteomics in 

non-T2 asthma is discussed in this review. Investigations of specific drug therapies for non-T2 

asthma have been disappointing, and remain an important area for future clinical studies.

Introduction

Asthma is a heterogeneous chronic obstructive airway disease characterized by multiple 

distinct endotypes. Asthma is commonly categorized by the type of inflammation associated 

with its pathobiology. The majority of asthma shows evidence of cytokines associated with 

T-helper 2 cell (T2)-mediated inflammation and is termed T2-high. The pathogenesis of T2-

high asthma is chiefly orchestrated by interleukins (IL)-4, IL-5 and IL-13 and is usually 

accompanied by eosinophil infiltration. T2-high disease is clinically determined by elevated 

peripheral blood or sputum eosinophil levels using consensus-derived, numerical cutoffs. 

Conversely, there is currently no agreed upon definition or signature biomarker for T2-low 

or non-T2 asthma other than absence of T2-high inflammation. In this review, we will 

discuss several proposed mechanisms underlying non-T2 asthma and potential research 

directions (Table 1).

Clinical identification of non-T2 asthma

Sputum cytology can be used to categorize airway inflammation as eosinophilic, 

neutrophilic, mixed granulocytic, or paucigranulocytic. Non-T2 asthma encompasses the 

neutrophilic and paucigranulocytic categories; whether similar mechanisms drive 

neutrophilic inflammation in the mixed granulocytic and neutrophilic-only categories is 

unknown, as is the longitudinal stability of these categories. Although there is no agreed 

upon numerical criterion, neutrophilic asthma (NA) has been defined as ≥50% sputum 
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neutrophils [1]. Paucigranulocytic asthma is characterized by absence of increased sputum 

neutrophil or eosinophil levels, coupled with stereotypical asthmatic features, principally 

airway smooth muscle (ASM) hypertrophy, reversible airway obstruction and airway 

hyperresponsiveness (AHR).

Non-T2 asthma currently lacks confirmatory biomarkers. A study with >500 asthmatic 

participants identified the combination of three endogenously generated, exhaled volatile 

organic compounds — hexane, nonanal, and 1-propanol — as associated with NA [2]. This 

finding requires confirmation in other cohorts.

Non-T2 asthma is heterogeneous, reflecting the combination of neutrophilic and 

paucigranulocytic categories. It is more common in those with adult-onset disease, 

corticosteroid resistance, and comorbidities such as obesity and gastroesophageal reflux 

disease [3]. Triggers for neutrophilic airway infiltration are diverse and include smoking, air 

pollution, and bacterial infections.

Induction of neutrophilic airway inflammation in asthma

Multiple cytokines are implicated in the development of neutrophilic airway inflammation in 

asthma. IL-17 levels in bronchial biopsies correlate with airway neutrophil infiltration and 

are increased in patients with severe and exacerbation-prone asthma relative to those with 

milder disease [4]. Th17 cells secrete IL-17 cytokines, including IL-17A, which promote 

neutrophil recruitment in the airways by acting on airway epithelial cells (AEC) to secrete 

neutrophil chemokines such as CXCL1 and CXCL8. Murine studies suggest that lung 

dendritic cell expression of TNF-α-induced protein 3 (TNFAIP3) stimulates Th2 expression 

whereas its absence results in Th17 expression and neutrophilic airway infiltration following 

intranasal dust mite extract administration [5]. A gene polymorphism in the IL4-receptor-

alpha chain (R576) promotes inducible T-regulatory to Th17 cell conversion and associates 

with severe asthma [6]. Treatment with an anti-IL6-R-antibody decreased exacerbation rates 

and improved lung function in a severe asthmatic child homozygous for the IL4-R-

alpha(R576) allele while decreasing Th17 expression in peripheral blood [7]. However, the 

pathogenic role for IL-17 cytokines, such as IL-17A and IL-17F, in asthma is questioned by 

a failed clinical trial of an anti-IL-17-receptor antibody to improve asthma control [8]; but 

these participants were not selected for NA, which may explain the negative results. IL-17 

also induces IL-6 secretion from AECs, which may stimulate neutrophilic inflammation by 

driving naïve T-helper cells into Th17 differentiation. IL-6 is implicated in severe NA, as 

documented in a study by the Unbiased Biomarkers in Prediction of Respiratory Disease 

Outcomes (U-BIOPRED) Group, which identified a subgroup of severe asthmatic patients 

with elevations in sputum of both IL-6 levels and neutrophil counts [9]. In contrast, a recent 

study from the National Heart Lung and Blood Institute (NHLBI)-sponsored Severe Asthma 

Research Program 3 (SARP3) reported that serum IL-6 associates with asthma severity, 

although IL-6 correlated with elevated blood but not sputum neutrophil counts [10•]. This 

observation suggests that IL-6 may be important in asthma pathogenesis through 

mechanisms other than neutrophil infiltration in the airways, such as mucus hypersecretion 

[11].
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Th1 inflammatory cytokines are also implicated in NA. In one report, bronchoalveolar 

lavage fluid (BALF) from severe asthmatic patients showed greater Th1 cells and neutrophil 

numbers accompanied by higher interferon-gamma levels, a signature Th1 cytokine [12]. 

