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Abstract

Electrical impedance tomography (EIT) is widely used for bedside monitoring of lung ventila-

tion status. Its goal is to reflect the internal conductivity changes and estimate the electrical

properties of the tissues in the thorax. However, poor spatial resolution affects EIT image

reconstruction to the extent that the heart and lung-related impedance images are barely

distinguishable. Several studies have attempted to tackle this problem, and approaches

based on decomposition of EIT images using linear transformations have been developed,

and recently, U-Net has become a prominent architecture for semantic segmentation. In this

paper, we propose a novel semi-Siamese U-Net specifically tailored for EIT application. It is

based on the state-of-the-art U-Net, whose structure is modified and extended, forming

shared encoder with parallel decoders and has multi-task weighted losses added to adapt to

the individual separation tasks. The trained semi-Siamese U-Net model was evaluated with

a test dataset, and the results were compared with those of the classical U-Net in terms of

Dice similarity coefficient and mean absolute error. Results showed that compared with the

classical U-Net, semi-Siamese U-Net exhibited performance improvements of 11.37% and

3.2% in Dice similarity coefficient, and 3.16% and 5.54% in mean absolute error, in terms of

heart and lung-impedance image separation, respectively.

Introduction

Lung EIT

Lung electrical impedance tomography (EIT) is a promising imaging tool for real-time and

non-invasive monitoring of ventilation distribution at bedside [1]. Lung EIT and its clinical

applications have evolved over time. Although EIT has limitations with respect to local resolu-

tions, it is sufficient for responding to important clinical therapeutic questions; for example,

an EIT-guiding tool is used to optimize positive end-expiratory pressure (PEEP) for acute lung

injury (ALI) or acute respiratory distress syndrome (ARDS) patients. Currently, although sev-

eral tomographic modalities can facilitate higher resolution imaging techniques, EIT provides

regional information about the distribution of ventilation as well as changes in end-expiratory

lung volume that neither computed tomography (CT) nor functional magnetic resonance
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imaging (fMRI) methods can provide [2, 3]. EIT has become an increasingly important supple-

mentary imaging technique because of its unique features: the reconstructed images contain

new and different information, such as electrical tissue properties and its conductivity distri-

bution in space; moreover, EIT can be applied for continuous bedside monitoring, which only

requires portable devices, thus, the patients are not exposed to ionizing radiation. Therefore,

these features justify the clinical application of EIT in the ICU wherein it has proven to be the

only method that can directly reveal whether collapsed lung regions can be opened by a

recruitment maneuver.

Over the past decade, EIT has been applied in clinical research, and numerous EIT-based

investigations have been published regarding strategies to optimize alveolar recruitment,

maintain an open lung, and avoid pulmonary overdistension [4–6]. Most of the studies on

lung EIT focused on ventilation-induced changes, quantification of regional ventilation distri-

bution, and ventilatory status. However, as the technique does not provide sufficient heart-

related information, its clinical applicability is limited.

Lung EIT limitations

The major limitation of the EIT system is that EIT image reconstruction suffers from low spa-

tial resolution in the center region. Tissue characteristic of the center region cannot be deter-

mined accurately because the heart is surrounded by the lung, which has relatively lower

conductivity, and its location is relatively far for electrodes, causing poor sensitivity to imaging.

Therefore, the main challenge is to obtain a higher-quality reconstructed image of the center

region to acquire the associated heart-related information. However, the unique advantage of

EIT measurement is that it involves not only ventilation distribution changes but also the car-

diac-induced related information in EIT images. In other words, if EIT measurement is per-

formed, the reconstructed images obtained depend on conductivity changes in the thorax and

present both respiratory and cardiac-related information [7].

Currently, five methods have been proposed to separate the cardiac information from lung

respiratory-related information in EIT images: apnea or breath hold, injecting a contrast agent

[8], electrocardiography gating [9–12], and Fourier-spectrum-based [13–16] and principal-

component-analysis-based [17–19] approaches.

The reported studies have a common problem: there is no consensus standard for validat-

ing information on the cardiovascular and respiratory systems status because these approaches

were directly implemented based on real EIT data [19]. Another reason for this problem is that

other tomographic modalities are not suited for continuous regional lung monitoring at

bedside.

