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ABSTRACT

Introduction: Since December 2019, severe
acute respiratory syndrome-related coronavirus-
2 (SARS-CoV-2) has caused the coronavirus dis-
ease 2019 (COVID-19) pandemic in China and

worldwide. New drugs for the treatment of
COVID-19 are in urgent need. Considering the
long development time for new drugs, the
identification of promising inhibitors from
FDA-approved drugs is an imperative and valu-
able strategy. Recent studies have shown that
the S1 and S2 subunits of the spike protein of
SARS-CoV-2 utilize human angiotensin-con-
verting enzyme 2 (hACE2) as the receptor to
infect human cells.
Methods: We combined molecular docking and
surface plasmon resonance (SPR) to identify
potential inhibitors for ACE2 from available
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commercial medicines. We also designed coro-
navirus pseudoparticles that contain the spike
protein assembled onto green fluorescent pro-
tein or luciferase reporter gene-carrying vesicu-
lar stomatitis virus core particles.
Results: We found that thymoquinone, a phy-
tochemical compound obtained from the plant
Nigella sativa, is a potential drug candidate. SPR
analysis confirmed the binding of thymo-
quinone to ACE2. We found that thymo-
quinone can inhibit SARS-CoV-2, SARS-CoV,
and NL63 pseudoparticles infecting HEK293-
ACE2 cells, with half-maximal inhibitory con-
centrations of 4.999, 7.598, and 6.019 lM,
respectively. The SARS-CoV-2 pseudoparticle
inhibition had half-maximal cytotoxic concen-
tration of 35.100 lM and selection
index = 7.020.
Conclusion: Thymoquinone is a potential
broad-spectrum inhibitor for the treatment of
coronavirus infections.

Keywords: Broad-spectrum inhibitor; Corona-
virus; NL63-CoV; SARS-CoV; SARS-CoV-2;
Thymoquinone

Key Summary Points

Combined computer-based virtual
screening and experimental assay for
ACE2 inhibitors.

Verify that thymoquinone is a potential
broad-spectrum inhibitor of coronavirus
infection, which has been verified by the
inhibition of pseudotyped SARS-CoV-2,
SARS-CoV, and NL63-CoV viruses.

Thymoquinone may prevent viruses
entering cells by binding ACE2 and
interfering S1–ACE2 interaction.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.13547726.

INTRODUCTION

The recent coronavirus disease 2019 (COVID-
19) pandemic, caused by severe acute respira-
tory syndrome-related coronavirus-2 (SARS-
CoV-2) infection, has spread to more than 200
countries. There are more than 30 million peo-
ple infected, with a death toll greater than
1,026,284, and these numbers are increasing [1].
Given the unfortunate fact that COVID-19
cannot be effectively treated, there is apparently
an urgent need of drugs against SARS-CoV-2.
Hindered by the long development time for
new drugs, the identification of promising
inhibitors from approved drugs is an imperative
and valuable drug development strategy for
COVID-19 [2, 3].

SARS-CoV-2 belongs to the clade betacoron-
aviruses and has about 82% of its RNA genome
identical to that of SARS-CoV, which broke out
in 2003 [4]. The approximately 30,000 nucleo-
tide genome of SARS-CoV-2 encodes two over-
lapping polyproteins, pp1a and pp1ab, which
are hydrolyzed into functional polypeptides for
viral replication and transcription [5]. For both
SARS-CoV-2 and SARS-CoV, the S1 and S2 sub-
units of the spike glycoprotein (S-protein) uti-
lize the human angiotensin-converting enzyme
2 (hACE2) as the receptor to infect human cells,
with the receptor-binding domain (RBD) in the
S1 subunit initiating binding with ACE2 and
the S2 subunit in particular mediating the
membrane fusion [6–8]. It should be noted that
the RBD-ACE2 binding affinity of SARS-CoV-2 is
10–20 times higher than that of SARS-CoV,
which may be attributed to the higher infec-
tivity and transmissibility of SARS-CoV-2 [9].

Seven human coronaviruses (HCoVs) have
been identified thus far: human coronavirus
OC43 (OC43, discovered in the 1960s), human
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coronavirus 229E (229E, discovered in the
1960s), human coronavirus NL63 (NL63, dis-
covered in 2004), human coronavirus HKU1
(HKU1, discovered in 2005), SARS-CoV (dis-
covered in 2002), Middle East respiratory syn-
drome-related coronavirus (MERS, discovered in
2012), and SARS-CoV-2. Among them, SARS-
CoV-2, SARS-CoV, and NL63-CoV use ACE2 as
the receptor for the virus entry into the host
cell. Hence, drugs targeting ACE2 potentially
have broad-spectrum antiviral activities against
SARS-CoV-2, SARS, and NL63 coronaviruses.

