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Abstract
Background  COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the 
detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful 
mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based 
strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans.
Methodology  Six models, two traditional machine learning (ML)-based (k-NN and RF), two transfer learning (TL)-based 
(VGG19 and InceptionV3), and the last two were our custom-designed deep learning (DL) models (CNN and iCNN), were 
developed for classification between COVID pneumonia (CoP) and non-COVID pneumonia (NCoP). K10 cross-validation 
(90% training: 10% testing) protocol on an Italian cohort of 100 CoP and 30 NCoP patients was used for performance evalu-
ation and bispectrum analysis for CT lung characterisation.
Results  Using K10 protocol, our results showed the accuracy in the order of DL > TL > ML, ranging the six accuracies 
for k-NN, RF, VGG19, IV3, CNN, iCNN as 74.58 ± 2.44%, 96.84 ± 2.6, 94.84 ± 2.85%, 99.53 ± 0.75%, 99.53 ± 1.05%, 
and 99.69 ± 0.66%, respectively. The corresponding AUCs were 0.74, 0.94, 0.96, 0.99, 0.99, and 0.99 (p-values < 0.0001), 
respectively. Our Bispectrum-based characterisation system suggested CoP can be separated against NCoP using AI models. 
COVID risk severity stratification also showed a high correlation of 0.7270 (p < 0.0001) with clinical scores such as ground-
glass opacities (GGO), further validating our AI models.
Conclusions  We prove our hypothesis by demonstrating that all the six AI models successfully classified CoP against NCoP 
due to the strong presence of contrasting features such as ground-glass opacities (GGO), consolidations, and pleural effusion 
in CoP patients. Further, our online system takes < 2 s for inference.

Keywords  COVID-19 · Pandemic · Lung · Computer tomography · Deep learning · Transfer learning · Machine learning · 
Bispectrum · Accuracy · Performance · Validation · Ground-glass opacities

Introduction

The coronavirus disease 2019 (COVID-19) is highly infec-
tious (Ro = 3) and caused by SARS-CoV-2, the single-
stranded RNA virus referred to as “severe acute respiratory 
syndrome coronavirus.” This disease leads to complications 

like pneumonia, acute respiratory distress syndrome 
(ARDS), damage to the heart, acute strokes, or even sys-
temic hyper-inflammation syndrome, which, in turn, leads 
to multiorgan failure [1]. As of 20 August 2020, nearly 23 
million people have been infected by COVID-19, and nearly 
800,000 subsequent deaths have been recorded worldwide 
[2]. Most of the mortalities have occurred within eight 
countries—namely the USA, Brazil, the UK, Mexico, Italy, 
France, India, and Spain [2].

COVID-19 affects the lungs and causes respiratory 
difficulties. Common symptoms of COVID-19 include 
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breathlessness, dry cough, fatigue, and fever [3]. Some rel-
atively uncommon symptoms of COVID-19 include a loss 
of taste or smell, sore throat, and vomiting [4]. The dan-
ger posed by COVID-19, as well as its spread, is worsened 
by the fact that many people infected with COVID-19 are 
asymptomatic [3]. COVID-19 impacts the pulmonary tis-
sues of the lungs, resulting in ARDS, [5] and a considerable 
percentage of the patients end up needing ventilator sup-
port [6]. Many of the initial victims of COVID-19 in China 
were hospitalised because they exhibited lower respiratory 
tract (LRT) symptoms [3,7] though these symptoms var-
ied considerably among patients. Some patients exhibited 
minimal symptoms, while others suffered from hypoxia due 
to ARDS. For some patients, LRT transformed into ARDS 
within nine days [7]. It has also been discovered that patients 
suffering from COVID-19-induced ARDS are prone to organ 
failure [8,9].

Radiologists primarily use radiography, computerised 
tomography (CT), or ultrasounds to diagnose lung disease 
[10–12]. These methods allow symptomatic patients to 
be tested for COVID-19 quickly when tests like real-time 
transcription polymerase chain reaction (RT-PCR) are not 
available [13]. Researchers have demonstrated that CT is 
a more sensitive COVID-19 detection method than tradi-
tional techniques for symptomatic patients [14]. One recent 
study showed that chest radiography could not be used to 
detect the opaque image features of COVID-19 [15]. Lung 
ultrasounds can be used as an alternative to CT to detect 
COVID-19, although CT is still considered the gold standard 
for detecting pulmonary infections [16].