Hence, the aim of this study is to establish a finite element method (FEM)-based model of

human thorax, which includes the arrangement of low-conductivity lungs on both sides and

high-conductivity heart in the middle to simulate the thorax activity in EIT.

EIT imaging: A nonlinear and ill-posed problem

EIT reconstructed result indicates the internal distribution of conductivity in space by gather-

ing the voltages at the boundary between electrodes and further solving its inverse problem. In

other words, EIT imaging is a nonlinear and severely ill-posed inverse problem [20]. In fact,

previously proposed methods that assume a linear solution for separation are impractical in

real situations to solve the nonlinear problem because the conductivity distribution of the tho-

rax is complicated.

Recently, because of its great advantages in nonlinear problem modeling and feature repre-

sentation, deep learning has become increasingly popular for solving complex problems [21].
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Among the AI-based imaging methods used in EIT, several artificial neural networks

(ANNs) algorithms have been investigated, in which supervised learning is utilized to solve the

EIT inverse problem. After training, the model can directly determine the conductive distribu-

tion from boundary data in a few seconds [22]. These studies have performed bioimpedance

reconstruction from real biomedical data. Although ANN is used as an EIT inverse solver for

nonlinear reconstruction, it is very sensitive to boundary mismatch and other artifacts in the

measured data [23].

Moreover, ANNs are used to enhance the quality of EIT images and reduce the effects of

noise and modeling errors after applying a reconstruction algorithm [23]. ANN can be used as

a robust postprocessor for reconstructed images. The convolutional neural network-based

method for post-processing has subsequently been applied for EIT imaging [24].

It has been shown that AI-based methods can potentially provide an adequate solution for

complicated conductivity distribution in a few seconds and are suitable for real-time

monitoring.

U-Net for biomedical image segmentation

Recently, a number of revolutionizing studies for medical image segmentation using deep neu-

ral networks have been reported. U-Net has been the most prominent and popular deep-learn-

ing-network architecture used in the medical imaging field since it was proposed by

Ronneberger et al. [25]. It has been widely used for segmenting medical images because it can

be trained from a few images and outperforms other convolutional network methods [26].

There are several applications of U-Net in biomedical image segmentation, such as brain mag-

netic resonance imaging segmentation [27] and extraction of the liver-lesion images from the

CT images [28]. Variants of the U-Net have also been applied for medical image reconstruc-

tion; the deep D-bar method is one of the variants that has been developed for enhancing EIT

imaging [24]. In the field of medical imaging, U-Net has been used as a powerful model to seg-

ment biomedical images. This is similar to our separation application.

However, the separation of lung-related and cardiac impedance changes in EIT images

based on the U-Net model has not been studied yet. Moreover, previous studies on separation

of bioimpedance images were carried out directly using the real EIT image sequences, and

their practical applicability was poor [19] because the separation result would lose some of the

ventilation-related information [19, 29]; moreover, the separated image could not reflect the

sudden signal changes immediately. Furthermore, those methods were based on the analysis

of linear combinations to recompose the lung-related and cardiac images [18]; however, EIT

imaging is a markedly nonlinear and ill-posed problem [30]. The variational autoencoder is

used to learn solving ill-posed nonlinear inverse problems of EIT [31], which is the well-

known encoder-decoder architecture learning technique used in this study.

In this study, a novel method is proposed to separate the lung-related and cardiac imped-

ance changes directly from EIT reconstructed images and enhance the quality of EIT image

reconstruction in the center region.

Firstly, we propose some modifications and extensions based on the state-of-the-art U-Net

model to tailor for the separation application in EIT.

Secondly, the biomimetics approach is exploited to simulate thorax activity in EIT to vali-

date the separation performance. An FE modeling phantom is established to generate the data-

set for training the separation model. The image reconstruction is performed in two

dimensions.

The rest of the paper is organized as follows. In sections Proposed architecture and Multi-

weighted loss, we describe the tailored separation architecture “semi-Siamese U-Net,” which
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exploits the advantages of classical U-Net to modify and extend. The implementation of the

FEM-based phantom for preparing the training datasets and the experimental procedure is

described in sections Dataset preparation, Training of semi-Siamese U-Net and Experi-

ments. The corresponding separation results of lungs and heart are presented in Results

section.