These investigators linked interferon-gamma to AHR through suppression of secretory 

leukocyte protease inhibitor, a protein expressed by AEC and associated with normal ASM 

tone.

Finally, the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin 

domain containing 3 (NLRP3) inflammasome and IL1-beta are intracellular sensors of 

microbial and other danger signals important for innate immunity. NLRP3 and IL1-beta are 

both upregulated in sputum from patients with NA [13]. NLRP3 inflammasome-related 

genes were upregulated in patients with NA and correlated with sputum IL1-beta levels in a 

U-BIOPRED study [14]. In murine models of NA, bacterial infection with Haemophilus and 

Chlamydia upregulated the inflammasome, IL1-beta levels and neutrophilic airway 

inflammation. Pharmacological inhibition of the inflammasome and neutrophil depletion 

both attenuated AHR. In this study, airway inflammation reoccurred following intranasal 

IL1-beta administration [15]. Understanding the contribution of neutrophil regulation to 

asthma pathobiology requires additional research.

Pathologic role of NETs in asthma

The major roles of neutrophils include phagocytosis of pathogens, antimicrobial enzyme 

degranulation, and generation of neutrophil extracellular traps (NETs) from ejected nuclear 

contents [16]. NET dysregulation may result in asthmatic pathobiology. A recent SARP3 

study found that patients with more severe asthma exhibit higher airway neutrophil-derived 

sputum extracellular DNA levels which correlated with NET formation and inflammasome 

activation [17•]. These processes may result in asthma through AEC injury. Interestingly, a 

subset of NETs does not involve rupture of but rather resealing of the neutrophil plasma 

membrane, which creates an enucleated cytoplast. In murine models of NA, neutrophil 

cytoplasts correlated with Th17-mediated asthmatic responses independent of NETs [18]. In 

this study, neutrophil cytoplasts, identified by flow cytometry in BALF, also correlated with 

asthma exacerbation frequency among SARP3 severe asthmatic patients.

Airway dysbiosis in neutrophilic asthma

Airway dysbiosis refers to alterations in normal airway microbiome composition. Multiple 

investigators have documented dysbiosis in association with NA. In a study including >150 

asthmatic participants, the sputum microbiome of those with NA had less bacterial species 

diversity compared with those with eosinophilic disease [19•]. Two groups identified sputum 

Proteobacteria as overrepresented in NA [20,21]. Recently, a U-BIOPRED study showed the 

relative stability of individual subject sputum microbiome after >12 months of follow up for 

NA. Haemophilus, Moraxella, and Streptococcus were noted more frequently [22•]. Whether 

these microbiome signatures are causative of NA or a confounder to another underlying 

mechanism remains to be determined.
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Paucigranulocytic asthma

As the name implies, this phenotype involves asthma without an increased granulocytic 

presence in the airways, described as an ‘uncoupling’ of airway obstruction from airway 

inflammation [23]. There are several proposed mechanisms for paucigranulocytic asthma, 

including modulation of neural mediators, sphingolipid synthesis, and regulators of 

bronchoconstrictive signaling.

Efferent nerves in the airways are controlled by postganglionic, parasympathetic cholinergic 

neurons and elicit ASM contraction. Changes in their regulation may provoke AHR. A 

murine model demonstrated that nerve growth factor (NGF) administration by either nasal 

instillation or genetic engineering elicits similar degrees of AHR as allergen sensitization 

and challenge, but without attendant airway inflammation [24,25]. In a study using human 

bronchial biopsies, asthmatic patients exhibited greater cholinergic nerve density relative to 

healthy controls. Greater tropomyosin receptor kinase B expression in asthmatic airways 

may drive this difference, which is independent from airway eosinophil levels [26]. 

Conversely, SARP3 study participants with severe T2-high asthma exhibited greater sputum 

and AEC levels of brain-derived neurotrophic factor (BDNF; a factor important in neuronal 

survival) compared to T2-low asthma [27], suggesting that neural dysregulation in asthma 

may involve multiple pathways, not all specific to paucigranulocytic asthma.

Other mechanisms may explain the uncoupling of AHR and airway inflammation.

Genome-wide association studies have identified chromosome 17q21 as an asthma 

susceptibility locus. Within this locus, gene polymorphisms associated with overexpression 

of oromucoid-like 3 (ORMDL3) may underlie paucigranulocytic asthma. ORMDL3 inhibits 

the rate-limiting step in sphingolipid synthesis, and mice genetically engineered to 

overexpress ORMDL3 exhibit reduced serum sphingolipids, increased AHR and asthmatic 

airway remodeling without airway inflammation [28•,29]. Children with 17q21 asthma risk 

alleles were found to have lower serum sphingolipid levels relative to those with wildtype 

alleles. Interestingly, T2-low asthmatic children had lower serum sphingolipid levels relative 

to both T2-high asthmatic and non-asthmatic children [30]. ORMDL3 overexpression may 

induce paucigranulocytic asthma by upregulating mediators important in airway remodeling 

but not inflammation [31].

