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Abstract

Multidisciplinary research efforts in the field of drug delivery have led to the development of a 

variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and 

therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective 

drug delivery, a comprehensive understanding of the biological pathways for cellular 

internalization of DDS can facilitate the development of DDS capable of precise tissue targeting 

and enhanced therapeutic outcomes. Diverse methods have been applied to study the 

internalization mechanisms responsible for endocytotic uptake of extracellular materials, which 

are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most 

commonly used method to explore endocytotic internalization mechanisms, although genetic 

methods are increasingly accessible and may constitute more specific approaches. This review 

highlights the molecular basis of internalization pathways most relevant to internalization of DDS, 

and the principal methods used to study each route. This review also showcases examples of DDS 

that are internalized by each route, and reviews the general effects of biophysical properties of 

DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of 

internalized DDS are briefly reviewed, representing an additional opportunity for multi-level 

targeting to achieve further specificity and therapeutic efficacy.
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1. Introduction

In recent years, the advantages associated with the use of an increasing variety of 

nanomaterials to formulate new drug delivery systems (DDS) have been demonstrated. 

Nanomaterials have been incorporated into many experimental DDS due to their ability to 

improve drug solubility, enable targeting of specific tissues, reduce systemic toxicity and 

increase cellular uptake of encapsulated or attached drugs at the target site. Knowledge of 

the cellular uptake pathways and the subsequent intracellular trafficking and disposition of 

DDS, which enter cells largely by endocytosis, is an important area of investigation in order 

to maximize the therapeutic effects of encapsulated or attached drugs. Tremendous efforts 

have been made to understand the cellular uptake mechanisms of DDS, with several reviews 

and book chapters summarizing the pathways and the factors affecting cellular uptake 

written by investigators representing pioneers in the field [1–6]. This review will discuss the 

principal endocytosis pathways relevant to uptake of DDS, and highlight examples of DDS 

that are targeted to each of these mechanisms. This review also showcases tools and 

approaches that can be used to further study these pathways and to improve the targeted 

delivery of new DDS, with a particular emphasis on emerging genetic and in vivo 
approaches which may enable greater precision in dissecting different endocytotic pathways. 

This review finally highlights features governing the ultimate bioaccumulation and 

intracellular distribution of DDS.

2. Principal Mechanisms of Endocytosis

Endocytosis is the process by which cells internalize and transport surface proteins, lipids 

and other macromolecules enveloped within small membrane vesicles formed by 

invagination of the plasma membrane into the cell interior. This process is key in the 

regulation of many essential cellular processes involved in homeostasis and communication 

including internalization of transmembrane receptors, uptake of extracellular vesicles, 

plasma membrane remodeling and cell surface signaling [7, 8]. This process takes place 
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through several distinct pathways including clathrin-mediated endocytosis (CME); caveolar 

endocytosis; cholesterol-sensitive clathrin- and caveolar-independent endocytosis; clathrin 

independent carriers (CLIC)-glycophosphatidylinositol-anchored protein-enriched 

endosomal compartments (GEEC) (CLIC/GEEC) endocytosis, non-canonical endocytosis, 

macropinocytosis and phagocytosis. Here we focus on the 5 principal pathways currently 

most relevant to uptake of DDS (Figure 1): CME, caveolae-mediated endocytosis, 

macropinocytosis, phagocytosis and noncanonical endocytosis (specifically CAM-mediated 

and interleukin receptor 2, (IL-2R)-mediated).

2.1 Clathrin-mediated endocytosis.

CME constitutes the principal endocytotic pathway in most mammalian cells. It occurs 

through a well-orchestrated multistep process involving assembly and maturation of a 

clathrin coat at the plasma membrane into a ~100 nm coated pit where cargo is concentrated. 

The pits further invaginate and are finally detached from the plasma membrane by dynamin 

to form clathrin-coated vesicles. The released vesicles subsequently lose their coat, 

participate in multiple homotypic fusion events, and eventually deliver their cargo to early 

sorting endosomes. CME has traditionally been considered as a constitutive process but with 

the development of advanced live cell imaging techniques, new evidence suggests that CME 

is highly regulated, with regulators functioning at each step of clathrin-coated pit initiation, 

cargo selection, vesicle maturation, and fission. Regulation of CME has been reviewed 

elsewhere [7].

Although orchestrated by a few key proteins including clathrin heavy chain (CHC), clathrin 

light chains (CLC), and the heterotetrameric adaptor protein-2 (AP-2) complex consisting of 

α, β2, μ2, and σ2 subunits, the whole CME process involves more than 50 different proteins. 

These proteins fulfill multiple functions as components of scaffolds, cargo recruiters for 

specific cargoes, facilitators of membrane curvature as well as regulators of the whole 

process. During coat formation, cytosolic coat proteins are recruited to a specific region of 

the plasma membrane. These coat proteins consist of clathrin-adaptor proteins including the 

AP-2 complex, epsins, clathrin assembly lymphoid myeloid leukemia proteins (CALMs), 

and scaffold proteins including CHC, CLC, and intersectins, all of which interact to 

assemble the coat. Many of the coat proteins including the AP-2 complex are also major 

players in cargo recognition and concentration. As cargo is recruited, the clathrin-coated pit 

deepens and matures, assisted by naturally curved, (Bin-Amphiphysin-Rvs or BAR) domain-

containing proteins that create progressive curvature. In the last step, the large GTPase, 

dynamin, present in the clathrin-coated pit from the early stages, assembles into helical rings 

around the neck of mature invaginated pits to facilitate their fission from the plasma 

membrane. A schematic of this process is shown in Figure 1, highlighting key effectors.

2.1.1 Tools to study CME

2.1.1.1 Chemical inhibitors: Chemical inhibitors of endocytosis and their working 

mechanisms have been extensively reviewed previously [9, 10]. Some classic chemical 

inhibitors of CME include methyl-β-cyclodextrin [11], which selectively extracts cholesterol 

from the plasma membrane thus inhibiting the invagination of clathrin-coated pits; 

chlorpromazine [12], which prevents coated pit assembly at the cell surface; 
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monodansylcadaverine [13], which disrupts the association of ligand with clathrin-coated pit 

regions of the plasma membrane; and pitstop [14], which selectively blocks association 

between clathrin terminal domain and its accessory protein tether to the receptor, have been 

utilized for decades. These tools, while useful, are plagued by a lack of specificity to 

particular endocytotic pathways. A summary of classical and newer chemical inhibitor tools 

used to study endocytosis is found in Table 1.

Identification of more specific inhibitors of CME that do not affect other endocytotic 

pathways, has long been a goal. Banbury et al discovered that Tyrphostin A23, a structural 

analog of tyrosine, could inhibit the endocytosis of transferrin (Tf) and TGN38, 

internalization of which are highly dependent on the interaction between the tyrosine based 

motif in these proteins and AP-2, by inhibiting the interaction between the two [15]. This 

effect occurred without inhibition of pinocytosis. A decade later, another group proposed 

that Tyrphostin A23 inhibited CME in Arabidopsis thaliana due to its ability to uncouple 

oxidation and phosphorylation in mitochondria, thus acidifying the cytoplasm; this 

acidification caused a dramatic increase in the dwelling time of clathrin and associated 

adaptors with other effectors, thus inhibiting their normal dynamic behavior and leading to a 

reduction of phosphatidylinositol 4,5-biphosphate and inhibition of clathrin-coated pit 

formation [16]. They also discovered that Endosidin 9, a novel mitochondrial uncoupler, 

could inhibit CME in different systems due to its protonophore activity that resulted in 

cytoplasmic acidification, similarly to Tyrphostin A23 [16], as well as through direct binding 

to CHC [17]. At the same time, they identified an improved Endosidin 9 analogue, ES9–17, 

which lacked the effects of Endosidin 9 on cytoplasmic pH while retaining its ability to 

target CHC [17]. Elkin et al showed that ikarugamycin, a natural product with anti-protozoal 

activity, could inhibit CME of the Tf receptor (TfR), low density lipoprotein receptor 

(LDLR) and epidermal growth factor receptor (EGFR) in various cell lines in a rapid and 

reversible fashion, although long-term incubation with ikarugamycin was cytotoxic [18].

2.1.1.2 Genetic tools

Clathrin heavy and light chain modifications: To avoid problems associated with low 

selectivity of chemical inhibitors, genetic approaches have also been applied to inhibit or 

induce endocytosis (Table 1). One major strategy is to alter the expression or function of 

endocytosis-related proteins in vitro. Genetically modified animal models also provide an 

additional approach to study endocytosis in vivo, thus enabling greater understanding of 

endocytosis mechanisms within a three-dimensional multicellular environment. Knockdown 

of CHC is one of the most effective strategies to prevent CME. siRNA knockdown of CHC 

in a HeLa cell monolayer resulted in lack of detection of clathrin-coated pits or vesicles 

concurrent with swelling of post-Golgi membrane compartments. Receptor-mediated 

endocytosis of TfR, LDLR and EGFR chimeras were severely inhibited in clathrin-depleted 

cells [19]. In contrast, knockdown of CLC did not significantly influence the endocytosis of 

classical cargoes such as Tf and epidermal growth factor (EGF) [20], but was able to alter 

endocytosis of specific cargoes such as some G-protein coupled receptors (GPCR) [21] and 

bacteria [22]. Interestingly, knockdown of CLC significantly impacted clathrin-mediated 

trafficking between the trans-Golgi network and the endosomal system through additional 

downstream actions on actin polymerization, resulting in fission of clathrin-coated pits 
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through interaction with myosin VI at the apical surface, and also impacted cell migration 

through interference with recycling of β1-integrin [23–25].

Deletion of CHC in Caenorhabditis elegans resulted in strongly inhibited endocytosis of 

yolk by oocytes and development of inviable embryos [26]. In Trypanosoma brucei, 
depletion of CHC by RNA interference (RNAi) caused dramatically reduced endocytosis 

and growth cessation, as well as development of an enlarged flagellar pocket due to the 

coalescence of many intracellular vesicles [27]. Recently, using CRISPR technology, the 

Jackson Laboratory has successfully developed a mouse expressing a mutant CHC, termed 

B6N;FVB-Cltcem1(IMPC)J/Mmjax [28] which has the potential to become an important 

tool in future studies of CME. Interestingly, B-cells derived from CLC isotype aknockout 

mice showed decreased endocytosis of transforming growth factor β receptor 2, CXCR4, 

and δ-opioid receptor, but not CXCR5 or β2-adrenergic receptor, reinforcing the possible 

role of CLC in guiding cargo selectivity in vivo [29].

Modifications of adaptor proteins and other CME effectors: AP-2 μ2 subunit depletion by 

siRNA in HeLa cell monolayers significantly inhibited the formation of clathrin-coated pits 

associated with the plasma membrane, although it did not completely eliminate them. 

Endocytosis of TfR, but not EGFR or LDLR, was severely reduced in AP-2 depleted cells, 

suggesting that AP-2 depletion impacted CME in a cargo-dependent way [19], similar to 

CLC. Interestingly, no AP-2 μ2 homozygous mutant mice embryos were identified among 

blastocysts from intercrossed heterozygotes, indicating that μ2-deficient embryos die before 

day 3.5 postcoitus. AP-2 μ2 heterozygous mutant mice were viable and exhibited an 

apparently normal phenotype. Endocytosis of the plasma membrane pool of CD63, which is 

endocytosed through AP-2 mediated mechanisms, was not affected in embryonic fibroblasts 

from AP-2 μ2 heterozygous mutant mice [30].

siRNA knockdown of Epsin1 in BS-C-1 cells did not affect the entry of several classical 

ligands for CME including Tf, LDL or EGF, but significantly inhibited CME of influenza 

virus [31]. Interestingly, siRNA knockdown of both Epsin 1 and Epsin 2 in human umbilical 

vein endothelial cells (HUVEC) cells significantly reduced the endocytosis of vascular 

endothelial growth factor receptor (VEGFR)-1. Epsin 1 and Epsin 2 double knockout mice 

showed embryonical lethality at around embryonic day 10; however, embryonic fibroblasts 

from double knockout mice did not show obvious differences in clathrin-coated pit 

formation or endocytosis of Tf and EGF. Interestingly, endothelial cell derived from mice 

with deletions of Epsin 1 and Epsin 2 in vascular endothelium also showed defective 

endocytosis and subsequent degradation of VEGFR2 [32]. Simultaneous depletion of Epsin 

1, 2, and 3 led to a significant decrease in Tf uptake, which was attributed to a defect in the 

scission of clathrin-coated vesicles without interrupting dynamin [33]. In accord with this 

finding, mouse embryonic fibroblasts from Epsin 1, 2,and 3 triple knockout mice also 

showed significantly reduced uptake of Tf in parallel with accumulation of early U-shaped 

pits [34].

Modification of Dynamins: Dynamin is a critical effector of both CME and caveolae-

dependent endocytosis (discussed below). There are three isoforms of dynamin: dynamin-1, 

dynamin-2 and dynamin-3. Dynamin-1 is specific to the central nervous system, and highly 
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enriched in presynaptic nerve terminals. Dynamin-2 is ubiquitously expressed in all tissues. 