Proposed architecture

The proposed architecture is based on the U-Net architecture, which comprises the state-of-

the-art convolutional neural network for medical image segmentation with only a few labelled

datasets [25]. This breakthrough architecture has become prominent in the field of medical

image segmentation.

The features of the U-Net architecture are applicable to our study, where the aim is to segre-

gate the heart and lung regions in the mixed reconstructed image and decompose individual

conductivity distributions. Thus, the output will be two distinguishable impedance images.

For this purpose, modifications have been made to the U-Net architecture, tailored for separa-

tion application in EIT.

In the study, we modified and extended the U-Net architecture, adding a branch from the

end of the contracting path to perform the multi-task deep learning for image separation. The

novel architecture consists of a contracting path and two parallel expanding paths, to capture

the mixed context and precisely localize the individual parts respectively. The two separation

tasks were simultaneously process specialized and learned on the expanding paths, which

share the parameters and weights on the contracting path in the sharing parameter manner,

which works similar to that in the Siamese network concept. Hence, the proposed architecture

combines the U-Net and Siamese concept, where the weights are shared in the upper U-Net.

We have named this novel architecture “semi-Siamese U-Net,” as shown in Fig 1, which works

Fig 1. Semi-Siamese U-Net architecture. An illustration of encoder-parallel decoders-based U-Net architecture for

EIT co-separation tasks.

https://doi.org/10.1371/journal.pone.0246071.g001
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via joint learning and considers the multiple weighted loss to learn specifically for separating

the lung and heart images. The multiple weighted loss is described in the following section.

The segmentation mapping is represented as a deep convolutional neural network that

takes the mixed EIT image as the input and outputs the individual parts, i.e., lung-related as

well as cardiac images.

Additionally, the dropout layers were performed at the end of the contracting and bottom

layers of U-Net to prevent overfitting; the dropout rate is 0.5.

We present the diagram of the proposed semi-Siamese model in Fig 1, and the architectural

details are described in Table 1.

Detailed comparison of different variants of U-Net and proposed semi-Siamese U-Net

model is shown in Fig 2. The classical U-Net, as shown in Fig 2(A), consists of an encoder-

decoder structure, along with forward convolutional units. V-Net is an approach based on

U-Net to 3D image segmentation using volumetric, fully convolutional neural networks [32].

Based on classical U-Net with modification of backbone as shown in Fig 2(B), RU-Net replaces

backbone to recurrent convolution units (RCNN). Besides, modifications of skipped connec-

tion, such as U-Net++ uses nested skip pathway to down-sampling along with encoder. More-

over, R2U-Net utilizes the residual convolutional unit to conduct skipped connection and

along with RCNN as the backbone as shown in Fig 2(C). Between the variants, these

approaches modify backbones of U-Net or re-design skip pathways or combine both, which

are implemented based on the encoder-decoder-based architecture [33–37]. In contrast, the

proposed approach adopts novel structure, encoder-parallel decoders architecture, to adapt

and implement the individual separation tasks as shown in Fig 2(D).

The proposed semi-Siamese U-Net outputs individual conductivity distributions from EIT

image, not just segmentation maps, which is entirely different from other variants of U-Net.

Table 1. Semi-Siamese U-Net architecture details.