Apart from conventional techniques, many research-
ers have also employed artificial intelligence (AI)-based 
machine learning (ML), deep learning (DL), and transfer 
learning (TL) techniques to diagnose COVID-19. One 
group of researchers provided a novel technique to classify 
COVID-19 infection from lung CT images using weakly 
supervised DL; this method was also utilised to localise 
the inflammation caused by COVID-19 [17]. In other work, 
Xiao et al. developed a multiple instance learning module 
based on ResNet34 to predict the severity of COVID-19 
cases using lung CT scans [18].

Meanwhile, other researchers used UNet +  + architec-
ture for segmenting COVID-19-infected lung areas using 
CT images [19]. They transformed their study into an online 
platform to provide fast COVID-19 diagnostic tools that are 
accessible worldwide [20]. Another group of researchers 
created a DL and “deep reinforcement learning” model that 
can automatically quantify COVID-19-related lung abnor-
malities such as ground-glass opacities and consolidations 
[21]. Their proposed architecture produces two metrics that 
can accurately quantify the spread of COVID-19.

Several other pieces of research have proposed new meth-
ods for diagnosing COVID-19 using TL on lung CT scans. 

TL is used when COVID-19 data are very less, or exist-
ing deep learning models can be improved by artistically 
utilising it [22–24]. However, TL works efficiently only if 
the model is trained using data that are similar to the target 
problem [25] (i.e., COVID-19 lung CT data). Otherwise, 
performance gains are minimal or insignificant.

In this study, we compared six state-of-the-art AI models 
(two traditional ML models, two TL models, and two DL 
models) using K-fold cross-validation to solve the COVID-
19 detection problem related to lung CT data. To the best 
of our knowledge, no study has benchmarked the compara-
tive efficacy of traditional machine learning, deep learning, 
and transfer learning architectures on COVID-19 lung CT 
data. As such, doing so is one of the objectives of the pre-
sent study. Another important objective is to design COVID 
severity using output class probability values using AI mod-
els and then clinically validate against radiologist’s greyscale 
feature scores. As part of the clinical validation, we demon-
strate the association of AI’s correlation with ground-glass 
opacities (GGO) values, thus validating the hypothesis on 
COVID severity estimation. We also performed 2D and 3D 
bispectrum analyses to classify COVID pneumonia (CoP) 
patients using CT images. Our results show that even though 
TL can reduce the training time of the model, DL and ML 
models match or surpass TL regarding the performance 
benchmarks of COVID-19 classification.

The aggressiveness of the COVID-19 severity can be seen 
using the imaging-based tests. If the Troponin is released, 
we know that it is likely to cause a heart attack. Similarly, 
if CT images can infer to tell the COVID-19 severity due to 
hyper-intensity distribution in the lung CT (which cannot be 
known from the swap sample), more aggressive care can be 
given to the patient. Therefore, the main clinical advantage 
of CT-based imaging is the determination of aggressiveness 
of the care which needs to be given to the patient.

Second benefit of doing this study is the development 
of the AI-based tool to avoid bias by the expert radiolo-
gist or pulmonologist. Due to fatigue of the over-length stay 
of the physicians at the hospital, the results can vary from 
radiologist to radiologist, so-called inter- and intra-observer 
variability. Thus, using the AI-based solutions, this major 
weakness can also be overcome. Third, if tropin is released 
when COVID-19 pneumonia CT has GGO, we know that 
it is likely to cause a heart attack too. Lastly, if CT shows 
pathology that means you, we have pneumonia, it is there-
fore important to quantify the risk using CT.