Dynamin-3 is predominantly expressed in the testis and in some regions of the brain. 

Although caveolae-dependent endocytosis is dynamin-dependent as well, most studies have 

applied genetic approaches to the analysis of CME. Dominant-negative mutants of 

dynamin-1 and dynamin-2, dyn1(K44A) and dyn2(K44A), significantly inhibited the 

endocytosis of Tf in HeLa cells with minimal effects on other membrane trafficking events 

[35]. Unexpectedly, when dynamin mutants defective in self-assembly-stimulated GTPase 

activity were overexpressed, namely dyn(K694A) and dyn(R725A) mutants, CME was 

accelerated [36]. A follow-up study showed that these mutations accelerated the formation 

of constricted coated pits, known to be the rate limiting step in endocytosis [37]. Neurons 

from dynamin-1 knockout mice exhibited impaired fission of clathrin-coated vesicles, 

manifested as a strikingly higher accumulation of clathrin-coated buds attached to the 

plasma membrane at the synapse compared with cells from wild type mice [38]. Dynamin-2 

conditional knockout cells showed significantly impaired CME, p75 export from the Golgi, 

platelet-derived growth factor-stimulated macropinocytosis and cytokinesis, but had no 

effects on other endocytotic pathways [39]. Similarly, cells derived from dynamin-1/

dynamin-2 double knockout mice showed impaired maturation of clathrin-coated pits into 

free clathrin coated vesicles [40]. Dynamin-1/−2/−3 triple knockout cells did not reveal any 

additional defects beyond the dynamin-1/−2 double knockout cells [41].

Protein engineering approaches for regulation of CME: While CME can be inhibited by 

genetic methods through deletion or mutant expression of its key effectors, activating CME 

on demand is not as straightforward. Wood et al. developed a series of genetically encoded 

reporters that can initiate CME through chemical induction. A clathrin-binding fragment of 

AP2 (“hook”) is fused to the FK506-binding protein which can bind rapamycin. The 

“anchor” protein at the plasma membrane is likewise fused to another rapamycin-binding 

protein. Addition of rapamycin triggers recruitment of the AP2 hook to the anchor protein of 

interest, subsequently recruiting clathrin and initiating CME (Figure 2). The authors termed 

this system “hot-wiring” because several intermediate steps in vesicle creation were 

bypassed. This “hot-wiring” system is useful for understanding which factors are essential 

for the initiation of endocytotic events as well as for studying the downstream processing of 

hot-wired vesicles and the machineries that control these aspects of vesicle trafficking [42].

Pastuczka et al. reported a temperature responsive method to reversibly turn on and off CME 

on demand, i.e. the “molecular switch”. CLC was fused to thermo-responsive Elastin-Like 

Polypeptides (ELPs) which can be assembled into microdomains in the cytosol triggered by 

a temperature increase (Figure 2). These organelle-sized microdomains, which can be 

thermally activated and inactivated within minutes, are reversible, do not require exogenous 

chemical stimulation, and are specific for components trafficked within the CME pathway 

[43]. Upon formation of these microdomains, internalization of angiotensin II receptor 

which is dependent on CLC was inhibited. Compared with genetic methods that knock down 

critical effectors of CME, the advantage of this technique is that it is reversible and can be 

evaluated in healthy cells simply transfected with CLC-ELP, which have not been passaged 

under conditions of constitutive inhibition of CME that may cause secondary effects [43]. 

However, as mentioned above, knockdown of CLC only selectively inhibits the endocytosis 
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of certain CLC-dependent cargoes; therefore, this “molecular switch” can only reversibly 

turn “on” and “off” the CME of CLC-dependent cargoes, such as angiotensin II receptor and 

some other GPCR. The effects on other CLC-independent cargoes have not yet been 

investigated so it is unclear whether the differential sensitivity to CLC knockout exhibited by 

some receptors will be similarly observed with this approach.

2.1.2 CME in drug delivery—TfR-targeted DDS are by far the most widely used drug 

delivery approaches that take advantage of CME to achieve intracellular delivery [44]. 

Different strategies such as direct conjugation of Tf with the active drug, direct conjugation 

of anti-TfR antibody or a TfR-targeting peptide with the active drug, or conjugation of Tf 

with DDS encapsulating various drugs have all been extensively applied in preclinical 

models for targeting of cancers and the central nervous system [45, 46]. Studies have shown 

that the cellular uptake efficiency of nanoparticles increases with increasing density of Tf or 

anti-TfR antibodies on the nanoparticle surface [47, 48]. While this enhances uptake, a 

noticeably, higher surface density of Tf or of TfR antibodies can also elicit higher 

cytotoxicity, which indicates that the surface density of the targeting moiety should be 

carefully adjusted when using TfR-targeted DDS [47].

Clinical trials exploring TfR-targeted delivery of biofunctional materials have been ongoing 

since the 1990s; however, so far there has been no FDA-approved therapy based on TfR-

targeted drug delivery. Several Tf-drug conjugates have transitioned from preclinical efforts 

into clinical trials, including Tf-CRM107 (modified diphtheria toxin), a conjugate which 

showed promising therapeutic effects in patients with refractory glioblastoma multiforme or 

anaplastic astrocytoma in Phase II clinical trials [49]. Tf-cisplatin conjugates also showed 

promising effects in breast cancer patients in a Phase I clinical trial [50]. However, no 

further reports were available from these trials.

Some new strategies for TfR targeting such as use of Tf-liposome conjugates have also 

drawn attention. MBP-426, a liposome conjugated with Tf for the delivery of oxaliplatin in 

patients with gastric, gastroesophageal, or esophageal adenocarcinomas, showed good 

tolerance with minimal toxicity in a Phase I clinical trial [51]. SGT-53, a liposome 

encapsulating plasmid DNA coding for wild type p53 conjugated with anti-TfR single chain 

variable fragment showed satisfactory tolerance and promising therapeutic effects in patients 

with advanced solid tumors in a Phase Ib clinical trial [52]. SGT-94a, an anti-TfR single 

chain variable fragment-conjugated liposome encapsulating RB94 plasmid, also showed 

good tolerance in metastatic genitourinary cancer patients in a Phase I clinical trial [53]. 

Additionally, a cyclodextrin-based polymer conjugated with Tf and loaded with siRNA 

targeted to reduce the expression of ribonucleotide reductase has shown evidence for 

specific gene inhibition in humans in an ongoing Phase I clinical trial [54]. Like TfR-drug 

conjugates, these efforts have not progressed to Phase III trials due to adverse events and 

systemic toxicity as reported in the Phase I or II clinical trials. The enhanced toxicity of 

TfR-targeted delivery seen both for drug conjugates and drug carriers may be caused by the 

TfR targeting moiety itself, through disruption of iron metabolism of the body, or through 

the increased targeting of cytotoxic drugs to non-target tissues also expressing TfR. More 

mechanistic studies are needed to elucidate the precise cause of toxicity before these 

delivery strategies can be further advanced.
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EGF and/or anti-EGFR antibody-conjugated DDS are another example of approaches 

intended to achieve intracellular delivery of bifunctional molecules through CME. These 

strategies have been widely explored in cancer-targeted therapy. Aerosol delivery of EGF-

modified gelatin nanoparticle carriers loaded with cisplatin showed enhanced delivery to the 

lungs in a lung cancer mouse model, suggesting possible benefit in clinical treatment for 

lung cancer [55]. To avoid introducing exogenous EGF with its known mitogenic properties, 

the anti-EGFR antibody has been more widely used as a targeting moiety for EGFR. Various 

anti-EGFR antibody-conjugated drug carriers loaded with chemotherapeutic drugs have 

showed significant therapeutic effects in mouse cancer models over the years [56–58]. 

Currently, one EGFR-targeted therapy, an anti-EGFR-antibody modified immunoliposome 

loaded with Doxorubicin, is in clinical trials for triple negative breast cancer 

(NCT02833766, Phase II) and refractory high-grade glioma (NCT03603379, Phase I).

LDLR-targeted drug delivery, GPCR-targeted drug delivery, vascular cell adhesion molecule 

(VCAM)-1 targeted drug delivery and Integrin-targeted drug delivery are other examples of 

targeting approaches that have targeted internalization via CME to deliver drugs, 

radionuclides, proteins, and nucleic acid intracellularly to achieve diagnostic or therapeutic 

goals [59]. Examples using these delivery strategies are summarized in Table 2. However, 

the majority of these studies are still in preclinical animal models.

2.2 Caveolar endocytosis

Caveolae are uncoated omega-shaped pits of 50–100 nm in diameter located at the plasma 

membrane in mammalian cells. Distinct from the process of CME which involves a dynamic 

and sequential maturation, caveolae appear to be consistently detected in a defined shape 

with consistent curvature and proportions in the neck region [60]. They may also form 

clusters or rosettes of several caveolae which are open to the plasma membrane through an 

intermediate single neck [61]. The density of caveolae varies between different cell types 

and tissues, but they may double the cell surface area in certain cell types. The proteins 

involved in caveolar endocytosis can generally be divided into structural and accessory 

proteins [60]. The structural proteins include the cholesterol-binding caveolins and the cavin 

coat proteins, while key accessory proteins include Eps15 Homology Domain (EHD) 

proteins and pacsin/syndapin. Caveolins and cavins are mostly located in the caveolar bulb 

while the EHD proteins are primarily located in the neck region of the caveolae [61, 62]. A 

schematic showing the major effectors for caveolae-mediated endocytosis is shown in Figure 

1.

The exact function of the caveolae has been debated, and its endocytotic capabilities and 

dynamicity questioned. Specifically, there have been conflicting reports on whether caveolae 

actually bud into endocytic carriers, as well as questions about the relative mobility of these 

potential carriers. However, with development of genetic knock-in and knock-out models 

and the application of high-resolution electron and live cell light and fluorescence 

microscopy, it is generally agreed that caveolae-mediated endocytosis does occur. In 

addition, several other functions for caveolae have now been suggested including signal 

transduction, mechanoprotection, and lipid regulation. It is still unclear if these functions 
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occur concurrently in all cells, or if they are cell-type dependent. These expanded roles and 

their relationship to disease has been recently reviewed [60].

Caveolar endocytosis occurs when external cargo binds to cargo receptors concentrated in 

the caveolar bud. This binding triggers budding of the caveolae from the plasma membrane, 

forming an endocytotic caveolar carrier containing both caveolin-1 and cavin-1 [60]. This 

process, like CME, depends on dynamin-mediated detachment of the vesicle. The caveolar 

budding process has been reviewed in [63]. The ultimate destination of the budded 

endocytotic carrier has also been debated. In 2001, Pelkmans et al. suggested the presence of 

a neutral pH organelle termed the caveosome, which facilitated a direct pathway from the 

caveolae to the endoplasmic reticulum (ER), bypassing the endosomes [64]. However, in 

2010, new work from the same group demonstrated two different trafficking pathways for 

caveolin-1 that are regulated by the level of its expression [65]. These studies suggested that 

under constitutive expression conditions, caveolae bud from the plasma membrane carrying 

caveolin-1 and cavins, and are trafficked to the early endosome. However, when caveolin-1 

was highly expressed, it was targeted to endosomes, ubiquitinated, sequestered into 

intraluminal vesicles by specialized endosomal sorting complexes required for transport 

proteins, and degraded in lysosomes. Following these studies, they suggested that the 

caveosome corresponds to the late endosomes/lysosomes and that the term should no longer 

be used. The interaction of the caveolar endocytotic carriers with the early endosomes 

occurs in a brief kiss and run fashion that preserves the caveolar structure [66].

2.2.1 Tools to study caveolae-mediated endocytosis

2.2.1.1 Chemical inhibitors: Polyene antibiotics such as filipin and nystatin, which 

sequester cholesterol from membrane structures [67], have been used to study both CME 

and caveolar endocytosis, which are both cholesterol-dependent. Methyl-β-cyclodextrin 

which selectively extracts cholesterol from the plasma membrane, thus inhibiting the 

invagination of the plasma membrane, is also used for inhibiting caveolae-mediated 

endocytosis [11]. However, these inhibitors can affect multiple endocytosis mechanism 

simultaneously, thus precautions should be taken when interpreting the results. These 

approaches are summarized in Table 1.