Contracting Path Expanding Paths

Path1 and Path2

Block Layer Filter Block Layer Filter

Block1 Conv2D(3,3) 64 Block 6 Conv2D(2,2) 512

Conv2D(3,3) 64 Conv2D(3,3) 512

MaxPooling2D(2,2) Conv2D(3,3) 512

Concatenate Block9

Block2 Conv2D(3,3) 128 Block 7 Conv2D(2,2) 256

Conv2D(3,3) 128 Conv2D(3,3) 256

MaxPooling2D(2,2) Conv2D(3,3) 256

Concatenate Block8

Block3 Conv2D(3,3) 256 Block8 Conv2D(2,2) 128

Conv2D(3,3) 256 Conv2D(3,3) 128

MaxPooling2D(2,2) Conv2D(3,3) 128

Concatenate Bolck7

Block4 Conv2D(3,3) 512 Block9 Conv2D(2,2) 64

Conv2D(3,3) 512 Conv2D(3,3) 64

Dropout Conv2D(3,3) 64

MaxPooling2D(2,2) Conv2D(3,3) 2

Concatenate Block6

Block5 Conv2D(3,3) 1024 Conv2D(1,1) 1

Conv2D(3,3) 1024

Dropout

https://doi.org/10.1371/journal.pone.0246071.t001
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Multi-weighted loss

Apart from the modification of the structure of the U-Net architecture, the study also modified

the loss function such that the separation tasks were associated with each other. The new loss

(Ltotal), which is called multi-task loss (Eq 1), is expressed as the sum of losses (Llung and Lheart)

in the multiple-separation task. Therefore, we added up the two losses by the individual loss

function components so that the semi-Siamese U-Net model can be trained simultaneously on

the two separation tasks, i.e., joint learning.

The lung-related impedance changes dominate in the EIT images; therefore, it is difficult to

distinguish the cardiac impedance changes. For this reason, we provide weight to the losses to

compensate for the difference in conductivities regarding bioelectric properties and to force

the network to learn the segmentation mapping of heart rigorously. In other words, the impor-

tance of heart imaging during network learning is increased by adding weight on losses.

Hence, the idea of modifying the loss using weights was adopted, in which the weighted

losses (Wlung and Wheart) optimize separation performance.

Ltotal ¼ wlung Llung þ wheart Lheart ð1Þ

Based on the concept of multi-task and weighted losses, attempts have been made on differ-

ent combinations of weight, which here refers to the hyperparameters; for example, the weight

of the cardiac changes was increased and the weight of the lung-related changes was reduced

in the following experiments.

Dataset preparation

FEM phantom

Fig 3 shows the FEM phantom designed for simulation of thorax, including 16 electrodes and

three spheres, which contain the lung region of 0.5 as well as a heart region of 2 of background

conductivity. Both radii of the lungs and heart were programmable for simulation of activity

in the thorax. For generating the training dataset, the radii of lungs and heart were varied from

0.3–0.6 and 0.1–0.3 (unit: arbitrary), respectively. The FEM phantom and reconstructed

Fig 2. Different variants of U-Net structure and backbone (convolutional and recurrent convolutional units). (a)

classical U-Net uses convolutional encoding and decoding unit, (b) RU-Net uses encoder-decoder structure with

recurrent convolutional units, (c) R2UNet combines recurrent convolutional units and residual connections (yellow

line) form residual RCNN network, and (d) proposed semi-Siamese U-Net which uses encoder-parallel decoders

structure with convolutional units.

https://doi.org/10.1371/journal.pone.0246071.g002
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images were built and obtained using EIDORS. The FEM phantoms were constructed accord-

ing to the abovementioned parameters, and image reconstructions were performed to generate

the EIT images by solving the forward and inverse problems with EIDORS, as was imple-

mented by Adler et al. in MATLAB [38, 39].

The experimental design of the FEM phantom comprises varying combinations of three

spheres. The combinations represent the interactions between the contractions and expansions

of the heart and lungs as shown in Fig 4. Fig 4(A) represents the simulation of the thorax with

both of the lungs and heart, whereas Fig 4(B) and 4(C) represent the lungs and heart in the

thorax, respectively. Fig 5 flowchart illustrates the experimental design used for generating

FEM phantom and obtaining the reconstructed images for training data.