We aimed to find potential drug candidates
by combining computer-based virtual screening
and experimental assay. We have identified
more than 20 commercial medicines that may
form hydrogen bonds with the key residues
within the binding pocket of ACE2 protein,
including thymoquinone, a phytochemical
compound obtained from the plant Nigella
sativa. Thymoquinone holds promising phar-
macological properties against several diseases.
It exhibits outstanding anti-oxidant, anti-in-
flammatory, anticancer, and other important
biological activities [10]. Thymoquinone effec-
tively transforms cancer progression signaling
pathways. It not only improves anticancer
activity of chemotherapeutic drugs but also
attenuates their side effects [11]. In brief, thy-
moquinone provides an exciting opportunity
for the treatment of COVID-19 through block-
ing virus entry into the host cell.

METHODS

Materials

Thymoquinone and eugenol were purchased
from Aladdin (Beijing, China); glycyrrhizin and
hesperidin were purchased from Targetmol
(Shanghai, China); hispidulin, artemisinin, and
emodin were purchased from Solarbio (Beijing,
China); cirsimaritin was purchased from Esite
(Chengdu, China); and hesperetin, curcuma,
and MLN-4760 were purchased from Med Chem
Express (Monmouth Junction, NJ, USA). All
compounds were dissolved in dimethyl sulfox-
ide and stored as 10 mM stock solutions at 4 �C.

The Trans1-T1 strain, F-u80(lacZ)4M154
lacX74hsdR(rk,m)4recA1398end AltonA
(TransGen Biotech, Beijing, China), was used to
clone and propagate plasmid DNA. Miniprep
and Maxiprep kits (Axygen, USA) were used to
harvest and purify plasmid DNA. ACE2 protein
was purchased from novoprotein (Shanghai,
China).

HEK 293T (human embryonic kidney; ATCC
CRL-11268) was maintained in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM)
with 10% fetal bovine serum (FBS) and 1%
antibiotic/antimycotic.

The vesicular stomatitis virus (VSV) exoge-
nously expressing EGFP (VSV-dG-GFP) and
Firefly Luciferase (VSV-dG-fLuc) are both
recombinant vesicular stomatitis virus variants
with G protein deletion, expressing green fluo-
rescent protein (GFP) and firefly luciferase
(fLuc), respectively. The VSV-dG-GFP and VSV-
dG-fLuc pseudoviruses were generated through
a plasmid-based reverse genetics system. The
pBluescript-N (pBS-N), pBS-P, pBS-L, and pBS-G
are helper vectors for the first-round virus res-
cue. The plasmids pVSV-DG-GFP and pVSV-dG-
fLuc were purchased from Kerafast (Boston, MA,
USA).

The Prediction of Binding Sites

The ACE2 (pdb: 6vw1) PDB file was downloaded
from the protein data bank (http://www.rcsb.
org/). All the heterogeneous atoms were
removed and 6vw1 chain A was selected for the
subsequent molecular docking. The ACE2
docking grid was maximized for thymo-
quinone. The PDB file (6vw1 chain A) was
converted to the PDBQT format before virtual
screening. The grid (ligand docking search
space) was located as described above. Then,
Autodock Vina 1.1.2 [6] was used for the sub-
sequent molecular docking. Protein–ligand
interactions were visualized using PyMoL
v.1.7.4.5. The amino acid residues of S-protein
close to the hit ligand (B 1 Å) were highlighted
as potential residues involved in the pro-
tein–ligand interaction.
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Surface Plasmon Resonance (SPR) Analysis

The affinity of thymoquinone and MLN-4760
with ACE2 was examined by the Biacore T200
System (GE Healthcare, Uppsala, Sweden) at
25 �C. ACE2 was immobilized on a CM5 chip
with a coupling method to about 14,564.5
response units (RU). Serial dilutions of the
compounds were prepared (100, 50, 25, 12.500,
6.250, 3.125, 1.563, 0.782, and 0 lM) and
sequentially injected at a rate of 30 mL/min,
over 180 s for buffer injection and 300 s for
dissociation. A blank injection was used to
check the carryover effects. The signal was
adjusted for nonspecific binding of the samples
to the dextran matrix by subtracting the signal
in the reference channel from the signal in the
active channel.