2.2.1.2 Genetic Tools

Modification of caveolin family proteins: The caveolin family proteins seem to play the 

most important roles in caveolae-dependent endocytosis across different cells, making them 

an obvious target for manipulation of this pathway. The caveolin gene family has three 

members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. Caveolin-1 exists 

ubiquitously in almost all kinds of tissue, although differences in its expression level occur 

across different tissues. Caveolin-2 is colocalized and co-expressed with caveolin-1, and 

requires caveolin-1 for structural stability and proper membrane targeting. Caveolin-3 has 

greater homology to caveolin-1 than caveolin-2, but it is expressed primarily in muscle cells 

[68]. Surprisingly, RNAi knockdown of caveolin-1 in COS-7 cells did not affect uptake of 

the cholera toxin B subunit, which is commonly assumed to be internalized by caveolae-

mediated endocytosis [69]. However, cholera toxin B uptake and cholera toxin toxicity also 

occur in cells such as lymphocytes which lack well-defined caveolae and caveolins [70], 
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suggesting that studies utilizing cholera toxin B to probe caveolae-dependent endocytosis 

may not be definitive. Interestingly, in caveolin-1 knockout mice, there was a complete 

absence of caveolar structures in the endothelial and epithelial cells of the lung, diaphragm, 

kidney and heart. Despite the complete depletion of caveolar structures in endothelial cells, 

transport of albumin and cholesterol, which are thought to rely upon caveolar function, 

appeared to be unaffected in caveolin-1 knockout mice compared with wild type mice. In 

addition, the abundance of proteins in lipid rafts, the lipid composition of lipid rafts, and the 

abundance of glycosyl phosphatidylinositol–anchored proteins normally enriched in lipid 

rafts from caveolin-1 knockout mice showed minimal differences compared with these 

measures in wild type mice [71]. Interestingly, another group reported reduced endocytosis 

of albumin by lung endothelial cells and aortic segment in caveolin-1 knockout mice 

compared with wild type mice [72]. Based on these studies, it appears that loss of caveolin-1 

can efficiently disrupt the formation of caveolae, but this may not lead to effects on the 

endocytosis of caveolae-dependent cargoes. In caveolin-1 knockout mice, caveolin-2 levels 

were also dramatically reduced due to its degradation via proteasomes, suggesting that 

caveolin-1 expression was required to stabilize the caveolin-2 protein product [73]. In 

contrast, in caveolin-2 knockout mice, caveolae could still form and caveolin-1 maintained 

its localization in plasma membrane caveolae [74]. Caveolin-3 knockout mice showed an 

absence of sarcolemmal caveolae in skeletal muscle fibers, while caveolae were still present 

in endothelial cells from caveolin-3 knockout mice, suggesting that caveolin-1 expression is 

not affected by caveolin-3 knockout [75].

Modification of Cavins: Cavins are essential structural components that reside on the 

cytoplasmic face of caveolae. There are four cavins in mammals. Cavins-1, −2 and −3 have a 

broad expression profile while Cavin-4 is muscle-specific. Cavin-1 knockout mice lack 

morphologically detectable caveolae in lung epithelium, intestinal smooth muscle or 

endothelial cells from all of these tissues, and also show markedly diminished protein 

expression of all three caveolin isoforms [76]. Deletion of Cavin-2 causes loss of endothelial 

caveolae in lung and adipose tissue, but had no effect on the abundance of endothelial 

caveolae in the heart and other tissues. Deletion of Cavin-3 does not interrupt caveolae 

formation in endothelial cells from most tissue [77]. Cavin-4 knockout mice showed normal 

caveolae formation and normal caveolin-3 localization at the plasma membrane in 

cardiomyocytes, indicating that Cavin-4 is not essential for that process [78].

2.2.2 Caveolae-mediated endocytosis in drug delivery—In endothelial cells, 

caveolae are thought to mediate transendothelial transport of certain macromolecules 

including albumin and lipids. Since the endothelium is one of the major barriers to drug 

transport from the circulation to tissue sites of drug action, caveolae transcytosis has been of 

great interest in the drug delivery field. However, this proposed process has long been 

debated and disputed in what has been called the “Vesicle Controversy” which questioned 

whether transendothelial transport occurred by vesicle-mediated versus paracellular 

mechanisms [79]. Due to a lack of specific tools to probe caveolae-mediated trafficking, 

many features of this pathway are still unclear. Several early studies suggested that caveolar 

endocytic carriers could directly transverse endothelial cells, bypassing the endosomal 

system [80–83]. Albumin was identified as one of the major cargos transported by this 
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system. Utilizing biochemical approaches, the Schnitzer group identified several proteins 

including SPARC, gp60 (albondin), gp30, and gp18 which were located in the plasma 

membrane of cultured endothelial cells and that served as putative receptors for albumin. 

Furthermore, blockage of gp60 with antibodies prevented binding of albumin to the plasma 

membrane and reduced its internalization [82]. Minshall et al. further investigated this 

pathway, demonstrating physical proximity between gp60 and caveolin-1 [84]. Several early 

studies performed in cultured cells found caveolae-mediated endocytosis to be slower than 

CME [64, 85, 86], while others suggested caveolae were anchored to the actin cytoskeleton 

[87]. However, in one of the first in vivo studies of caveolar trafficking in lung tissue 

utilizing antibody-based targeting probes directed to aminopeptidase P enriched within 

caveolae, Oh et al. demonstrated endocytosis and accumulation of the probe in the 

perivascular space occurring as quickly as 5 s after intravenous administration [88]. 

Furthermore, using caveolin-1 knockout mice they also showed that endocytosis was 

caveolae-dependent for this particular probe. Other studies have revealed an increased 

transendothelial transport of albumin in caveolin-1 deficient mice, suggesting that albumin 

may also be transported through endothelial cells via paracellular or other routes [89].

Most studies regarding the dynamics, function and trafficking patterns of caveolae and 

caveolae-targeted drug carriers have been performed in cultured cells. As illustrated above, 

caveolar function may vary tremendously in in vitro models versus in vivo systems, For 

instance, there is a stark difference in the rates of caveolar endocytosis found in vitro (slower 

than CME) and in vivo (very rapid in endothelium) as discussed above [64, 85, 86, 88]. 

Furthermore, many of the tools used in the early studies of caveolae transcytosis are now 

known to lack specificity. For example, N-ethylmaleimide, commonly used as a caveolar 

transcytosis inhibitor [81, 83] was later demonstrated to elicit toxic endothelial damage and 

was also incapable of inhibiting transcytosis at non-toxic concentrations [90–92]. Simian 

virus-40 which was first believed to enter host cells specifically by caveolae endocytosis 

followed by transcytosis was later shown to also be endocytosed through a clathrin- and 

caveolae-independent pathway [93].

Caveolae cargo receptors such as gp60 and aminopeptidase P have been major targets to 

facilitate drug delivery via enhanced caveolae-mediated cellular uptake and, potentially, 

transcytosis [94, 95]. Early work on caveolae transcytosis used 20 nm gold nanoparticles 

(Au-NP) absorbed with albumin as a tool to study this process using electron microscopy. 

When placed on the luminal side of pulmonary microvessels, these particles bound to gp60 

and induced caveolae-mediated endocytosis and transcytosis [90]. Another early study 

showed, with confocal microscopy imaging, that albumin-conjugated fluorescent 

polystyrene nanoparticles were internalized in a monolayer culture of bovine lung 

microvascular endothelial cells. Based on findings of a 70% co-localization of the 

internalized nanoparticles with caveolin-1, it was concluded that most of this uptake was due 

to caveolae endocytosis [96]. Since then, albumin has become a popular carrier or coat for a 

variety of nanomaterials, drugs and other biomolecules [94, 97–102]. The clinical potential 

of albumin-based targeting in cancer therapeutics was demonstrated by an albumin-bound, 

130-nm particle form of paclitaxel (ABI-007) that demonstrated enhanced antitumor activity 

compared with equitoxic doses of Cremophor-based paclitaxel in five human tumor 

xenograft models [96]. ABI-007 was later FDA-approved and marketed as Abraxane®. 
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Similarly, a polymeric doxorubicin conjugate nanoparticle decorated with albumin 

demonstrated robust transendothelial transport in HUVECs grown in Transwell plates [97]. 

Furthermore, these albumin-labeled nanoparticles showed improved antitumor efficacy in a 

human MCF-7 breast cancer xenograft model compared to conventional PEG-nanocarriers. 

The use of albumin in targeted drug carriers has been further reviewed elsewhere [103, 104]. 

Plasmalemma vesicle-associated protein (PV-1) is an endothelial-specific integral membrane 

glycoprotein associated with the stomatal diaphragms of caveolae, a specialized structure 

within the caveolae that are present only in endothelia of the continuous type including 

within lung and kidney; this protein has also received attention as a means of targeting 

uptake to these tissues via caveolae-mediated uptake [105–108].

2.3 Macropinocytosis

Macropinocytosis is an endocytotic process facilitating cellular uptake of extracellular fluid 

and soluble proteins, resulting in formation of cytoplasmic endocytotic vesicles with a 

diameter exceeding 0.2 μm termed macropinosomes [109]. This process occurs in a 

regulated manner through the activation of toll-like, chemokine or growth factor receptors, 

but can also occur constitutively in some cell types. Macropinocytosis is an actin-driven 

process. A ring of actin polymerization (circular ruffle) that may be up to several microns in 

diameter forms under the plasma membrane and either de novo or through folding of a linear 

ruffle, forms a cup-shaped invagination. Closure of the cup generates the macropinosome 

which enters the cell and matures.

The process of macropinocytosis is regulated by a series of small GTPases. Ras GTPases 

activate class-I phosphatidylinositol 3-kinases which generate membrane domains enriched 

in PIP3. These domains serve as docking sites for Rho GTPases that regulate the underlying 

actin remodeling and drive membrane ruffle formation. Once a macropinosome closes at the 

plasma membrane, the sequential steps of its maturation are coordinated by small Rab 

GTPases and phosphoinositides [110]. Rab5 and Rab34 have been shown to be involved in 

the early stages of macropinosome formation, facilitating their fusion with early endosomes 

[111]. At this stage of macropinosome maturation, a switch from Rab5 to Rab7 function 

facilitates its fusion with late endosomal/lysosomal compartments. Figure 1 illustrates 

schematically the process of macropinocytosis.

2.3.1 Tools to study Macropinocytosis

2.3.1.1 Chemical inhibitors: Inhibitors of macropinocytosis such as 5-(N-ethyl-N-

isopropyl) amiloride (EIPA) [112], which prevents Na+/H+ exchanger thus lowering sub-

plasma membraneous pH, and wortmannin, which leads to recession of membrane ruffles 

without forming macropinosomes [113], are widely used to study macropinocytosis. A 

screening study for macropinocytosis inhibitors from FDA-approved compounds showed 

that imipramine, phenoxybenzamine and vinblastine could potently inhibited 

macropinocytosis without exerting cytotoxic effects. Further mechanistic studies showed 

that imipramine inhibited membrane ruffle formation, a critical early step leading to 

initiation of macropinocytosis [114]. Stewart et al. showed that the diacylglycerol kinase 

inhibitor, R-59–022, could inhibit the internalization of fluorescently-labeled dextran which 

is internalized through macropinocytosis in Vero cells [115]. Furthermore, phellodendrine 
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chloride, a plant-constituted alkaloid, inhibited macropinocytosis in pancreatic cell lines 

through inhibition of membrane ruffling [116]. These strategies are summarized in Table 1.

2.3.1.2 Genetic Tools: Myosins comprise a large superfamily of molecular motor proteins 

known to engage with actin filaments to drive vesicle motility, create propulsive force, and 

regulate actin remodeling. Particular myosins are involved in regulation of plasma 

membrane dynamics through interaction with actin filaments, a function important for 

maintaining mechanical force and membrane trafficking [117]. Myosin I family members 

are involved in regulating membrane tension and actin architecture, powering plasma 

membrane and organelle deformation and participating in membrane trafficking [118]. 

Myosin I single mutations in each individual isoform expressed in Dictyostelium discoidum 
did not show significant impairment of macropinocytosis, however, myosin Ia/Ib and myosin 

Ib/Ic double mutant strains of Dictyostelium discoidum exhibited a significantly slower rate 

of internalization of FITC-dextran compared with the wild type [119]. Knockdown of 

myosin Ic in HeLa cells caused a loss of lipid-raft-associated marker proteins from the cell 

membrane and significantly reduced macropinocytosis of fluorescent dextran [120]. SiRNA 

knockdown of the nonmuscle myosin II isoforms, -IIa and –IIb, in a neuroblastoma cell line 

resulted in opposite effects on macropinocytosis induced by phorbol myristate acetate or 

insulin-like growth factor. Myosin IIa knockdown significantly increased macropinocytosis, 

whereas myosin IIb knockdown significantly decreased macropinocytosis, with these 

changes correlated with upregulation and downregulation, respectively, of membrane ruffle 

formation [121]. Dendritic cells from myosin IIa knockout mice showed increased 

macropinosomes that were smaller and exhibited more static dynamics in parallel with an 

impaired ability to accumulate internalized antigens [122]. Recently, it was discovered that, 

beyond Ras [111], phosphoinositide 3-kinase [123], Src [124], and Rac [125] already 

implicated in stimulation of macropinocytosis, that microtubules, dynein motors, and the 

Arf6 effectors, the Jun kinase interacting proteins (JIP3/JIP4) scaffold proteins, are also 

required for macropinocytosis. This was determined in studies using siRNA knockdown of 

JIP3 and Arf6, which resulted in reduced macropinocytosis through inhibition of formation 

of macropinosomes [126].