Fig 3. 3D EIDORS spheres model.

https://doi.org/10.1371/journal.pone.0246071.g003

Fig 4. FEM phantoms designed for generating the training data. (a) FEM phantom comprising lungs and heart in

the simulation of human thorax. The radii of lung and heart were varied from 0.3–0.6 and 0.1–0.3. (b) The

corresponding lung phantom, which is considered as the training target. (c) The corresponding heart phantom, which

is considered as the training target.

https://doi.org/10.1371/journal.pone.0246071.g004
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In order to obtain an efficient dataset for training, up to 3600 EIT inverse problems were

solved as shown in Fig 4. Of the 3600 EIT images, the images in the first subset are 1200 origi-

nal reconstructed images as inputs by solving the inverse problem of the FEM phantom which

is the aforementioned design. The second group of 1200 images are the desired outputs seg-

mentation map of the lungs, which are the corresponding reconstructed images, as shown in

Fig 4(B). The last 1200 images are corresponding reconstructed images as shown in Fig 4(C),

which are the desired outputs segmentation map of the hearts. Each of the images from the

three subsets formed a group, out of which two were target images and the other was the corre-

sponding original mixed EIT image.

Dataset preprocessing

Before training, the dataset was divided into three subsets, 10% of the dataset was considered

as a subset to test the trained model. This testing set was an independent set that was not used

for the training. The rest of the dataset was apportioned into training 90% and validation 10%.

Training of semi-Siamese U-Net

The input mixed EIT images and their corresponding desired images were used as segmenta-

tion maps to train the semi-Siamese U-Net with the following dependencies and

implementation.

Dependencies

The mentioned semi-Siamese U-Net was implemented with Keras 2.3.1 functional API, which

is a minimalist, highly modular neural networks library, written in Python 3.6.8 with Tensor-

Flow-GPU 1.14.0 backend. The following experiments were conducted using a computer with

intel core i7-9700K processor (3.60 GHz, 8 MB cache) CPU, 32 GB RAM, and NVIDIA

GeForce GTX 1080 Ti GPU.

Fig 5. Flowchart of the method used to generate images to train the semi-Siamese U-Net.

https://doi.org/10.1371/journal.pone.0246071.g005
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Hyperparameters

In this work, the cross-entropy was considered as loss function, and the Adam optimizer was

used to minimize the loss, which was used for the original U-Net [25]. In the semi-Siamese

U-Net model, we adopted the Adam optimizer with the same parameters as those adopted for

the original U-Net. The semi-Siamese U-Net architectural details are described in Table 1.

As mentioned in the proposed architecture, the novel architecture consists of a contracting

path and two parallel expanding paths, which added a branch from the end of the contracting

path to form expanding path 1 and path 2, to perform the multi-task deep learning for image sep-

aration. The symmetric layers are concatenated together to extract spatial information from dif-

ferent layers, such as block1 concatenate block9, block2 concatenate block8, block3 concatenate

block7, block4 concatenate block6. The convolutions follow the original U-Net design.

Experiments

In this study, we first developed the novel semi-Siamese U-Net model and investigated the fea-

sibility of separation tasks in EIT. Thereafter, experiments were conducted to explore the

impact of using the multi-task weighted losses on model learning performance. Subsequently,

the results of predicted images were examined, in which input image is the pattern corre-

sponding to maximally expanded lungs and contracted heart.

Baseline model

The proposed architecture, semi-Siamese U-Net, is targeted to and tailor made for separation

application in EIT image. Semi-Siamese U-Net is developed based on the state-of-the-art

U-Net architecture; therefore, the semi-Siamese U-Net performance was compared with the

U-Net architecture as the baseline model.

The number of parameters of the models are listed in Table 2. The proposed semi-Siamese

U-Net requires fewer number of parameters than U-Net, and 0.69-times the parameters of a

dual U-Net. In EIT separation, the dual U-Net needs twice the number of parameters of two

U-Nets to perform two separation tasks.

Although the proposed architecture had a lesser number of parameters, it outperformed the

U-Net architecture in separation performance.

Evaluation metrics

Dice similarity coefficient (DICE), also known as the Sørensen–Dice index, is one of the most

commonly used metrics in semantic segmentation, which measures the similarity between two

sets of data. DICE for two images A and B is defined as the ratio of twice the area of overlap

and the total number of pixels in both images. This metric ranges from 0 to 1, where 0 signifies

no overlap, and 1 signifies perfectly overlap between the predicted and ground truth. The

DICE score is computed as follows:

DICE ¼
2 � area of overlapped
total area of A and B

In this study, the semi-Siamese U-Net has to learn not only the precise location but also the

corresponding impedance amplitude. Therefore, another evaluation metric, mean absolute

Table 2. The parameter of models in our experiments.