VSV Based Pseudovirus Production

VSV pseudotypes coated with the S-protein of
SARS-CoV-2/SARS-CoV/NL63-CoV were gener-
ated based on a previously described protocol
with slight modification [12]. In brief, HEK-
293T or Vero-E6 cells were transfected with a
plasmid overexpressing the codon-optimized
(namely, the deletion of the C-terminal 18
amino acids) S-protein, which was able to sig-
nificantly improve the pseudotypes packaging
efficiency [13, 14]. Twenty-four hours later, the
cells were transduced at MOI = 10 IU with the
VSV-G glycoprotein-deficient VSV-dG-GFP or
VSV-dG-fLuc. After 1 h incubation at 37 �C, the
cells were washed by culture medium once and
then replenished with fresh culture medium
with anti-VSV rat serum to eliminate the infec-
tivity of the residual input viruses. The S-protein
pseudotyped VSV viruses were harvested 24 h
after transduction by the clarification at
12,000 rpm for 2 min and then stored
at - 80 �C. The virus titer (infectious unit) was
determined by a plaque assay on BHK21-hACE2
cells with serial-diluted inocula.

Determination of the Half Maximal
Inhibitory Concentration (IC50)

HEK293T-ACE2 cells were seeded in 96-well
plates. Twenty-four hours later, the cells were
challenged with SARS-CoV-2/SARS-CoV/NL63-
CoV pseudotyped VSV (MOI = 0.100 IU)
expressing GFP or luciferase, which were diluted
using DMEM with 10% FBS in the presence of
varying concentrations (100 lM, 33 lM, 11 lM,
3.700 lM, 1.230 lM, 410 nM, 137 nM) of the
tested compounds. Next, 16–20 h after the
infection, the cells infected with the GFP-ex-
pressing pseudoviruses were imaged with a flu-
orescence microscope; the cells infected with
pseudoviruses expressing firefly luciferase were
lyzed by 1 9 passive lysis buffer (Promega) at
room temperate for 15 min, and the luciferase
activity was evaluated by One-Glo luciferase
assay kit (Promega) through a GloMax� 20/20
Luminometer. The cytotoxicity of the tested
chemicals was evaluated by bright field images
before fluorescence imaging or cell lysis. The
IC50 value was determined by nonlinear
regression analysis.

Determination of the Half Maximal
Cytotoxic Concentration (CC50)

The CC50 of the compounds was determined by
the CellTiter-Glo 2 (Promega) cell viability assay
kit. In brief, 293T-hACE2 cells were seeded in
96-well plates with three-fold serial-diluted
compounds (from 100 to 0.137 lM). Twenty-
four hours later, the cell viability was detected
by CellTiter-Glo 2 reagent following the man-
ufacturer’s instructions, and the luminescence
was determined with a Spectra MaxiD3 multi-
well Luminometer 458 (Molecular Devices,
USA). The CC50 value was determined by
nonlinear regression analysis.

Determination of the Toxicity
of Thymoquinone to the BHK21-ACE2
Cells

To prove that the effects of thymoquinone
upon the pseudoviruses were not due to thy-
moquinone toxifying the cells, we performed
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lactate dehydrogenase (LDH) tests by measuring
the LDH released from the cells following thy-
moquinone action. The LDH-release assay kit
was purchased from Beyotime (Shanghai,
China). The optimal number of BHK21-ACE2
cells/well were plated in 100 lL of medium in
triplicate wells in a 96-well plate. Various con-
centrations (10 lM, 3.3 lM, 1.1 lM, 0.37 lM,
0.12 lM, 0 lM) of thymoquinone were added to
one set of triplicate wells. The LDH released into
the medium was transferred to a new plate and
mixed with the reaction mixture. After 30 min
of room-temperature incubation, the absor-
bance at 490 nm and 600 nm was measured
using a plate-reading spectrophotometer to
determine the LDH activity.

Compliance with Ethics Guidelines

This study did not involve any human material,
data, or participants, so no institutional review
board (IRB) approval was required.

RESULTS

Predicted Binding Site of Thymoquinone
With ACE2

The chain A of 6vw1 (ACE2) was extracted to
perform molecular docking with thymo-
quinone. Autodock Vina revealed that thymo-
quinone binds to residues ILE291 and PHE438
of ACE2 (Fig. 1).