2.3.2 Macropinocytosis in drug delivery—Lipid like materials, such as lipidoids 

[127], lipid nanoparticles [128], and lipopeptide nanoparticles [129] can successfully deliver 

siRNA into target cells through macropinocytosis. Polypeptide-derived nanoparticles such as 

histidylated polylysine polymers [130], pegylated poly-L-lysine [131], or elastin-like 

polypeptides [132] have demonstrated the ability to intracellularly deliver nucleic acid or 

drugs through macropinocytosis. Exosomes, extracellular vesicles carrying cargo such as 

non-coding RNA and proteins that are secreted from multivesicular bodies, have received 

considerable attention as natural drug carriers [133]. Macropinocytosis of exosomes has 

been demonstrated in epidermoid carcinoma and pancreatic carcinoma cell lines [134], in 

cerebral microvascular endothelial cell lines [135] and in neurons such as 

pheochromocytoma PC12 cells [136]. Though the precise mechanism of cellular uptake is 

controversial, some studies suggests that cell penetrating peptide-conjugated liposomes 

[137] or extracellular vesicles [138] can be internalized into target cells for intracellular 

delivery of biofunctional molecules through macropinocytosis. The studies utilizing 
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colocalization with fluorescent dextran or inhibition of uptake with chemical inhibitors as 

tools to assess macropinocytosis, approaches which both lack specificity, may be viewed as 

less definitive [127, 129, 130, 132, 134], while a few studies have explored the genetic 

methods described in Section 2.3.1.2 to assess macropinocytosis with more specificity for 

the process [128].

2.4 Phagocytosis

Phagocytosis, defined as the cellular uptake of particulates (>0.5 μm) within a plasma-

membrane envelope, is used by professional phagocytic cells such as monocytes, 

macrophages and dendritic cells to internalize microorganisms and present them to cells of 

the adaptive immune system. Nonprofessional phagocytes, such as fibroblasts, epithelial 

cells, and endothelial cells, can also perform phagocytosis to eliminate apoptotic cells. The 

first step in phagocytosis is the recognition of the particle by phagocytes. This recognition 

occurs via various receptors that recognize the particle as a target by directly recognizing 

specific molecular groups on the particle surface, e.g., nonopsonic receptors, or indirectly 

recognizing the opsonized particles through identification of host-derived opsonins bound to 

the surface of the particle, e.g., opsonic receptors. After recognition of the target particle, 

phagocytic receptors initiate signaling cascades that reorganize the plasma membrane and 

regulate the actin cytoskeleton to extend the cell membrane around the particle [139]. At the 

point of contact, a depression of the membrane called the phagocytic cup is formed. Then, 

the phagocytic cup closes at the distal end, forming a new phagosome. The phagosome 

undergoes a series of fusion and fission events with vesicles of the endocytic pathway, 

resulting in fusion with lysosomes to form a phagolysosome. During this process, there is a 

gradual decrease in pH and acquisition of digestive enzymes, leading to the digestion of the 

invader and recovery of antigens for presentation on the surface of the phagocyte [139]. This 

process is illustrated schematically in Figure 1.

2.4.1 Tools to study phagocytosis

2.4.1.1 Chemical inhibitors: The identification of phagocytosis inhibitors started decades 

ago. Cytochalasin B was shown to significantly inhibit the phagocytosis of S. aureus by 

human blood leukocytes and rabbit alveolar macrophages through inhibition of contractile 

microfilaments [140]. Adenosine, deoxyadenosine, and adenine arabinoside inhibited the 

phagocytosis of IgG-coated red blood cells (RBC) or zymosan by macrophages [141]. 

Mycotrienin, piericidin, and genistein were discovered as selective inhibitors of 

phagocytosis by macrophages through screening metabolites of Actinomyces [142]. 

Latrunculin A, an actin microfilament organization disruptor, also showed potent inhibition 

of phagocytosis of mouse peritoneal macrophages [143]. Thimerosal and p-nitrophenyl 

methyl disulfide could significantly inhibit Fc-receptor mediated phagocytosis of RBC by 

macrophages [144]. Other phagocytosis inhibitors also exist besides these mentioned. Since 

most phagocytosis inhibitors act through inhibition of the actin cytoskeleton, also implicated 

in other endocytosis mechanisms, this lack of specificity is a major concern when using 

these inhibitors for phagocytosis studies. General approaches are summarized in Table 1.

2.4.1.2 Genetic Tools: The particle recognition step has been widely targeted and is 

viewed as the most controllable step in manipulation of phagocytosis. Several molecules on 
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the cancer cell surface such as CD47 [145], PD-L1 [146], beta-2 microglobulin subunit of 

the major histocompatibility class I complex) [147], and CD24 [148] can help cancer cells 

evade phagocytosis by macrophages through interaction with their respective receptors 

expressed on macrophages. Some bacteria can also evade phagocytosis by inhibiting 

opsonization [149–151], while others can directly disrupt cytoskeleton remodeling, inhibit 

plasma membrane extension or downregulate opsonic receptors, thus preventing engulfment 

by phagocytes [152, 153]. Some yeast can mask the antigenic protein by generating a thick 

polysaccharide barrier, thus escaping recognition by macrophages [154, 155].

Other than disrupting particle recognition, which has largely been probed from the 

perspective of evading phagocytosis, the molecular machinery for internalization can also be 

targeted for manipulating phagocytosis. A recent magnet-based phenotyping screening in a 

human myeloid cell line with phagocytic activity, U937 cells, identified genes that promoted 

or inhibited phagocytosis. Among the identified genes were components of the actin 

polymerization cascade known to be essential for phagocytic cup formation and including 

RAC1, DOCK2, members of the SCAR/WAVE complex and members of the ARP2/3 

complex; the mTOR-associated regulator complex; lipid metabolism and sialic acid 

biosynthesis related genes; NHLRC2 which regulates RhoA-Rac1 signaling cascades 

controlling actin polymerization and filopodia formation; and the poorly characterized 

TM2D1, TM2D2 and TM2D3 genes [156]. Several substrate-selective phagocytosis 

regulators were also identified, such as the integrin related genes TLN1 and FERMT3, 
which facilitate the phagocytosis of zymogen and RBC, but had no effect on midbeads 

[156]. These discoveries have advanced the understanding of the molecular machinery of 

phagocytosis, and also identify specific proteins for potentially manipulating phagocytosis.

2.4.2. Phagocytosis in drug delivery—Phagocytosis is also an important mechanism 

for internalization of some DDS. Non-living bacterial envelopes (bacterial ghosts) which 

maintain cellular morphology and surface antigens, have been used to deliver DNA into 

antigen presenting cells through phagocytosis and consequently to induce immune responses 

in preclinical animal models, serving as potential vehicles for DNA vaccines [157–161]. 

Yeast-derived carriers have also been shown to successfully deliver siRNA into phagocytes 

through phagocytosis as potential candidate carriers for phagocyte-targeted gene therapy 

[162, 163]. Besides natural pathogen-derived delivery systems, other biological materials 

have been utilized for phagocyte- targeted delivery such as RBCs. Artificially-modified 

RBCs can be opsonized, then recognized and phagocytosed by macrophages, which makes 

them ideal phagocyte-targeted carriers [164]. RBC-mediated delivery of antiviral drugs into 

macrophages through phagocytosis showed significant inhibition of viral replication [165]. 

Dexamethasone, delivered by the same RBC-mediated system into macrophages, showed 

inhibition of NF-kB activation and TNF-α production [166]. Dexamethasone-loaded RBC 

therapy was advanced to clinical studies in chronic obstructive pulmonary disease patients, 

demonstrating a prolonged release of dexamethasone into plasma for up to seven days [167] 

and in Crohn’s disease, showing good tolerance and ability to maintain long term disease 

remission of the disease [168]. Consequently, dexamethasone-loaded RBC, patented as 

EryDex, showed significant improvement in neurological symptoms in patients with ataxia 

telangiectasia in a Phase II clinical trial [169]. Another RBC-mediated delivery system that 
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active in clinical trials is L-asparaginase encapsulated in RBC, showing promising results in 

treatment of acute lymphoblastic leukemia in a Phase II clinical trial [170], acute 

lymphoblastic leukemia in a Phase II clinical trial [171] and pancreatic adenocarcinoma in a 

Phase II clinical trial [172]. Additionally, RBC-mediated drug delivery has also been studied 

in preclinical studies for treatment of lysosomal storage diseases (LSD), sickle cell disease 

[173] and hyperammonemia [174].

Besides the biologically-derived pathogen and RBC delivery systems mentioned above, 

ligand targeting can be utilized for phagocyte-targeting. Antigen-containing liposomes 

conjugated with IgG were internalized into dendritic cells, triggering immune responses in 

mice [175]. Anti-S. aureus antibody-conjugated antibiotics demonstrated intracellular killing 

of methicillin-resistant Staphylococcus aureus after opsonizing the bacterium and 

consequent phagocytosis into macrophages [176]. A doxorubicin loaded bionanocapsule 

displaying both Fc-binding domain and Fab-binding domains on its exterior could aggregate 

after mixing with IgG2a, followed by phagocytosis into macrophages, thus specifically 

delivering this drug to macrophages. This process was inhibited by latrunculin B, a non-

selective phagocytosis specific inhibitor [177]. Notably, phagocytosis can also occur in non-

professional phagocytes, such as epithelial cells. For instance, various vehicles have been 

developed to deliver drugs to retinal pigmented epithelial cells which can demonstrate the 

release of encapsulated dye intracellularly after phagocytosis into the cells [178–180].

Interestingly, macrophages can phagocytose and secrete oligonucleotides and proteins into 

the surrounding environment, which also makes them a delivery vehicle in addition to a 

target for delivery. It has been shown that macrophages can horizontally transfer proteins 

and nucleic acid such as DNA and siRNA into ischemic muscle [181], cancer cells [182] and 

neurons [183] in vitro and in vivo. Macrophage-derived extracellular vesicles are also used 

as drug carriers for chemotherapeutics due to their cancer-targeting ability [184, 185], and 

for protein delivery to the brain due to their ability to the cross blood brain barrier [135, 

186].

Since a large fraction of administered nanoparticles may be sequestered and cleared by the 

reticuloendothelial system (RES), phagocytes can also be a hurdle for DDS. Polyethylene 

glycol (PEG) modification by PEGylation may provide a stealth functionality for DDS, as its 

addition can block serum protein binding to the surface of DDS and inhibit their 

phagocytosis [187]. CD47, an integrin-associated protein, is expressed on red blood cell and 

other cells as a “marker of self” [188, 189]. CD47 prevents RES uptake through interaction 

with SIRP-α on macrophages which is termed as “do-not-eat-me” signaling [190]. DDS 

coated with CD47-derived peptide significantly delayed macrophage-mediated clearance of 

nanoparticles and enhanced their persistent circulation [191, 192]. In recent years, 

interactions between CD47 on cancer cells and SIRPα on macrophages has been viewed as a 

potential immune checkpoint for cancer immunotherapy. Blockage of this immune 

checkpoint is currently in preclinical and clinical development for a variety of malignancies 

[193].

Ju et al. Page 16

Adv Drug Deliv Rev. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5 Other non-canonical endocytosis pathways

Although less mechanistic information is available regarding the role of molecular effectors, 

and selective strategies (both chemical and genetic) are lacking for their specific study, 

several additional endocytosis pathways offer special opportunities for drug delivery to 

discrete tissues/cells such as endothelium and T-cells. These processes are illustrated for the 

receptors of interest schematically in Figure 1.

CAM-mediated endocytosis—Cellular adhesion molecules (CAMs), such as 

intercellular adhesion molecule-1 (ICAM-1 or CD54) and platelet endothelial cell adhesion 

molecule-1 (PECAM-1) have each been exploited for intracellular delivery of biological 

materials. Multimeric anti-ICAM-1 or anti-PECAM-1 conjugates containing multiple 

antibodies can be internalized though CME-independent and caveolae-independent 

endocytic pathways into endothelial cells, a process termed CAM-mediated endocytosis 

[194]. CAM-mediated endocytosis plays an important role in endothelial targeting, since 

many CAMs are constitutively expressed on endothelium or can be induced by pathological 

conditions [195]. Monomeric anti-ICAM-1 can be similarly endocytosed; however the 

intracellular trafficking route is distinct between multimeric and monomeric ligands. Most of 

the multimeric anti-ICAM-1 conjugates become colocalized with perinuclear lysosomes, 

followed by degradation. In contrast, most of the monomeric anti-ICAM-1 conjugates 

become colocalized with a membrane compartment enriched in Rab11, and are ultimately 

recycled back to the cell surface with minimal degradation [196]. Such a difference offers 

the potential for different applications for each type of anti-CAM conjugates. A multimeric 

anti-ICAM-1 delivery system has been used to deliver the lysosomal enzymes as part of 

enzyme replacement therapy for LSD [197–201], for instance, while monomeric delivery 

vehicles may allow sustained intracellular delivery without degradation of the carrier.