Model Dual U-Net (original) Semi-Siamese U-Net (proposed)

Parameters 62,063,370 43,221,322

https://doi.org/10.1371/journal.pone.0246071.t002
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error (MAE), was adopted for evaluating the separation performance. It is the measure of

error between the predicted image and ground truth. In our case, the MAE is utilized to com-

pute the pixel-wise error between the predicted and desired images. A low MAE implies high

accuracy, i.e., the difference between the predicted and desired images is small. The MAE

score is computed as follows:

MAE ¼
P
j�Y � Yj
N

where �Y represents the desired image as ground truth, Y corresponds to the predicted segmen-

tation image, and N is the number of pixels of an image.

Therefore, by taking the two metrics, dice and MAE, we not only consider precise segmen-

tation but also the difference in impedance level.

Results

Performance trade-offs for selection of model for fine tuning

The model was trained for 100 epochs using the aforementioned hyperparameter as in Table 1

with the checkpoints. In each run with 10 epochs, the best results were recorded.

A 30-epochs model was selected to fine tune the training model with weighted loss owing

to the fact that after 30 epochs, the lung separation performance greatly increased, but the per-

formance of heart separation was not showing progressive improvement and was in fact get-

ting worse.

Thereafter, attempts were made to progressively modify the weight of losses to investigate

the trade-off between the performance and number of training epochs, and the impact of

increasing weight on heart loss was explored.

The comparison results of separation of the lung and cardiac related images by the pro-

posed semi-Siamese U-Net model without adjusting weights loss and baseline U-Net model

are presented in Table 3. Table 4 compares the predicted results of the semi-Siamese U-Net

model with the baseline model by introducing adjusted weighted loss. The different weights of

heart loss are presented in Table 4. For better readability, the DICE and MAE values have been

converted to percentages in the tables.

Table 3. Comparisons of performance between semi-Siamese U-Net and U-Net.

Semi-Siamese U-Net U-Net Relative improvement

DICE (%) Heart 93.56 88.38 5.18

Lungs 98.84 96.65 2.19

MAE (%) Heart 2.67 3.36 0.69

Lungs 2.67 5.85 3.18

https://doi.org/10.1371/journal.pone.0246071.t003

Table 4. Results of using different weighted losses for heart in semi-Siamese U-Net and comparison with the baseline model.

Semi-Siamese U-Net

Wheart = 1.5 Relative improvement Wheart = 1.8 Relative improvement

DICE (%) Heart 97.62 9.24 Heart 99.75 11.37

Lungs 99.54 2.89 Lungs 99.85 3.20

MAE (%) Heart 0.64 2.72 Heart 0.2 3.16

Lungs 1.49 4.36 Lungs 0.4 5.54

Superiority of performance of semi-Siamese U-Net over that of U-Net

https://doi.org/10.1371/journal.pone.0246071.t004
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Multi-segmentation task. The evaluation metrics results for both proposed semi-Siamese

U-Net and baseline U-Net models in 30 epochs are presented in Table 3.

From Table 3, it can be observed that the performance of the proposed semi-Siamese U-Net

model surpasses that of the U-Net architecture in EIT separation tasks. In particular, notable

improvement is observed for DICE of heart image segmentation. For heart image separation,

the proposed model achieved 5.18% relative improvement in DICE over U-Net. The U-Net

scored under 90% DICE, which implies that the separation of the center and high conductivity

region is challenging. As lung impedance image separation is relatively easier, the U-Net

scored over 96% DICE, while the proposed model achieved 2.19% relative improvement in

DICE. Moreover, the semi-Siamese U-Net gave lower MAE in the predicted results of both

heart and lungs. Therefore, our proposed model attains superior separation performance over

typical U-Net. The relative improvement can be attributed to the interaction between branch

structure and multi-task means.