SPR Technology–Based Binder
Identification

To confirm the interaction between thymo-
quinone and ACE2, we tested whether thymo-
quinone has a high affinity with the target
protein using the SPR assay. The ACE2 protein
was immobilized on a CM5 chip with thymo-
quinone flowing across the surface. We found
that the affinity of thymoquinone–ACE2 bind-
ing depends strongly on the dosage, with KD

(equilibrium dissociation constant) being

Fig. 1 Thymoquinone (cyan stick) binds to ACE2 protein (green) at residues ILE291 (orange stick) and PHE438 (orange
stick)
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Fig. 2 Sensograms of ACE2 interacting with thymoquinone (a) and MLN-4760 (b)

Table 1 Affinity of compounds to ACE2 at 25 �C

Compound KD (M) Rmax (RU) Chi2 (RU2) Chi

Thymoquinone 3.214 9 10-5 11.580 0.328 0.573

MLN-4760 6.596 9 10-5 48.410 2.760 1.660
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32.140 lM (Fig. 2a). Since MLN-4760 is a
reported ACE2 inhibitor [15], we used MLN-
4760 as a positive control. SPR showed that
MLN-4760 binds to ACE2 with KD = 65.960 lM
(Fig. 2b). These results, summarized in Table 1,
suggested that thymoquinone can, through
interfering with the S1–ACE2 interaction, block
the virus entry into the host cell.

Determination of the IC50 and CC50
of Thymoquinone for SARS-CoV-2
Pseudovirus

To alleviate safety concerns and immediately
initiate work in our BSL2 laboratory, we
designed SARS-CoV-2 pseudoparticles (CoV-
2pp) that contain the SARS-CoV-2 S-protein

Fig. 3 The inhibition ratio of the indicated compounds against SARS-CoV-2 pseudovirus at 100 lM (a) and 11 lM (b)

Infect Dis Ther (2021) 10:483–494 489



assembled onto luciferase reporter gene-carry-
ing VSV core particles, based on the genome
sequence of SARS-CoV-2 released on January 12,
2020 [16, 17]. These pseudotyped viral particles
faithfully reflect key aspects of native SARS-
CoV-2 entry into host cells via binding to its
ACE2 receptor [18]; they can thus be used to test
potential entry inhibitors of SARS-CoV-2.

We then used the HEK293T-ACE2 cell model
in a 96-well format to test the effects of multiple
drugs that had been in silico predicted binding
to ACE2, including glycyrrhizin, eugenol, hes-
peretin, hesperidin, hispidulin, artemisinin,
curcuma, cirsimaritin, MLN-4760, emodin, and
thymoquinone. These drugs were chosen based
on their capability of binding to ACE2 as pre-
dicted by molecular docking.

Although MLN-4760, hispidulin, artemisi-
nin, and thymoquinone can all inhibit SARS-
CoV-2 pseudovirus at 100 lM, which is consis-
tent with their affinities with ACE2 (Supple-
mental Material 1), only thymoquinone can
inhibit SARS-CoV-2 pseudovirus at 11 lM
(Fig. 3a, b). By adding different concentrations
of thymoquinone ranging from 100 lM to
137 nM, we found that the inhibition of thy-
moquinone on the entry of SARS-CoV-2 pseu-
dovirus into the HEK293T-ACE2 cells is strongly
dose-dependent. When the concentration
exceeds 11 lM, thymoquinone can inhibit more
than 80% of virus entry (Fig. 3B). The indices
are as follows: half-maximal inhibitory con-
centration (IC50) = 4.999 lM (Fig. 4a); half-
maximal cytotoxic concentration
(CC50) = 35.100 lM (Fig. 4a); selectivity

index = 7.020; toxicity was observed at 11 lM;
cells died at 33 lM.

For glycyrrhizin and curcuma, we found that
they were not effective in inhibiting SARS-CoV-
2 pseudovirus-expressing VSV-dG-GFP (Supple-
mentary Material 2).

Determination of the IC50
of Thymoquinone for SARS-CoV and NL63
Pseudoviruses

SARS-CoV and NL63-CoV also use ACE2 as the
receptor for entry into the host cell [19, 20].
Therefore, the extensive researches on SARS-
CoV-2 may be applicable to SARS-CoV and
NL63-CoV. We designed SARS-CoV and NL63-
CoV pseudoparticles (CoV-2pp) that contain
their S-protein assembled onto luciferase
reporter gene-carrying VSV core particles. We
found that thymoquinone has IC50 = 7.598 lM
for SARS-CoV pseudovirus (Fig. 4b) and
IC50 = 6.019 lM for NL63-CoV pseudovirus
(Fig. 4c). Taken together, thymoquinone
potentially has broad-spectrum antiviral activ-
ity against SARS-CoV-2, SARS, and NL63
coronaviruses.

