

## Correction

## Correction to: Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective

Arian Emami Riedmaier,<sup>1,24</sup> Kevin DeMent,<sup>2</sup> James Huckle,<sup>3</sup> Phil Bransford,<sup>4</sup> Cordula Stillhart,<sup>5</sup> Richard Lloyd,<sup>6</sup> Ravindra Alluri,<sup>7</sup> Sumit Basu,<sup>8</sup> Yuan Chen,<sup>9</sup> Varsha Dhamankar,<sup>10,11</sup> Stephanie Dodd,<sup>12</sup> Priyanka Kulkarni,<sup>13</sup> Andrés Olivares-Morales,<sup>14</sup> Chi-Chi Peng,<sup>13,15</sup> Xavier Pepin,<sup>16</sup> Xiaojun Ren,<sup>17</sup> Thuy Tran,<sup>18</sup> Christophe Tistaert,<sup>19</sup> Tycho Heimbach,<sup>20</sup> Filippos Kesisoglou,<sup>21</sup> Christian Wagner,<sup>22</sup> and Neil Parrott<sup>23</sup>

Published online 26 November 2020

Erratum to: The AAPS Journal volume 22, Article number: 123 (2020)

https://doi.org/10.1208/s12248-020-00508-2

The BCS classification for furosemide in Table 3 should read IV (not III).

The online version of the original article can be found at https://doi.org/10.1208/s12248-020-00508-2



<sup>&</sup>lt;sup>1</sup> DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois, USA.

<sup>&</sup>lt;sup>2</sup> Global DMPK, Takeda Pharmaceutical Co., Ltd., San Diego, California, USA.

<sup>&</sup>lt;sup>3</sup> Drug Product Technology, Amgen, Thousand Oaks, California, USA.

<sup>&</sup>lt;sup>4</sup> Modeling & Informatics, Vertex Pharmaceuticals, Boston, Massachusetts, USA.

<sup>&</sup>lt;sup>5</sup> Pharmaceutical R&D, Formulation & Process Sciences, F.Hoff-mann-La Roche Ltd., Basel, Switzerland.

<sup>&</sup>lt;sup>6</sup> Computational & Modelling Sciences, Platform Technology Sciences, GlaxoSmithKline R&D, Ware, Hertfordshire, UK.

<sup>&</sup>lt;sup>7</sup> Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.

<sup>&</sup>lt;sup>8</sup> Pharmacokinetic, Pharmacodynamic and Drug Metabolism-Quantitative Pharmacology and Pharmacometrics (PPDM-QP2),Merck & Co, Inc., West Point, Pennsylvania, USA.

Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California, USA.

<sup>&</sup>lt;sup>10</sup> Formulation Development, Vertex Pharmaceuticals, Boston, Massachusetts, USA.

<sup>&</sup>lt;sup>11</sup> Present Address: Formulation Development, Cyclerion Therapeutics Inc., Cambridge, Massachusetts, USA.

<sup>&</sup>lt;sup>12</sup> Chemical & Pharmaceutical Profiling, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA.

<sup>&</sup>lt;sup>13</sup> Department of Pharmacokinetics and Drug Metabolism, AmgenInc, Cambridge, Massachusetts, USA.

<sup>&</sup>lt;sup>14</sup> Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland.

<sup>&</sup>lt;sup>15</sup> Present Address: Drug Metabolism and Pharmacokinetics, Theravance Biopharma. South San Francisco, California, USA.

<sup>&</sup>lt;sup>16</sup> New Modalities and Parenteral Development, PharmaceuticalTechnology & Development, Operations, AstraZeneca, Maccles-field, UK.

<sup>&</sup>lt;sup>17</sup> Modeling & Simulation, PK Sciences, Novartis Institutes of Biomedical Research, East Hanover, New Jersey, USA.

<sup>&</sup>lt;sup>18</sup> Computational & Modelling Sciences, Platform Technology Sciences, GlaxoSmithKline R&D, Collegeville, Pennsylvania, USA.

<sup>&</sup>lt;sup>19</sup>Pharmaceutical Sciences, Janssen Research & Development, Beerse, Belgium.