Finally, guanine nucleotide-binding (G)-protein-coupled receptors (GPCRs) are the principal 

mediators of airway tone. ASM contraction occurs when ligands or spasmogens provoke 

conformational changes in GPCRs, resulting in G-alpha-q subunit signaling, which causes 

intracellular calcium increases and myosin light chain phosphorylation. Regulator of G-

protein signaling (RGS) proteins modulate GPCRs through signal termination, and several 

RGS proteins have been implicated in asthma [32]. Peripheral blood mononuclear cells of 

asthmatic patients and lung tissue in cases of fatal asthma express lower RGS2 protein levels 

compared to non-asthmatic controls [33]. Interestingly, RGS2 and RGS5 knockout mice 

spontaneously exhibit AHR to broncho-constrictors independently of airway inflammation 

[34,35]. Ongoing clinical studies will clarify whether RGS dysregulation is important in 

paucigranulocytic asthma in humans.
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Obesity and metabolism in non-T2 asthma

Obese asthma is recognized as a distinct phenotype typically seen in women with late-onset 

symptoms, corticosteroid resistance and non-T2 disease. When accompanied by the 

metabolic syndrome, asthma severity associates with systemic IL-6-mediated inflammation. 

A SARP3 study observed that exacerbation-prone asthma (defined as having ≥2 asthma 

exacerbations per year) is a persistent feature in severe asthmatic patients at 3 years of 

follow-up that associates with obesity and elevated plasma IL-6 levels. Further, plasma IL-6 

levels predicted asthma exacerbation risk independently of T2-high biomarkers [36•]. 

Another connection between obesity and non-T2 asthma relates to a deficiency in the 

airways of the endogenous bronchodilator nitric oxide (NO) due to increased catabolism by 

serum arginase of the NO precursor L-arginine [37]. A recent pilot study with obese 

asthmatic patients demonstrated that dietary supplementation with L-citrulline increased 

serum L-arginine and airway NO and improved lung function and asthmatic symptoms, 

particularly in women with late-onset disease [38•]. This potential non-T2 asthma-specific 

therapy needs confirmation in larger, more rigorous trials.

Transcriptomics and proteomics in non-T2 asthma

A deeper mechanistic understanding of asthma phenotypes can be explored through cluster 

analysis and transcriptomics. Cluster analysis involves mathematically grouping 

heterogeneous cohorts through specific characteristics. Transcriptomics analyzes RNA 

transcripts from cells or tissues. Sputum transcriptomics in U-BIOPRED study participants 

identified three clusters based on differential gene expression [39]. One transcriptome-

associated cluster was characterized by elevated sputum neutrophil numbers and enrichment 

in inflammasome and tumor necrosis factor superfamily gene transcription. Another was 

characterized by paucigranulocytic inflammation and was enriched in metabolic pathway 

gene transcription, including ubiquitination and mitochondrial function. Proteomics is 

similar to transcriptomics but analyzes protein production rather than RNA transcripts. Two 

recent studies analyzed both sputum proteomics and cytology. As with the transcriptomics 

study, this approach also identified a NA phenotype again associated with more severe 

disease. Both studies identified sputum azurocidin (a protein found in neutrophil azurophil 

granules) as predictive of NA [40,41]. Identifying additional biomarkers will potentially help 

with developing endo-type-specific therapies [22•,42,43].

Management and potential therapeutic options

There are currently few effective treatment options for non-T2 asthma, and available ones 

(i.e. trigger avoidance, vaccination against respiratory pathogens, smoking cessation, and 

weight reduction in obese asthmatics) are not mechanism-based. Corticosteroids are the 

cornerstone of asthma controller therapy but non-T2 asthma is typically corticosteroid-

resistant. Long-acting muscarinic antagonists, beta-2 adrenergic agonists and oral macrolide 

therapy may improve non-T2 asthma but are not specifically indicated. Typically, non-T2 

asthma is less responsive to available biologics, which target T2-high asthma. Patients with 

non-T2 asthma and AHR are potential candidates for bronchial thermoplasty [44]. As a 
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heterogeneous disease with diverse underlying endotypes, identification and characterization 

of these endotypes is necessary to develop effective treatments for non-T2 asthma.

Conclusion

Despite exciting advances in treatments for T2-high asthma, treatments for non-T2 asthma 

are limited and specific therapies have largely been disappointing. Future research endeavors 

should focus on defining practical clinical biomarkers, along with developing more effective 

therapies.
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