Inhibition of the Pseudoviruses Was Not
Due to Thymoquinone Toxifying
the BHK21-ACE2 Cells

To prove that the effects of thymoquinone
upon the pseudoviruses were direct, namely,
not by toxifying the cells, we added various

Fig. 4 Determination of the IC50 of thymoquinone for SARS-CoV-2 (a), SARS-CoV (b), and NL63-CoV
(c) pseudoviruses. The CC50 of thymoquinone for SARS-CoV-2 was also determined (a)
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concentrations (10 lM, 3.3 lM, 1.1 lM,
0.37 lM, 0.12 lM, 0 lM) of thymoquinone to
the wells of BHK21-ACE2 cells. We subse-
quently measured the activity of LDH released
from the cells. Apparently, thymoquinone had
relatively low toxicity to the BHK21-ACE2 cells
(Fig. 5). Even with a concentration as large as
10 lM, the cell mortality rate is only 13.23%.
This result is consistent with the 35.1 lM CC50
value tested by the CellTiter-Glo cell viability
assay.

DISCUSSION

With the global spread of new coronavirus dis-
eases, it is increasingly difficult to control the
epidemics; the development of effective drugs
targeting the diseases is urgently needed. How-
ever, the development of new drugs is a very
complicated, expensive, and long process. A
novel drug usually costs USD2.6 billion and
takes on average 12 years. Drug repositioning
greatly shortens the time and cost of R&D; it is
thus the most effective method to fight such a
sudden disease. This strategy may lead to the
alleviation of the current epidemic. In the pre-
sent study, we adopted a computational
approach to screen available commercial
medicines which may function as inhibitors for
ACE2. By further experimental screening of the
in silico predicted ACE2 inhibitors, we

identified that thymoquinone, extracted from
the annual flowering plant Nigella sativa (family
Ranunculaceae), is efficacious in the inhibition
of SARS-CoV-2, SARS-CoV, and NL63-CoV
pseudoviruses. The black seeds and their oil of
Nigella sativa have been previously reported for
a range of medicinal applications, including for
rheumatoid arthritis, asthma, inflammatory
diseases, diabetes, and digestive diseases
[21–25].

It is well known that thymoquinone belongs
to the so-called pan-assay interference com-
pounds (PAINS) [26], which bind promiscuously
with many proteins because it has a high
propensity to be redox active as well as being
reactive to nucleophiles present in the side
chains of proteins such as cysteine and lysine.
To prove that thymoquinone is a genuine drug
candidate, a direct binding assay is needed, and
the SPR technology was particularly recom-
mended [27].

In this study, we used SPR to confirm the
affinity of thymoquinone with ACE2 and found
its KD to be 32.140 lM, which is consistent with
the results obtained from molecular docking.
These results imply that thymoquinone might
inhibit SARS-CoV-2 infection by blocking the
binding of the SARS-CoV-2 S-protein to the
cellular receptor ACE2. Because the relevant
experimental researches on SARS-CoV-2 need to
be conducted in a BSL-3 laboratory, we used
SARS-CoV-2 pseudovirus to test thymo-
quinone’s effects at the cellular level. Thymo-
quinone inhibits the SARS-CoV-2 pseudovirus
in a dose-dependent manner with ideal IC50
and CC50 values. This study therefore supports
the recent clinical trials (ClinicalTrials.gov
Identifier: NCT04553705) treating COVID-19
patients with Nigella sativa. The safe dosage of
thymoquinone must be rigorously determined
to reduce its toxicity.

A previous study [28] showed that selective
ACE2 inhibitor MLN-4760 neither blocks nor
increases the binding of SARS-CoV-2 spike RBD
to human ACE2, and probably has no effect on
the viral entry. We confirmed this result: MLN-
4760 did not inhibit SARS-CoV-2 pseudovirus at
11 lM. Since ACE2 is also the receptor of SARS-
CoV and NL63-CoV, we also tested whether or
not thymoquinone is effective against SARS-

Fig. 5 Determination of the toxicity of thymoquinone to
the BHK21-ACE2 cells
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CoV and NL63-CoV. We found that thymo-
quinone does inhibit the two pseudoviruses.

A limitation of this study, as already stated, is
that more rigorous testing will be needed in
future to establish the drug candidacy of thy-
moquinone, partly due to the fact that thymo-
quinone, as a famous PAINS, binds
promiscuously with many proteins, because it
has a high propensity to be redox active as well
as being reactive to nucleophiles present in the
side chains of proteins such as cysteine and
lysine. Another limitation was that, without a
BSL-3 laboratory, we could not use living viruses
to perform experiments. We will pursue exper-
iments on living coronaviruses in the future.

CONCLUSION

Thymoquinone is potentially a broad-spectrum
inhibitor for the treatment of coronavirus
infections by blocking the binding of the viral
S-protein to the cellular receptor ACE2, thus
blocking viral entry into the host cell. The
inhibition is strongly dose-dependent with ideal
IC50 and CC50 values. Further testing of thy-
moquinone is needed to establish its drug can-
didacy because it is a well-known PAINS.
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