Weighted losses. As described in Performance Trade-Offs for Selection of Model for Fine

Tuning section, based on the 30-epoch model, we further modified the paraments to investi-

gate the separation performance according to the different weighted losses of heart data. The

results of the semi-Siamese U-Net introducing the weighted losses, compared with those of the

baseline model, are summarized in Table 4. It is clear that superior separation performance

could be achieved by increasing the weighted loss of heart. Both heart- and lung-impedance

image separation performances in terms of DICE and MAE were superior to those of the base-

line model. Notably, the adding to 1.8 heart weighted loss reached the under 1% of MAE,

which is 0.2% and 0.4% for heart and lungs separation results, respectively. Moreover, DICE of

heart separation was 99.75%, which was 11.37% relative improvement; meanwhile, lung sepa-

ration was also more accurate, 99.85% and 3.20% in terms of DICE and relative improvement.

This can be attributed to the heart-data weighted loss contribution and joint learning.

Number of epochs. In Fig 6, the performances of the models with different number of

epochs during training is shown. The results were obtained from the proposed and baseline

model with the same parameters. It can be observed that for both heart and lung impedance

image separation tasks, the accuracy of the proposed semi-Siamese U-Net model converges

rapidly.

For heart-impedance separation, the proposed model achieved 99.7% accuracy at 5 and 11

epochs with the training and validation datasets, respectively, while the baseline model

required more than 15 epochs, as shown in Fig 6(A) and 6(B). For lung impedance separation,

after around 15 epochs, the accuracy of our model rapidly converged to over 99.8% accuracy,

while that of the baseline model converged to the same accuracy after 28 epochs, as shown in

Fig 6(C) and 6(D). As indicated by the results, the U-Net architecture could indeed succeed in

achieving the separation of EIT images; the proposed model could efficiently learn how to sep-

arate the two types of information from mixed reconstructed EIT images, and the learning of

lung-impedance separation was relatively easier.

Predicted results. Figs 7 and 8 show the reconstructed and predicted separated EIT

images, respectively. As shown in Fig 7, distinct lungs and suppressed heart images were seen

in the EIT reconstrued image. In Fig 8, the images were obtained using semi-Siamese U-Net

with increased heart-impedance weighted losses and the baseline model.

The baseline model U-Net demonstrated distinguishable separation results in our experi-

ments as shown in Fig 8(A). The state-of-the-art U-Net architecture has made significant

advances in the domain of EIT image separation; however, the proposed semi-Siamese U-Net

model takes this a step further and performs better, by attaining 11.37% relative improvement,

especially in learning heart-impedance image separation task, as shown in Fig 8(D). As shown
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by the results, the semi-Siamese U-Net clearly delineates boundaries and approximates the

conductivity, which converges accurately.

The U-Net model under-separated the heart image, it only achieved 88.38% DICE, as

shown in Fig 8(A). After using the trained semi-Siamese U-Net model, DICE was considerably

improved to 93.56%, which implies that the semi-Siamese U-Net architecture more precisely

Fig 6. Performance progression according to the number of epochs with training and validation data. Illustration

of heart impedance image separation performance with (a) semi-Siamese U-Net and (b) U-Net. Lung impedance

image separation performance with (c) semi-Siamese U-Net and (d) U-Net.

https://doi.org/10.1371/journal.pone.0246071.g006
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localized the heart region, as shown in Fig 8(B). MAE of predicted lung image relatively

improved by 3.18%, which implies that the semi-Siamese U-Net separated the content from

the original mixed image more accurately, as shown in Fig 7. Therefore, the predicted results

of the proposed semi-Siamese U-Net architecture were superior to those of classical U-Net in

not only the predicted heart image but also the lung image.

In Fig 8(B), the boundary of predicted heart image was convergent, and the conductivity of

predicted lung image was close to the ground truth. This could be attributed to the branch

structure of the semi-Siamese U-Net wherein the parallel paths undergo more specialized

learning.

Applying the weights to the losses of heart-impedance greatly reduced MAE to under 1%

and increased DICE to over 99%. As shown in Fig 8(B)–8(D), the boundary of the predicted

heart image progressively converged, and the conductivity of predicted lung image steadily

Fig 7. Example of original reconstructed EIT image.

https://doi.org/10.1371/journal.pone.0246071.g007

Fig 8. The predicted separation results of heart and lungs.

https://doi.org/10.1371/journal.pone.0246071.g008
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approached the ground truth. In Fig 8(D), with 1.8 as the value of weighted loss of heart

impedance, the semi-Siamese U-Net predicted the images of the heart and lungs with satisfac-

tory accuracy. This could directly be attributed to the impact of weighted loss.