<sup>&</sup>lt;sup>20</sup> PBPK & Biopharmaceutics, Novartis Institutes of Biomedical Research, Wayne, New Jersey, USA.

<sup>&</sup>lt;sup>21</sup> Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey, USA.

<sup>&</sup>lt;sup>22</sup> Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck Healthcare KGaA, Darmstadt, Germany.

<sup>&</sup>lt;sup>23</sup> Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland

<sup>&</sup>lt;sup>24</sup> To whom correspondence should be addressed. (e-mail: arian.emamiriedmaier@abbvie.com)

**Table III.** Summary of the Proposed Mechanism of Food Effect and the Associated Confidence Category in the PBPK Prediction of Food Effect. Color Coding Indicates Confidence in the PBPK Food Effect Prediction; Green: High; Yellow: Moderate; Red: Low

| Compound            | Food Effect | BCS   | Confidence in PBPK Prediction | Mechanism of Food Effect                                           |
|---------------------|-------------|-------|-------------------------------|--------------------------------------------------------------------|
| Alectinib           | Positive    | II    | Low                           | Changes in microenvironment pH and complex effect of formulation   |
| Amiodarone          | Positive    | II    | Low                           | Salt form                                                          |
| Aprepitant          | Positive    | II/IV | High (middle-out)             | Bile acids and phospholipids                                       |
| Cimetidine          | None        | III   | High (middle-out)             | No food effect                                                     |
| Clarithromycin      | None        | II    | Moderate                      | No food effect                                                     |
| Dabrafenib          | Negative    | II    | Low                           | Salt form; effect on microenvironment pH                           |
| Danazol             | Positive    | II    | Low                           | Uncertainty in solubility (in vivo)                                |
| Danirixin           | Negative    | II    | High (bottom-up)              | Ion-pairing                                                        |
| d-Sotalol           | None        | III   | High (middle-out)             | No food effect                                                     |
| Etoricoxib          | Negative    | II    | High (bottom-up)              | GI motility changes in presence of food                            |
| Fluoxetine HCl      | None        | I     | High (bottom-up)              | No food effect                                                     |
| Furosemide          | Negative    | IV    | High (bottom-up/middle-out)   | GI motility changes in presence of food                            |
| Imatinib            | None        | II    | High (middle-out)             | No food effect                                                     |
| Isoniazid           | Negative    | I     | Moderate                      | Drug-food interaction                                              |
| Itraconazole        | Positive    | II    | High (middle-out)             | Buffer capacity alters dissolution                                 |
| Ivacaftor           | Positive    | II/IV | High (middle-out)             | Bile acids and phospholipids                                       |
| Metoprolol          | Positive    | I     | Moderate                      | Effect of hepatic and splanchnic blood flow                        |
| Nefazodone HCl      | Negative    | II    | Moderate                      | Effect of hepatic and splanchnic blood flow                        |
| Nelfinavir Mesylate | Positive    | II/IV | Moderate                      | Precipitation kinetics affected by food                            |
| Nifedipine          | None        | II    | High (bottom-up)              | No food effect                                                     |
| Oseltamivir         | None        | III   | Moderate                      | No food effect                                                     |
| Panobinostat        | None        | II    | High (bottom-up)              | No food effect                                                     |
| Pazopanib           | Positive    | II/IV | Low                           | Impact of biorelevant buffer species on solubilization*; Salt form |
| Phenytoin           | Positive    | II    | High (middle-out)             | Bile acids and phospholipids                                       |
| Telaprevir          | Positive    | II    | Low                           | Impact of biorelevant buffer species on solubilization*            |
| Tezacaftor          | None        | II    | High (middle-out)             | No food effect                                                     |
| Trospium IR/XR      | Negative    | III   | Low                           | Changes in hydrodynamics (viscosity) in the presence of food       |
| Venetoclax          | Positive    | IV    | Moderate                      | Lymphatic uptake                                                   |
| Zidovudine          | Negative    | III   | High (bottom-up)              | GI motility changes in presence of food                            |
| Ziprasidone HCl     | Positive    | II    | Moderate                      | Salt form                                                          |

<sup>\*</sup>Specialized biorelevant media required to capture food effect

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.