The rest of the paper is organised as follows. Section 2 
discusses the pathophysiology of COVID-19 cases that 
develop into ARDS. Section 3 overviews the methodol-
ogy. Section 4 discusses the experimental results using 
the K10 protocol and bispectrum analysis. The AI mod-
els’ performance is evaluated in Sect. 5 based on the ROC 
curve, and multiple classification metrics. We discuss our 
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findings in Sect. 6. Sections 7 and 8 provide conclusions 
and references, respectively.

Methodology

Patient demographics

The CT images of 130 patients were collected. There were 
100 CoP patients (68 males and 32 females) from the 
17–93 age group (mean age = 61.49 ± 16). The remaining 
30 cases (nine males and 21 females) from the age group 
of 17–93 (mean age = 51.4 ± 2 years) were NCoP patients.

Data acquisition and baseline characteristic

The methodology of this study consists of the design and 
development of a CADx that has three components. These 
components are divided based on their functionality. 
The first component is the region-of-interest extraction, 
which envelops the CT lung region. The second compo-
nent of the system consists of the automatic classifica-
tion of CoP patients and non-COVID pneumonia (NCoP) 
patients. The final stage of the CADx system consists of 
a performance evaluation that implements (1) a standard-
ised analysis (e.g., ROC), (2) DOR validation (see Fig. 
S8 Online Resources 1), and (3) CoP validation using a 
bispectrum analysis paradigm. Before we dive into these 
three subsystems, we present the patient demographics 
and data acquisition systems.

Data acquisition

CT images were collected using a Philips Ingenuity Core CT 
Scanner, while patients were in a deep inspiration breath-
hold (DIBH) supine position. The patients were not given 
any oral contrast or intravenous agents. The CT scan was 
done at 120 kV, 225 mAs. The spiral pitch factor, gantry 
rotation time, and detector configurations were fixed at 1.08, 
0.5 s, and 65 × 0.625, respectively. A 768 × 768 lung win-
dow and a 512 × 512 mediastinal window size, were used to 
reconstruct 1-mm-thick images with soft tissue kernel. The 
CT images were reviewed using twin 35 × 43 EIZO PACS 
displays with a 2048 × 1536 matrix. The final data comprised 
2788 CT images for CoP patients and 990 CT images for 
NCoP patients. For 100 COVID-19 patients, we took 27–28 
scans per patient which helped us obtain 100*27–100*28, 
i.e., 2758 CT scans. Similarly, for healthy patients, we 
took around 33 scans for each of 30 patients, resulting in 
30*33 = 990 CT scans.

Baseline characteristics

The baseline characteristics of the Italian cohort’s COVID-
19 data are presented in Table 1. We have utilised the “R 
package” to perform a t-test on the data, with the level of 
significance set to P <  = 0.05. The table shows the essential 
characteristic traits of CoP patients. The baseline character-
istics reflect the visual characteristics of the CT lung data 
(row #3 to row #6). The ground-glass opacity (GGO) is sig-
nificant in differentiating between CoP and NCoP classes 
(P  = 0.00001). Lung consolidations (CONS) also differ-
entiates the two classes from one another (P  = 0.00453). 
The pleural effusion (PLE) attribute is also significant in the 

Table 1   Baseline characteristics of CoP and NCoP patients

S. no. Characteristic Acronym Description CoP (N = 100) NCoP (N = 30) p-values

1 Age (years) – – 61.49 51.4 0.02131
2 Gender (M) – – 0.30 0.68 0.43840
3 GGO Ground-glass opacities An area charactersed by hazy lung opacity through 

which vessels and bronchial structures may still 
be seen

4.42 1.77 0.00001

4 CONS Consolidations A pulmonary consolidation is a region of compress-
ible lung tissue that has filled with fluid instead 
of air

3.07 2.53 0.00453

5 PLE Pleural effusion The collection of excess fluid between the layers of 
the pleura outside the lungs

0.12 0.63 0.00413

6 LNF Lymph nodes A kidney-shaped organ of the lymphatic system and 
a part of adaptive immune system

0.19 0.20 0.36280

7 Cough – – 0.62 0.40 0.03834
8 Sore throat – – 0.09 0.06 0.67040
9 Dyspnoea – Shortness of breath 0.57 0.40 0.10770
10 BT +  – – 37.89 37.42 0.00313
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classification of CoP and NCoP patients (P  = 0.00413). The 
most common physiological symptom of CoP is fever, which 
is also be correlated with body temperature (P  = 0.00313).