Thus, apart from the metrics, there has been a relatively remarkable improvement and the

predicted images of these individual parts are visually more accurate.

Discussion

Herein, we propose a novel deep-neural-network-based method to separate EIT images based

on the U-Net architecture, whose structure was modified to employ shared parameters at con-

tracting layers as well as add a branch at expanding layers, forming parallel expanding paths.

Along with the modified structure, the weighted losses synergistically enhanced the image

quality of the center area. Distinguishable images were generated from mixed EIT images by

the trained semi-Siamese U-Net model with satisfactory accuracy.

In the past, attempts have been made to separate the heart and lung impedance changes in

EIT images. Such approaches required a long period of time or prior knowledge, such as ECG

or frequency spectrum information, to separate individual parts; therefore, the separated

impedance images could not immediately reflect sudden changes in the signals. Moreover,

these approaches were based on linear transformation method to decompose EIT images;

however, the EIT data are severely nonlinear and ill-posed.

Presently, although the frequency spectrum-based method [13–16] has been employed in

commercial EIT systems as a postprocessing method to analyze the mixed EIT images, it is not

a reliable clinical solution because obtaining prior information on the threshold setting for

each patient is challenging. In addition, there is no gold standard for evaluating the separation

results from mixed EIT data.

To address these problems, we proposed a novel nonlinear model and deep supervised

learning herein to force the network to rigorously learn segmentation mapping of the heart

with respect to the center area, owing to its poor sensitivity for imaging.

As the results show, the trained semi-Siamese U-Net is capable of more accurately separat-

ing the heart and lung images from mixed EIT images owing to the tailored modification in

structure and multi-weighted loss, as compared with classical U-Net architecture. The branch

structure yields more precise localization for separation of the two components; multi-

weighted losses not only precisely separate the impedance image but also capture the individ-

ual conductivity corresponding to mixed contents. The trained model can achieve end-to-end

co-separation without any prior knowledge, such as ECG or frequency spectrum information.

The study is based on the FEM phantom to simulate the thorax EIT for exploring the feasi-

bility and effectiveness of a deep neural network separation method.

A limitation of the current study concerns the FEM model used in this study, which consists

of simplistic spheres. In future studies, models with more sophisticated geometries, instead of

spheres, will be used to approximate a real human thorax. Thus, the semi-Siamese U-Net

model could be generalized well in practice. The trained semi-Siamese U-Net will be further

applied to real human EIT data, and the separation effect of the EIT image obtained by the dif-

ferent reconstruction algorithms will be investigated, notably, Shield back-projection algo-

rithm, FEM-based linearized Newton-Raphson algorithm, and Graz consensus reconstruction

algorithm (GREIT).

Conclusions

EIT imaging is a nonlinear and ill-posed problem, and its main drawback is poor spatial reso-

lution; therefore, reconstruction of distinguishable EIT images that include the heart and lung-
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induced impedance changes is challenging. To address the need for separation of heart- and

lung-related bioimpedance images, we proposed the semi-Siamese U-Net architecture. The

suggested architecture, based on state-of-the-art U-Net, exploits the advantages of redesigned

expanding paths and multi-weighted losses for deep supervision learning of the co-separation

tasks. According to the results of the FEM-based experiments, the proposed semi-Siamese

U-Net presented was able to achieve co-separation of heart- and lung-induced impedance

changes in the EIT image. Hence, this approach successfully captures the heart information

using nonlinear end-to-end deep neural networks. To the best of the knowledge of the authors,

this is the first study to introduce a state-of-the-art U-Net to address the issue of separation in

EIT field and propose the modification and extension of the classical U-Net tailored for EIT

application.

In future work, such information could be further useful to derive not only the ventilation

image but also cardiac impedance image in which bedside diagnosis would be available, and

lung EIT will be of utmost importance in diagnoses, such as ARDS related or respiratory-car-

diovascular system related disorders.
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