The precise mechanism of CAM-mediated endocytosis is still not well-understood. This 

process is not inhibited by traditional CME or caveolae-mediated endocytosis inhibitors. It 

is, however, susceptible to amiloride, protein kinase C inhibitors, expression of the dominant 

negative dynamin 2 mutant, actin depolymerization, and Src kinase and Rho kinase 

inhibitors [194]. Na+/H+ exchanger family proteins, especially NHE1 and NHE6, may also 

play a role in distinct phases of CAM-mediated endocytosis and subsequent intracellular 

trafficking [202]. These approaches are summarized in Table 1.

Interestingly, the efficiencies of internalization of the same drug mediated by different 

pathways has been compared in the disease state utilizing CAM-mediated endocytosis and 

caveolae-mediated endocytosis. Endothelial proinflammatory activation, elicited by pro-

inflammatory cytokines or lipopolysaccharides, have been shown to lead to the upregulation 

of CAMs, vascular cell adhesion molecule-1 (VCAM-1) in particular [203]. An important 

mediator of this process has been shown to be reactive oxygen species [204]. Shuvaev and 

colleagues pioneered the concept of using a targeted DDS to deliver the antioxidant enzyme, 

superoxide dismutase (SOD), specifically to endothelial cells affected by ischemia, 

inflammation, stroke and many other conditions [203]. SOD was conjugated with antibodies 

to PECAM-1 for targeted delivery to endothelium and was internalized via CAM-mediated 

endocytosis. Pro-inflammatory activation, as measured by downstream VCAM expression, 
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was significantly downregulated both in vitro and in vivo by anti-PECAM-SOD, but not by 

its untargeted counterpart, polyethylene glycol (PEG)-SOD. Inspired by the great abundance 

of caveolae in endothelial cells, additional investigations using antibody-SOD conjugates 

highlight the relative potential of caveolae-mediated endocytosis relative to CAM-mediated 

endocytosis in this tissue for delivery of SOD [205]. SOD was fused to antibody to the 

caveolar cargo protein, PV-1, for targeted delivery to endothelial caveolae. Although anti-

PV-1-SOD and anti-PECAM-SOD had similar tissue accumulation in vivo, only the former 

inhibited the pro-inflammatory cytokine accumulation in vivo during lipopolysaccharide-

induced pulmonary inflammation.

IL-2R mediated endocytosis—Interleukin-2 receptor (IL-2R) mediated endocytosis is 

another example of a non-canonical endocytosis pathway of relevance to drug delivery that 

proceeds independently of known pathways such as CME and caveolae-mediated 

endocytosis. IL-2R normally functions in immune cells to bind interleukin 2 (IL-2) and 

transduce its signal intracellularly, with endocytosis comprising part of the signaling 

process. IL-2-functionalized nanocapsules or immunoliposomes can specifically target 

human and murine T cells in vitro and in vivo and be internalized through IL-2R-mediated 

endocytosis [206, 207]. IL-2 conjugated immunoliposomes delivered immunosuppressive 

reagents such as methotrexate into murine and human T cells following binding to and 

endocytosis of surface IL-2R [208]. Recently, this endocytotic route was defined as fast 

endophilin-mediated endocytosis (FEME), where endophilins cooperate with dynamin and 

the actin cytoskeleton in scission of vesicles. Inhibition of IL-2R endocytosis occurs via 

inhibition of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin 

polymerization, and is activated by Cdc42 inhibition [209, 210] (Table 1). This same 

pathway has been implicated in ligand-mediated internalization of several G-protein-coupled 

receptors such as α2a- and β1-adrenergic, dopaminergic D3 and D4 receptors and 

muscarinic acetylcholine receptor 4, and the receptor tyrosine kinases EGFR, HGFR and 

VEGFR [209].

3. In Vivo Visualization of Endocytosis

Although visualization of endocytosis in cells has been enabled by many advances in light 

microscopy applications and the availability of diverse fluorescent probes, in vivo 
visualization of these processes continues to be more challenging due to the complex nature 

of multicellular organisms as well as a lack of specific and targeted probes. Here, we 

summarize recent progress on in vivo visualization of endocytosis in multicellular organisms 

(Figure 3).

Radioisotope labeling has been widely used for tracking the in vivo distribution of drug 

carriers in animal models. Radioisotope iodine-124 labeled nanoparticle conjugated with 

anti-PECAM-1 antibody or anti- thrombomodulin antibody showed about 20-fold higher 

accumulation in the lung when compared with blood when analyzed by PET scanning [211, 

212]. Copper-64 labeled nanoparticles conjugated with anti-ICAM-1 antibody showed 

significantly higher uptake in the lung when compared with control IgG [213]. Indium-111 

labeled liposomes conjugated to anti-VCAM antibody showed significantly higher targeting 

to inflamed brain in mice when analyzed by single-photon emission computed tomography 
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imaging (SPECT) [214]. I-125 labeled deformable nanogels conjugated with anti-PV-1, a 

marker found in lung caveolae, achieved significant targeting effects to the lung [215]. 

However, due to the limited resolution of this technique, it was hard to track endocytotic 

dynamics or single cell level details in real-time.

Fluorescence labeling and tracking is also widely used in small animals due to its fast 

acquisition and image processing times, thus allowing for high-throughput imaging in real-

time. Near-infrared fluorophores are more commonly used than fluorophores emitting 

energy in the visible range due to better tissue penetration, less absorption and scattering of 

emitted photons and less tissue autofluorescence in this range [216]. However, this technique 

does not provide enough sensitivity for imaging of cellular and molecular processes in intact 

living tissues with high resolution.

Several luciferase reporter systems have been developed to track DDS dynamics in vitro and 

in vivo [217–221]. Biodistribution of exogenously administered exosomes derived from 

luciferase reporter gene transfected parental cells were visualized in vivo with an in vivo 
imaging system (IVIS) after the animal was treated systemically with luciferase substrate 

[217, 219, 220]. Lipid nanoparticles carrying mRNA encoding the luciferase reporter gene 

was also used to evaluating successful delivery of mRNA into target tissues when given by 

different route by IVIS after systemic administration of D-luciferin [222, 223]. One 

advantage of using the luciferase reporter is its high signal-to-noise ratio, in contrast to 

fluorescence imaging which can be affected by tissue autofluorescence. Another advantage 

is that the luciferase reporter has a low risk of photobleaching and phototoxicity which is 

always a concern for fluorescence imaging. A drawback of using luciferase is that compared 

with fluorescent signals, the signal of a luciferase reporter is relatively dim because it is 

dependent on the amount of local substrate. The toxicity of the substrate, its bioavailability, 

and the half-life of luciferase should also be taken into consideration when applying it for in 
vivo imaging.

Intravital Microscopy (IVM) encompasses a series of light microscopy-based techniques that 

can be used to image several biological processes in live animals. These techniques are 

useful tools to study endocytosis processes in vivo [224] especially when combined with two 

photon microscopy which ensures deeper tissue penetration of the light source. IVM 

combined with indirect immunofluorescence has been used to examine how a specific 

regulatory protein of endocytosis affected maintenance and formation of the intercellular 

canaliculi in the acinar cells of the submandibular salivary glands in live mice [225]. IVM 

has also been used to visualize different endocytosis pathways (CME or fluid phase) as well 

as the intracellular trafficking of fluorescently labeled ligands in different segments of 

kidney tubules [226], intestinal epithelium [227], liver [228] and tumors in situ [229, 230]. 

The effects of nanoparticle size, shape, charge and material composition on uptake and 

membrane trafficking in live animals has also been studied by IVM [231]. A significant 

advantage of IVM is that it allows the study of endocytosis processes in different cell types 

at the same time in a physiological environment. With the help of different surgical and 

injection techniques, IVM has also enabled the study of endocytosis in polarized epithelia in 

salivary gland. Basolateral endocytosis was followed by delivery of fluorescent probes from 

the vasculature [232], whereas apical endocytosis was studied by retro-diffusing a 
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fluorescent probe through secretory ducts [233]. Methods have also been developed to 

visualize the dynamics of extracellular vesicle uptake and translation of extracellular vesicle 

derived cargo mRNA in cancer cells in vivo in tumor-implanted mice [234].

Super-resolution techniques which provide superior spatial and temporal resolution have 

also advanced the in vivo visualization of endocytosis to a great extent. A recently developed 

pulse–chase technique for subdiffractional tracking of internalized molecules (sdTIM) was 

able to visualize the endocytosis of fluorescently tagged molecules and their presence in 

individual signaling endosomes and SVs in presynapses, which provided a great tool to 

understand endocytic pathway dynamics in vivo [235]. A combination of super-resolution 

microscopy and single-molecule data analysis, i.e., two-color Stochastic Optical 

Reconstruction Microscopy (STORM), addressed the size and positioning of nanoparticles 

inside cells and probed their interaction with the cellular machineries at nanoscale 

resolution, which may potentially be applicable to in vivo studies [236].

Interestingly, Masedunskas et al. have demonstrated that the dynamics of internalization of 

Tf and dextran, two molecules that traffic via distinct endocytosis mechanisms, are 

substantially altered in ex vivo cultured salivary gland stromal cells when compared with in 
vivo studies in the live animal, which indicates that the surrounding environment exerts 

effects on endocytosis and membrane trafficking [237]. This intriguing finding illustrates 

that in vitro and ex vivo endocytosis processes may not recapitulate physiological processes 

in a live organism. Whenever feasible, evidence from in vivo tests adds great strength in 

supporting a conclusion regarding in vivo mechanisms of action.

4. Endocytosis and DDS physical properties

4.1 Size of DDS

Considerable effort has been expended to understand how the physical properties of 

nanoparticles and microparticles, including size, deformability, and shape, impact 

endocytotic uptake. Interpretation of such studies has not always been straightforward for 

many reasons including the predominant use of non-specific chemical inhibitors to define 

the pathways under study, the use of different cell models which manifest differential 

expression of the endocytic pathways of interest, and the lack of studies in vivo which more 

accurately recapitulate pathways such as caveolae-mediated processes in endothelium. For 

instance, to understand the size constraints of CME, Jiang et al. screened Herceptin-coated 

Au-NPs within a 2–100 nm size range and suggested the optimal size range for uptake via 

CME to be 40–50 nm [238]. This is consistent with another research study which 

demonstrated that 45 nm Au-NPs penetrated cells via CME. However, in a different study, 

CME was found to be able to accommodate 50–200 nm metal hydroxide nanoparticles 

[239].

Despite substantial overlap in capacities across the two pathways, the size constraints 

imposed by caveolae-mediated endocytosis appear more limiting than for CME. A series of 

folate-decorated nanoparticles with size ranging from 50 to 250 nm were fabricated to study 

their uptake in retinal pigmented epithelial cells. The internalization of 50 nm and 120 nm 

nanoparticles was found to be mediated by both CME and caveolae-mediated endocytosis. 
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However, 250 nm nanoparticles were internalized only via caveolae-mediated endocytosis 

[240]. Additional studies have compared the effects of particle size on the preference for 

uptake via CME and caveolae-mediated endocytosis. Rejman et al. screened a series of 

fluorescent polystyrene latex beads with defined diameters ranging from 50–1000 nm in 

non-phagocytic B16 tumor cells. Particles up to 500 nm were internalized via an energy-

dependent endocytosis process. The formation of clathrin-coated pits was observed when 

particles were smaller than 200 nm, suggesting the dominance of CME for particle 

internalization in this size range. As particle size increased, the authors suggested that 

caveolae-mediated endocytosis became predominant, supported by their findings that 

cholesterol depletion (a non-specific strategy for inhibition of caveolae-mediated 

endocytosis) began to exert a stronger inhibitory effect on particle internalization [241]. 

Despite the apparent ability to internalize larger particles, smaller nanoparticles are still 

internalized by caveolae-mediated endocytosis at a much higher rate than larger 

nanoparticles. Wang et al. observed that internalization of albumin-coated polystyrene 

nanoparticles by bovine lung microvascular endothelial cells targeted to caveolae was 

dependent on nanoparticle size and time of exposure. Over the same time period, 

internalization of smaller nanoparticles (20 and 40 nm) was 5–10 times greater than that of 

larger (100 nm) nanoparticles [96].

Deformable nanocarriers have also been utilized to overcome the presumed size limitations 

of caveolae. Lysozyme-dextran nanogels of ~150nm and ~300nm mean diameter were able 

to target the PV-1 cargo protein in caveolae of lung endothelial cells while rigid polystyrene 

particles of the same sizes could not. This in vitro data suggested that caveolae-mediated 

endocytosis is capable of mediating the cellular uptake of particles significantly larger than 

the ~50 nm diameter of the entry aperture imposed by plasma membrane invagination [242]. 

This size limitation was reinforced by Ho et al. in a study probing the effects of the specific 

proteins constituting the nanoparticle corona on cellular uptake and transcellular 

permeability of polystyrene nanoparticles across HUVECs [243]. By varying the biological 

identity of the proteins constituting the nanoparticle corona as well as the particle size, these 

investigators showed that uptake by caveolae-mediated endocytosis was more size-

dependent than surface-dependent, with smaller nanoparticles shown to be more caveolae-

dependent for cellular entry than larger nanoparticles. However, the cellular uptake of 

nanoparticles did not fully recapitulate their transcellular permeability, as higher uptake by 

HUVECs did not necessarily translate to a higher transcytosis rate, indicating that targeting 

of caveolae alone is not enough to induce transendothelial transport of drug carriers. Future 

studies should benefit from new genetic tools that may more accurately modulate the 

specific endocytotic pathways under investigation.

Particles bigger than 1 μm are assumed to elicit phagocytic responses and to be internalized 

through phagocytosis in macrophages. Early studies showed that macrophages internalize 

high-molecular-weight poly(vinylpyrrolidone) much faster than its low-molecular-weight 

counterpart [244]. Koval et al. studied the size effects of IgG-opsonized polystyrene 

microbeads with defined sizes ranging from 0.2 to 3 μm on cellular uptake by mouse bone 

marrow-derived macrophages. Relative to smaller particles (0.2 to 0.75 μm in diameter), the 

internalization of larger particles (2 μm and 3 μm), were more likely to be internalized by 

phagocytosis as evidenced by the increasing dependence of internalization on actin 
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polymerization. Smaller microbeads tended to undergo CME, supported by the fact that 

inhibition of CME with potassium depletion (a non-selective chemical strategy) 

downregulated the uptake of smaller beads more effectively [245]. The fact that HeLa cells 

were able to internalize particles of 1 μm, 2 μm and even 3 μm in diameter suggests either 

that non-phagocytotic cells can be induced to perform phagocytosis, as mentioned earlier 

[246], or that this uptake is occurring via actin-dependent CME or caveolae-mediated 

pathways as suggested by the authors.

CAM-mediated endocytosis, occurring through non-canonical endocytosis, has also 

demonstrated a size preference. Since CAM-mediated endocytosis is predominantly reported 

in endothelial cells, a series of anti-PECAM antibodies decorating streptavidin-beta 

galactosidase to form conjugates with diameters ranging from 80 nm to 5 μm were tested on 

HUVECs to study whether their cellular uptake was size-dependent. Only anti-PECAM 

conjugates smaller than 350 nm were successfully internalized [247]. In another study, anti-

PECAM and anti-ICAM antibodies were used as targeting moieties to direct the antioxidant 

enzyme, SOD, to the endothelium while under oxidative stress. By varying the molar ratio of 

anti-PECAM antibodies or anti-ICAM antibodies to SOD, a series of antibody-SOD 

conjugates with different sizes ranging from approximately 50 nm to 300 nm were 

synthesized to study the size effects on the internalization process. A clear negative 

correlation between internalization and particle size was observed, showing that smaller 

particles had a higher internalization efficiency [248]. Similar to caveolae-mediated 

endocytosis, elasticity of nanoparticles also elicited a strong effect on CAM-mediated 

endocytosis. Anselmo et al. synthesized a series of anti-ICAM antibody-coated polyethylene 

glycol (PEG)-based hydrogel nanoparticles with uniform size of 200 nm but of differing 

rigidity (i.e., elastic modulus). The hard nanoparticles exhibited higher cellular uptake by 

bEnd.3 endothelial cells relative to their soft counterparts [249].

4.2 Shape of DDS

Shape is another key parameter influencing cellular uptake. Its effects on phagocytosis have 

been intensively studied by Champion and colleagues [250]. Their initial studies explored 

polystyrene particle phagocytosis by alveolar macrophages, varying particle size and shape, 

and concluding that the initiation of phagocytosis was dependent on the local particle shape 

that first comes into contact with the macrophage. This local particle shape was measured by 

the tangent angles Ω, defined as the angle between the membrane at the point of initial 

contact and the mean direction of the tangent drawn to the target contour from the point of 

initial contact. Phagocytosis was initiated only when a high length curvature region (Ω<45°) 

came into contact with the membrane. Contact with a low length curvature region r (Ω>45°) 

resulted in simple membrane spreading but not internalization. Particle size, on the other 

hand, dictated whether phagocytosis could be completed, given the possibility that the 

particle size may exceed the cell volume [251]. Therefore, minimizing the higher length 

curvature region has the potential to help nanocarriers to elude phagocytosis. This proposal 

was validated in a subsequent in vitro study, where highly stretched worm-like polystyrene 

particles, characterized by their very high aspect ratio (>20), exhibited minimal phagocytosis 

in rat alveolar macrophage cell lines [250].
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Shape effects on CAM-mediated endocytosis have also been reported. The shape preference 

for CAM-endocytosis was ranked as rod-like > spherical > polymorphous [248, 252], 

consistent with the shape preference of endothelium to adhere ICAM-antibody-coated 

nanoparticles of different shapes. This ranking is subject to constant modification as more 

studies are conducted. The internalization of rod-like versus spherical ICAM-antibody-

coated particles into a rat brain endothelial cell line was tested under both static culture 

condition and flow conditions. During the 30 min incubation, ICAM-antibody-coated 

nanorods were taken up more efficiently than ICAM-antibody-coated spheres under flow 

conditions. Nonspecific IgG-coated nanoparticles, did not demonstrate any notable 

differences in cellular uptake between two shapes under the same conditions [252]. Shuvaev 

et al. demonstrated that anti-ICAM antibody-coated spheres were more rapidly internalized 

into HUVECs than were polymorphous anti-ICAM antibody conjugates [248]. Non-

phagocytic cells, such as HeLa cells, also exhibited a preference for rod-like hydrogel 

nanoparticles with a higher aspect ratio, which are internalized ~4X faster than cylindrical 

200 nm nanoparticles with an aspect ratio=1 [246]. Shimoni et al. further reported that 

spherical hydrogel capsules were taken up faster by HeLa cells than their rod-shaped 

counterparts [253]. The internalization shape preference in HeLa cells can be therefore be 

approximated as sphere > rod-like> symmetrical cylinder. This shape preference has been 

supported by other studies and observed in other cell types as well. Tf-coated Au-NPs have 

been shown to be internalized via CME. Spherical-shaped Au-NPs exhibited faster cellular 

uptake relative to their rod-shaped counterparts[254]. Spherical particles showed higher 

uptake relative to cubic particles in SK-BR-3 cells, a non-phagocytic cell [255]. Particle 

shape may also play a role in regulating the choice of endocytotic entry pathway. By 

studying the shape effects of PEGylated mesoporous silica nanoparticles on cellular uptake 

pathway in HeLa cells, Hao et al. suggest that spherical particles favor CME for 

internalization, while particles with larger aspect ratio are more likely to be internalized via 

caveolae-mediated endocytosis [256]. Linear and branched poly(ethylenimine)s (PEIs), 

which are used as polymer therapeutics and vectors for cytosolic delivery also showed 

differential endocytosis efficiency and mechanisms in murine melanoma cells. Branched PEI 

showed significantly higher extracellular binding and uptake than linear PEI. Branched PEI 

were predominately internalized using cholesterol-dependent pathways, whereas 

internalization of linear PEI appeared to be independent of clathrin and cholesterol [257].

4.3 Other Properties

The kinetics of cellular uptake is also influenced by the surface charge of the DDS. 

Positively-charged nanoparticles are generally more rapidly and effectively internalized than 

their negatively-charged counterparts, possibly due to charge-charge interactions with the 

plasma membrane [246]. However, few studies have explored the combined influence of 

shape, size and charge combined with the additional complexity of endocytotic targeting 

moieties such as TfR, monoclonal antibodies, or albumin, for instance. In such a situation, 

the factors that dominate to dictate internalization are not well understood. However it is 

clear that size, shape, rigidity, surface charge and targeting moiety valency of DDS influence 

their endocytosis, beyond the inclusion of specific targeting moieties [258].
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5. Intracellular Trafficking and Targeting of DDS

All DDS entering cells through endocytosis are, at first, confined to intracellular vesicles, 

the identity of which varies depending on their mode of internalization. Vesicle contents can 

be recycled, transcytosed, or be passively or actively targeted into the endo-lysosomal 

pathway. Once reaching the endosomes, with assistance, DDS may also exit endosomes for 

access to cytosol and/or targeting to other intracellular compartments. To maximize desired 

therapeutic effects, the ability to transport some DDS to a specific cellular compartment or 

domain such that encapsulated or attached drug has maximal access to its target can be 

advantageous. However, default intracellular trafficking may result in sufficient drug 

bioavailability in many cases. For instance, targeting to lysosomes requires little additional 

engineering for many DDS that are internalized via endocytotic pathways that traffic to this 

compartment by default. Degradation of biodegradable DDS in the lysosomes can, in many 

instances, result in slow release of encapsulated drug into the cytosol. However, other 

therapies, including siRNA and gene delivery systems, may require assistance to exit the 

endo-lysosomal system to reach cytosol and/or nuclei to be maximally effective. Endo-

lysosomal exit and subsequent mitochondrial targeting are likewise essential for therapies 

addressing mitochondrial dysfunction. The intracellular trafficking patterns of a specific 

DDS are, like its cellular uptake, dependent on its size, shape, and surface properties as well 

as any appended targeting motifs. For more detailed recent reviews of subcellular targeting 

approaches see [259–261]. Here we discuss a few representative studies which outline the 

benefits of targeting intracellular trafficking focusing on: recycling/exocytosis and 

transcytosis; lysosomal targeting; endosomal escape; and targeting to specific cellular 

organelles (Figure 4).

5.1 Recycling/Exocytosis and Transcytosis of DDS

Endocytotic pathways engage in various extents of recycling traffic from early and late 

endosomes and lysosomes. DDS, once internalized, can be directed for secretion from cells 

at several points of the endo-lysosomal system. They may be exocytosed from recycling 

endosomes or accumulated in multivesicular bodies that may either be exocytosed or fused 

with lysosomes. DDS may also be exocytosed directly from the lysosomes [262]. Through 

electron microscopy analysis, Chithrani and Chan illustrated this process through 

visualization of Au-NPs, showing that Au-NPs about to be removed from cells were first 

localized in late endosomes and lysosomes, and then in vesicles apparently moving toward 

the cellular membrane where they eventually docked and released their contents [254]. The 

process of nanoparticle elimination, although crucial to the understanding of a particular 

DDS’s accumulated therapeutic dose and its ability to traverse barrier tissue, is far less well 

understood than its uptake mechanism, partly due to methodological limitations, as 

degradation and excretion of many DDS are difficult to distinguish experimentally [262]. 

Chu et al. demonstrated that although the uptake mechanism of silica nanoparticles was 

similar across several cell types, that their secretion patterns varied and thus the ultimate 

retention of the internalized particle [263]. Other studies have demonstrated varying 

exocytosis rates from the same cell type, dependent on the size and shape of Au-NPs [254]. 

In addition to physical parameters, the influences of targeting ligands can play a major role. 

For further reading, we refer to the following reviews [259, 264, 265].
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For most DDS administered parentally or orally, their tissue targets lie beyond the 

intervening endothelial and epithelial barriers which must be crossed. To accomplish this, 

transcytotic trafficking pathways present in polarized cells can be targeted. As discussed in 

Section 2.2, caveolae-mediated endocytosis has been successfully targeted to facilitate 

transendothelial transport. To facilitate transepithelial transport, receptors such as the Fc and 

polymeric immunoglobulin receptors responsible for transport of immunoglobulins across 

the cells can be utilized. Pridgen et al. compared untargeted and FcRn-targeted nanoparticles 

administered orally, and found an enhanced absorption efficiency for the targeted 

nanoparticle in vivo and in vitro. As proof of principle, a therapeutic dose of insulin was 

delivered utilizing this system which elicited a prolonged hypoglycemic response in wild-

type mice which was abolished in FcRn knockout mice [266]. pIgR targeting has also been 

utilized by Ferkol et al. to deliver a bifunctional fusion protein, comprised of a single-chain 

Fv directed against secretory component, the extracellular portion of the pIgR, fused to 

human α1-antitrypsin. This bifunctional protein was delivered across the respiratory 

epithelium in a cell monolayer as well as in a human tracheal xenograft model in a receptor-

dependent manner [267, 268].

The blood-brain barrier constitutes a significant challenge to the delivery of drugs into the 

brain. Targeting of receptor-mediated transcytosis is one approach that has been taken to 

overcome this barrier. Several receptors capable of inducing receptor-mediated transcytosis 

are present in the blood-brain barrier, including the insulin receptor, TfR, and receptors 

responsible for lipoprotein transport. A plethora of both in vitro and in vivo studies targeting 

these receptors has been performed, often utilizing antibodies directed towards the receptor 

that are conjugated with a therapeutic component. For further reviews on this topic see [269–

271].

Several less well-characterized mediators of transcytosis have also been suggested. As an 

example, a peptide encompassing the RGD targeting motif to αvβ3 or αvβ5 integrins called 

iRGD (CRGD[K/R]GP[D/E]C) has, in a pathway involved in integrin and neuropilin-1 

(NRP-1) binding, been suggested to activate a transcytotic pathway capable of enhanced 

drug delivery to solid tumors [272]. Upon integrin binding of iRGD, the peptide was 

proteolytically cleaved to release the C-terminal RXXR/K sequence, (CendR) motif which 

interacted with neuropilin-1 to activate a transcytotic pathway which can enhance the 

delivery of common cancer therapeutics [252]. Hseuh et.al also demonstrated 

unconventional transcytosis of an ELP nanoparticle across the lacrimal gland acinar 

epithelium which may be utilized to mediate continuous delivery of encapsulated or attached 

drug to the ocular surface through release in tears [273]. With increasing availability of 

knockout mouse models enabling greater rigor for control studies and utility of in vivo 
imaging approaches, more mechanistic information on transcytosis of different DDS should 

be increasingly available.

5.2 Lysosomal Targeting

When internalized through endocytosis, without recycling, the contents of many internalized 

DDS continue to traffic through the endosomal pathway to the lysosomes by default (passive 

targeting), where contents are digested. Many DDS comprised of biodegradable polymers 
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are intended to be passively effluxed to lysosomes, thus resulting in the slow release of drug 

to cytosol as DDS are slowly broken down [274]. Enzymatically-degradable polymers 

investigated as DDS include three main categories: proteins, polypeptides and 

polysaccharides [275]. Extracellular matrix protein polymers, such as collagen [276, 277] 

and elastin [278] have been used as DDS to deliver small molecule drugs, proteins and 

genes. Additionally, both natural polypeptides, such as Poly(γ-glutamic acid) [279], and 

synthetic polypeptides, such as Poly(L-glutamic acid) [280], Poly(aspartic acid) [281] and 

ELPs [282–285] have been investigated to deliver small molecules, peptides, proteins and 

genes/plasmids. Finally, some types of polysaccharides, represented by hyaluronic acid 

[286] and chitosan [287] are also ideal biodegradable polymers for lysosomal delivery.

Due to the accessibility to lysosomes for materials from multiple endocytotic pathways, 

endocytotic targeting and delivery to lysosomes has also been actively targeted facilitate the 

treatment of lysosomal storage diseases (LSD). LSD are characterized by aberrant 

accumulation of undegraded metabolites in lysosomes, and caused by compromised 

hydrolytic enzyme activity usually associated with a genetic deficiency in protein expression 

[288]. Enzyme replacement therapy is an established treatment strategy for LSD. When 

newly synthesized, many lysosomal enzymes display a mannose-6-phosphate (M6P) motif 

that confers capture in the trans-Golgi network and sorting to lysosomes. In some cases, 

endogenous lysosome enzymes that would normally have been directly sorted to lysosomes 

may be secreted into the extracellular environment. These enzymes also display M6P. 

Receptors to M6P are expressed on the cell surface of most cell types to salvage these 

secreted lysosomal enzymes by endocytosis and eventual trafficking to lysosomes. Many 

recombinant enzymes used for enzyme replacement therapy may not have the proper post-

translational modifications required for M6P receptor recognition. In order to enable 

glycosylation-independent internalization of extracellular enzyme, LeBowitz and colleagues 

designed a chimeric protein by fusion of β-glucuronidase with a fragment of insulin-like 

growth factor II (IGF-II) which binds to a different domain of the M6P receptor. This IGF-II 

tagged enzyme was more effective than untagged enzyme in reversing lysosome storage 

deficiency of glycosaminoglycans [289]. Other receptors beside the M6P receptor which are 

internalized by CME may also be targeted for glycosylation-independent internalization of 

extracellular lysosomal enzymes. In another example exploiting the same chimeric protein 

concept, α-L-iduronidase or acid α-glucosidase were designed to display the receptor-

associated protein to target LDLR. Fusion with the receptor-associatetd protein increased the 

cellular uptake of these recombinant enzymes to lysosomes by at least an order of magnitude 

[290].

Multivalent ICAM-1 targeted delivery is another strategy for lysosomal targeting. 

Nanoparticles conjugated with anti-ICAM-1 antibodies are internalized through a CME- and 

caveolae-independent endocytosis process termed CAM-mediated endocytosis, as discussed 

in Section 2.5. Following internalization, the nanoparticles go through sequential fusion with 

endosomes and lysosomes, and eventually are degraded in the lysosomes. Taking advantage 

of the natural intracellular trafficking pathway of ICAM-1 targeted nanocarriers, several 

strategies have been applied to deliver disease-related enzymes specifically to the lysosomes. 

ICAM-1-targeted carriers significantly facilitated the endocytosis and trafficking to 

lysosomes of acid sphingomyelinase, thus significantly increased enzyme activity in organs 
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and reduced lung sphingomyelin storage and macrophage infiltration in a murine model of 

Type B Niemann-Pick Disease [291, 292]. This strategy also showed potential in delivery of 

active enzymes into lysosomes in model human neurons [293]. RGD-functionalized 

liposomes and polymers have also been used for lysosomal-targeted delivery of active 

enzymes in LSD models [294, 295], following the natural intracellular trafficking pathway 

of α5β1 intergrin [296]. Besides ICAM-1 and integrin, some other plasma membrane 

proteins such as LDLR, VEGFR, EGFR and VCAM-1 are naturally trafficked to lysosomes 

following endocytosis into the cell [297–300]. Targeting these molecules is also viable for 

achieving active lysosomal targeting.

5.3 Endosomal Escape

Because many drug targets exist in cytosol or other membrane compartments not directly 

accessible from the endo-lysosomal pathway, there has been interest in exploration of 

different endosomal escape mechanisms including: pore formation in the endosomal 

membrane; fusion with the endosomal membrane; endosomal membrane destabilization 

using the “proton sponge effect”; or protein conformational changes within the endosome 

which release drug for diffusion through the membrane [301, 302]. Many of these 

mechanisms are modeled on studies of pathogen entry and subsequent endosomal escape. 

For instance, to deliver their genome to the host cell cytoplasm, many viruses have 

developed sophisticated mechanisms to facilitate endosomal escape, with these motifs 

constituting a reservoir of potential escape agents. Several virus-derived proteins and 

peptides have been shown to be fusogenic or to drive endosomal pore formation in an 

acidification-dependent manner [303] such as the HA2 subunit of haemagglutinin protein 

[304–307], the diINF-7 peptide from influenza virus [308–310] and the gp41 

transmembrane protein from human immunodeficiency virus [311, 312]. Similarly, some 

bacteria can also hijack intracellular trafficking pathways to promote their replication by 

secreting pore forming toxins, including listeriolysin O [313–316], diphtheria toxin [317, 

318] and Pseudomonas aeruginosa exotoxin A [319–323]. Inspired by viral- or bacterial-

derived agents, several synthetic peptides are known to have endosomolytic properties. 

Based on the N-terminal sequence of the HA2 subunit of influenza virus haemagglutinin, 

two amphipathic peptides, KALA and GALA, were constructed. Both of these peptides are 

pH-sensitive and undergo a structural conversion from a random coil to an α-helix at lower 

pH, destabilizing endosomal membranes and promoting cytosolic release of their contents 

[324–330]. Finally, in order to counteract the pH-buffering capacity of cationic polymers, 

such as polyethylenimine [331, 332] and polyamidoamine [333], and maintain the desired 

acidic endosomal pH, more protons and counter-ions are transported into the endosomes, 

leading to increased osmotic pressure and eventually causing endosomal swelling and 

rupture. This proton sponge effect can therefore also faciliate endosomal escape of 

therapeutics [334].

5.4 Targeting to Specific Cellular Organelles

5.4.1 Nucleus: Gene therapy, the delivery of DNA or RNA to replace a non-functional 

gene or to suppress the expression of a harmful gene product, constitutes a powerful tool for 

the treatment, cure or prevention of many diseases. For optimal insertion and expression of 

many transgenes, delivery to the nucleus is desirable. One widely used strategy for nuclear 
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targeting is the attachment of a nuclear localization signal (NLS) to the DDS [335]. NLS are 

short peptides that bind to cytoplasmic importins, proteins localized to the perinuclear region 

of the cell. After endosomolysis, cytoplasmic binding to importins may occur and NLS-

conjugated DDS appear to enter the nucleus via active transport through the nuclear pore 

complex in cultured cells [336–339]. In vivo studies have also demonstrated that NLS-

conjugated systems have significantly higher efficiency at delivery of DNA into the nucleus 

relative to nontargeted systems in a mouse model. Notably, the size of the drug carrier and 

density of the NLS targeting motifs can significantly impact the efficiency of trans-nuclear 

membrane transport [337].

A few studies have explored folate receptor (FR)-α, as another possible strategy for nuclear 

targeting due to a report that it is able to traffic to the nucleus [340]. FR-α targeted carriers 

were able to increase the accumulation of cargo in the nucleus relative to nontargeted 

carriers in cells [341, 342]. An extensive literature exists on the targeting of DDS to the FR-

α [107–109] and many therapies have advanced to clinical trials including antibody–drug 

conjugates, folate-drug conjugates, radioimmunoconjugates and even FR-targeted CAR-T 

cells, based on findings that FR is highly upregulated in a many solid tumors [343–346]. 

However, most developments in FR targeting have been made based on observed 

enhancement of drug uptake through FR endocytosis rather than through FR targeting to the 

nucleus. Early initiatives in FR targeting were based on the premise that drug internalization 

and accumulation was via cavaeolae-mediated transport or “potocytosis”; although this 

concept was later questioned. It is now thought that FR-medated uptake occurs through 

multiple endocytotic routes [347].

5.4.2 Mitochondria: Mitochondrial targeting can be achieved through several 

approaches, once DDS undergo endosomolysis. Conjugation of DDS with a peptide 

mitochondrial leader sequence that is directed to the mitochondrial protein import machinery 

(translocases) of the inner or outer membrane is the most common approach [348]. Another 

approach has utilized lipophilic molecules with a delocalized positive charge such as the 

triphenylphosphonium cation, which targets the negative charge of the mitochondrial matrix 

to cross the mitochondrial membranes [349]. Further, Yamada et al. have developed a 

liposomal based system, called the MITO-porter, that enters cells through macropinocytosis, 

exits the endolysosomal pathway and enables mitochondrial drug delivery through direct 

fusion with the mitochondrial membrane [350, 351]. These and other mitochondrial 

targeting approaches are further reviewed in [352, 353].

5.4.3 Endoplasmic Reticulum: The ER, a critical cellular organelle which facilitates 

the proper folding and transport of transmembrane and luminal proteins, is another 

important organelle for DDS interventions. ER-targeted delivery methods have potential in 

treating cancer, diabetes, cardiovascular diseases and neurodegenerative diseases [354]. 

Several ER targeting moieties have been developed and tested in cultured cells; some 

approaches have been based on naturally occurring sorting motifs, such as the Lys–Asp–

Glu–Leu (KDEL) peptide and the dilysine signal (LL), while others are based on chemical 

modification including addition of tosyl groups or 4,4′,4″,4′″-(porphyrin-5,10,15,20-

tetrayl)tetrakis(N-(2-((4-methylphenyl)sulfonamido) ethyl) benzamide [355–358]. Since the 
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loading of antigenic peptide onto Major Histocompatibility Complex I (MHC I) proteins 

also happens in the ER, studies have shown that attachment of an ER signaling sequence to 

antigenic peptides can facilitate their translocation to the ER and eventual presentation on 

the cell surface, thus enhancing their immunogenicity [359]. This ER-targeted strategy was 

successfully applied in a DNA vaccination approach which induced CD8+ T cells and 

conferred anti-tumor immunity in animal models [360, 361].

6. Conclusion and Future Perspectives

Despite their lack of specificity, chemical inhibitors are still the most commonly used tools 

to dissect endocytotic cargo entry mechanisms because they are easily available and simple 

to use. Limitations in their use include the fact that their efficiency of inhibition can be cell-

type dependent and that they may affect more than one endocytotic pathway. Even the newer 

chemical inhibitors lack complete specificity for a specific endocytotic pathway. In addition, 

other cellular events such intracellular trafficking, exosome biogenesis, mitochondrial 

membrane potential, and cytoskeletal organization can be indirectly affected, introducing 

more confounders. Thus, caution should be applied when interpreting findings obtained with 

chemical inhibitors of endocytosis. Moreover, some of these inhibitors are cytotoxic at high 

concentration.

Relative to classical chemical inhibitors, an advantage of genetic approaches is that they can 

be more specific than chemical inhibitors in targeting a specific endocytosis mechanism. On 

the other hand, a drawback of the genetic approach is that it is more time-consuming to 

deplete an endocytosis-related protein relative to utilizing a chemical approach. In one study 

using RNAi, the protein downregulation half-life was found to be 40 hr [362]. Another study 

trying to knock down CHC with RNAi also reported a 48-hr lag time before achieving 80% 

protein depletion [363]. During the time in which effectors are gradually depleted or an 

organism is developed as a knockout, compensatory mechanisms can be triggered, leading to 

confounding effects.

In terms of understanding the role of different pathways in the uptake of DDS, intriguing 

tools to explore CME have been developed. Disruption of CHC is an efficient and reliable 

way to switch off CME in vitro, while new mouse models have increasingly enabled studies 

to explore its role in vivo. In contrast, knockdown of CLC, AP2 and epsin isoforms affect 

CME in a cargo-dependent manner, and thus may be more applicable to investigations 

targeted to the specific receptors known to be affected by these manipulations. An attractive 

new approach is the introduction of chemical or temperature-sensitive switchable systems 

generated through protein engineering approaches. Many of these approaches can even be 

applied in vivo in genetically engineered murine models, thus relating in vitro studies to in 
vivo biodistribution and pharmacokinetics of the DDS.

Genetic mechanisms to impair caveolar endocytosis, macropinocytosis, phagocytosis and 

noncanonical endocytosis pathways lag far behind approaches to inhibit CME. Some of this 

lag will be resolved over time, as the study of these endocytotic mechanisms catches up to 

the work in the CME area, ongoing for 40+ years. Another component of this lag relates to 

the functional redundancy inherent in these pathways, with multiple caveolin, dynamin and 
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myosin isoforms facilitating these endocytotic functions relative to conserved proteins like 

CHC. This redundancy requires more complicated generation of research strains or cell 

lines. In addition, some discrepancies have been observed between the effects of in vitro 
knockdown of an endocytosis-related protein versus the physiological consequences of in 
vivo knockout of the same protein, suggesting that the multicellular tissue environment also 

plays a role in response of depletion of an endocytosis-related protein.

Besides pharmacological and genetic tools, other methods have also been used to identify 

the endocytosis mechanism of DDS. Colocalization with ligands that are already known to 

be internalized through a certain pathway can be used to deduce the internalization 

mechanism of an unknown particle [364]. One classical example is colocalization with 

fluorescent-dextran, which is known to be internalized through macropinocytosis, and is 

used to identify uptake by macropinocytosis in vitro and in vivo [365–368]. Colocalization 

with Tf has been used in some studies to identify CME [369, 370]. Colocalization with 

cholera toxin B was thought to be a marker for caveolae-mediated endocytosis[70, 371], 

although studies have shown now that cholera toxin B can be internalized through multiple 

different pathways [372]. Colocalization with the molecular components of each pathway 

has also been applied in some studies to identify each pathway. Examples are colocalization 

with CHC or caveolin-1 to identify uptake by CME and caveolae-mediated endocytosis, 

respectively [369, 373, 374]. In addition, subcellular fractionation, where subcellular 

organelles are biochemically isolated and analyzed, has been established [375, 376] and used 

not only to study endocytic processes, but also the intracellular trafficking of drug carriers or 

drugs. Subcellular fractionation has been used, for instance, in tracing the intracellular fate 

of silver nanoparticles and their interaction with cellular proteins [377, 378], assessing drug 

distribution across different subcellular compartments when delivered by nanoparticles 

[379], tracking subcellular targeting of fluorescent labeled silicon nanoparticles [380], and in 

cellular uptake levels and intracellular distribution of Gemini surfactants utilized as non-

viral gene delivery vectors [381]. Competitive inhibition assays are also sometimes used to 

confirm that ligand-conjugated DDS are internalized and trafficked by the same endocytosis 

pathway as the free ligand [329].

Studies of mechanisms of the endocytosis of particular DDS should be capable of improving 

their design through identification of critical limiting steps in the release of drug to cytosol. 

As discussed, relative to chemical inhibitors, genetic methods for probing endocytosis are 

more specific when they are available for the pathway of interest. Despite this, there is a 

general lack of application of genetic approaches to mechanistic studies of DDS 

endocytosis. The emerging intracellular switch approaches which use drug-triggered or 

thermally responsive mechanisms to introduce rapid, reversible and highly specific changes 

in CME have significant potential for study of DDS uptake mechanisms. Extension of these 

approaches in stable cell lines and/or animal models, and the generation of additional tools 

to target other endocytotic pathways will increase the opportunities for their application to 

gain additional mechanistic insights into endocytosis and trafficking of DDS.
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Abbreviations:

AP-2 heterotetrameric adaptor protein-2

Au-NP gold nanoparticle

CAM cellular adhesion molecules

CHC clathrin heavy chain

CLC clathrin light chain

CME clathrin mediated endocytosis

DDS drug delivery systems

EGF epidermal growth factor

EGFR epidermal growth factor receptor

EHD Eps15 homology domain

ELP elastin-like polypeptide

ER endoplasmic reticulum

FR folate receptor

GPCR G-protein coupled receptor

HUVEC human umbilical vein endothelial cells

HER human epidermal growth factor receptor

ICAM intercellular adhesion molecule

IL-2 interleukin 2

IL-2R interleukin 2 receptor

IVIS in vivo imaging system

IVM Intravital microscopy

JIP Jun kinase interacting protein

LDL low density lipoprotein

LDLR low density lipoprotein receptor

LSD Lysosomal storage disease

PEG polyethylene glycol

PEI poly(ethylenimine)

PECAM platelet endothelial cell adhesion molecule

Ju et al. Page 31

Adv Drug Deliv Rev. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PV-1 plasmalemma vesicle-associated protein

RBC red blood cells

RES reticuloendothelial system

Tf Transferrin

TfR Transferrin Receptor

VCAM vascular cell adhesion molecule

VEGFR vascular endothelial growth factor receptor
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Figure 1. Schematic summary of the cellular uptake mechanisms and genetic targets which have 
been utilized to manipulate endocytotic pathways involved in drug delivery.
Red crosses mark the genetic targets used to manipulate the different endocytotic pathways. 

Targeting of clathrin, adaptor proteins and dynamin all affect clathrin-mediated endocytosis. 

Genetic methods targeting different members of the caveolin or cavin family and dynamin 

also disrupt caveolaer-mediated endocytosis in different tissues. Targeting of members of the 

myosin family, JIP3/4, and Arf6 have been shown to interfere with macropinocytosis. Less 

consensus exists on the role of specific molecular effectors of the other endocytosis 

pathways indicated as useful for drug delivery. This schematic was created using 

BioRender.com
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Figure 2. Schematic illustration of protein engineering methods used to study CME.
For the “Hot-Wire” method, CME is turned on in the presence of rapamycin. The FK506 

binding protein (FKBP)-AP2 complex can be recruited to the plasma membrane in the 

presence of rapamycin through binding to rapamycin binding protein (FRB) which is 

anchored to the plasma membrane through fusion to a plasma membrane protein. Clathrin 

can be further recruited to initiate CME. In the absence of rapamycin, the FKBP-AP2 

complex cannot bind to FRB. Thus, clathrin will not be recruited to the plasma membrane 

and CME is turned off. For the ”Molecular Switch ”method, at low temperature, CLC-ELP 
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remains soluble and maintains normal CME function. At high temperature, CLC-ELP forms 

microdomains and shuts off CME. This schematic was created using BioRender.com
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Figure 3. In Vivo tracking methods for DDS.
A) DDS labeled with radioisotopes can be tracked by PET scanning. B) Fluorescence 

labeling of the DDS can be used to track in vivo distribution by IVIS. C) The luciferase 

reporter system can also be used to track DDS distribution by IVIS after treating the animals 

with luciferase substrate. This schematic was created using BioRender.com
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Figure 4. Schematic illustration of intracellular trafficking related to drug delivery.
After cellular uptake, DDS are usually transported to endosomes, which act as a sorting 

center for intracellular transport. DDS can be further transcytosed, exit endosomes (with 

assistance), or be passively or actively targeted to lysosomes. DDS that exit endosomes may 

be further targeted to other compartments such as mitochondria and ER. Lys: Lysosomes. 

This schematic was created with BioRender.com
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Table 1.

Pharmacological and Genetic Tools for Manipulation of Endocytosis

Pathways Chemical inhibitors Genetic Targets Protein 
Engineering References

Clathrin-mediated

Methyl-β-Cyclodextrin*, 
Chlorpromazine, 

Monodansylcadaverine, Pitstop, 
Tyrphostin A23, Endosidin 9, ES9–

17, Ikarugamycin

Clathrin heavy chain, Clathrin light 
chain, AP-2 μ2 subunit, Epsins, 

Dynamins

“Hot Wiring”, 
“Molecular 

Switch”

[9, 10, 19–27, 
29–35, 37–42, 

382]

Caveolae- mediated Filipin, Nystatin, Methyl-β-
Cyclodextrin

Caveolin family proteins, Cavins, 
Dynamins N/A [9, 10, 35–41, 68, 

70–77]

Macropinocytosis EIPA, Wortmannin, Imipramine, 
Phenoxybenzamine, Vinblastine

Myosins, Ras, PI3 kinase, Src, Rac, 
Microtubules, Dynein motors, Arf6 

effectors, JIP3/JIP4
N/A [9, 119–122, 126, 

383]

CAM-mediated

Amiloride, Bisindolylmaleimide-1,(5-
isoquiniline sulphonyl)-2-

methylpiperazine, Latrunculin, 
Radicicol, Y27632

Protein kinase C, Dynamin, Actin, Src 
kinase and Rho kinase, Na+/H+ 

exchanger family proteins
N/A [194, 202]

IL-2R-mediated Dynasore, Dyngo-4a, Cytochalasin 
D, Latrunculin A, Jasplakinolide,

Endophilins, Dynamin, Rac, Rho, 
Phosphatidylinositol-3-OH kinase, 

PAK1, Actin, Cdc42
N/A [209, 210]

Phagocytosis

Cytochalasin B, Adenosine, 
Deoxyadenosine, Adenine 

arabinoside, Mycotrienin, Piericidin, 
Genistein, Latrunculin A, 

Thimerosal and P-nitrophenyl methyl 
disulfide

RAC1, DOCK2, SCAR/WAVE 
complex, ARP2/3 complex, mTOR-

associated Regulator complex, 
NHLRC2

N/A [139–143, 156]

*
Bold: Identified in multiple studies; Not bold: Supported by 1–2 studies
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Table 2.

Targeted drug and DDS thought to be internalized by CME

Target
Ligand

Examples of Conjugated Moieties explored 
in preclinical studies

Potential clinical Applications Referen ces

TfR Tf, anti-TfR Ab, TfRscF, 
TfR- targeted peptide

Drugs, toxic protein, enzyme, nucleic acid, 
polymers, micelles, liposomes, cyclodextrin, 
recombinant viral vectors

Cancer therapy, Gene Ther 
Drug delivery to CNS [44, 45]

EGFR
EGF, anti-EGFR Ab, Fab 
of anti-EGFR Ab, 
EGFRsc Fv,

Liposomes, polymers, superparamagnetic iron 
oxide nanoparticles, gelatin nanoparticles, 
carbon nanodiamonds, gold nanoparticles, 
Albumin

Cancer therapy [55, 57–59, 
384]

LDLR LDL, LDLR targeting 
peptide, siRNA, liposomes, near-infrared dyes Cancer therapy, Gene Ther, 

Cancer imaging [385–387]

GPCR
Targeting ligand, agonist, 
antagoni
st

Radioisotopes, quantum dots Cancer therapy [388, 389]

Integrin Targeting peptide, small 
molecule s,Ab

Drugs, liposomes, graphene and graphene 
oxide nanoparticles, silica nanoparticles, 
chitosan nanoparticles, ferritin, polypeptides, 
albumin nanoparticle, adenovirus vectors

Cancer therapy, Cancer 
imaging, Gene Ther [390]

VCAM-1 Anti-VCAM-1 Ab, 
targeting peptide,

Liposomes, gold particles, core-shell 
nanoparticles, lipid nanoemulsions

Cancer therapy, Gene Ther, 
antiinflammation, CNS delivery [391]

Adv Drug Deliv Rev. Author manuscript; available in PMC 2021 August 03.


	Abstract
	Graphical abstract
	Introduction
	Principal Mechanisms of Endocytosis
	Clathrin-mediated endocytosis.
	Tools to study CME
	Chemical inhibitors
	Genetic tools
	Clathrin heavy and light chain modifications:
	Modifications of adaptor proteins and other CME effectors:
	Modification of Dynamins:
	Protein engineering approaches for regulation of CME:


	CME in drug delivery

	Caveolar endocytosis
	Tools to study caveolae-mediated endocytosis
	Chemical inhibitors
	Genetic Tools
	Modification of caveolin family proteins:
	Modification of Cavins:


	Caveolae-mediated endocytosis in drug delivery

	Macropinocytosis
	Tools to study Macropinocytosis
	Chemical inhibitors
	Genetic Tools

	Macropinocytosis in drug delivery

	Phagocytosis
	Tools to study phagocytosis
	Chemical inhibitors
	Genetic Tools

	Phagocytosis in drug delivery

	Other non-canonical endocytosis pathways
	CAM-mediated endocytosis
	IL-2R mediated endocytosis


	In Vivo Visualization of Endocytosis
	Endocytosis and DDS physical properties
	Size of DDS
	Shape of DDS
	Other Properties

	Intracellular Trafficking and Targeting of DDS
	Recycling/Exocytosis and Transcytosis of DDS
	Lysosomal Targeting
	Endosomal Escape
	Targeting to Specific Cellular Organelles
	Nucleus:
	Mitochondria:
	Endoplasmic Reticulum:


	Conclusion and Future Perspectives
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.