Three kinds of AI architectures for classification

We have shortlisted two representative candidates from ML 
algorithms—namely k nearest neighbours (k-NN) and ran-
dom forest (RF). The developed framework is a modified 
version of our previous work [26].

For TL, we utilised VGG19 and InceptionV3 pre-trained 
models [27] (see Fig. S5, S6 (Online Resources 1) and 
changed only the model top. VGG19 is a 19-layered deep 
model consisting of sixteen convolution layers to extract 
visual features, five max pool filters to reduce the spatial size 
of the extracted features, and three fully connected layers 
for classifying the image. InceptionV3 is a 42-layered deep 
model consisting of 11 inception modules (each comprising 
of multiple convolution layers and max-pooling filters), fol-
lowed by three fully connected layers and a softmax activa-
tion layer.

The initial layers of TL were made nontrainable, and only 
last layers were made trainable. The reason for not training 
the entire network in case of transfer learning is that it can 
save computation time because the network would already 
be able to extract generic features from images. The net-
work will not have to learn extracting generic features from 
scratch. A neural network works by abstracting and trans-
forming information in steps. In the initial layers, the fea-
tures extracted are generic, and independent of a particular 
task. It is the latter layers which are much more tuned spe-
cific for a particular task. So, by freezing the initial stages, 
we get a network which can already extract meaningful 
general features. We would unfreeze the last few stages (or 
just the new untrained layers), which would be tuned for 
our paradigm. It is not recommended to unfreeze all layers 
if we have any new/untrained layers in our model. These 
untrained layers will train as if initialised by random (and 
not pre-trained) weights which would lose the basic idea of 
transfer learning.

For DL, we developed our custom architectures (CNN 
and iCNN), consisting of a multi-layer convolution net-
work (see Fig. S7, Table S5 (Online Resources 1). It con-
tains three convolution layers, each of which is followed 
by a max-pooling filter, and two fully connected layers. A 
two-class probability score is obtained by passing the out-
put to a softmax activation function. In iCNN, we slightly 
changed the “ReLU” activation function in the hidden layers 
to σ = (max(0, x))1.00001. Here, x is the input value, sigma is 
the activated output value, max is a function that gives the 

maximum value between zero and the input value, and the 
exponent 1.00001 slightly scales the output.

Several lightweight convolution neural network models 
have been experimented with 3, 4, 5 convolution layers for 
COVID disease identification, and it has been shown that 
these models provide very good results with 3 convolution 
layer model giving best accuracy. In the proposed three con-
volution layer model, 32, 16, and 8 hidden units are there 
in hidden layers 1, 2, and 3, respectively. Moreover, each 
convolution layer is followed by a max-pooling layer. After 
the last max-pooling layer, the flattened layer is present 
which converts the 2-D matrix to 1-D column vector which 
is densely connected with a layer having 128 hidden units, 
followed by the output layer. To provide nonlinearity in 
the model, the standard ReLU activation function has been 
modified and used in hidden layers.

Results

Accuracy of the two ML, two TL, and two DL models

We compared the K10 classification accuracy of all the six 
AI models for the COVID-19 data, as shown in Table S2 
(Online Resources 1). Our observations demonstrate that 
accuracies are in the following order DL > TL > ML. Fur-
ther, DL-based iCNN and CNN architectures had accuracies 
of 99.69 ± 0.66% and 99.53 ± 1.05%, respectively, making 
them the two most accurate models among the six tested 
models. Of the TL architectures, only VGG19 fared well 
against DL architectures, as it had a classification accu-
racy of 99.53 ± 0.75%. The other TL architecture (i.e., 
InceptionV3) achieved a classification accuracy of only 
94.84 ± 2.85%. The two ML architectures varied consider-
ably in terms of their performance; their RF scoring was 
96.84 ± 1.28%, and their k-NN scoring was 74.58 ± 2.24%. 
The mean accuracy figures of all six AI models are sum-
marised in Fig. 1.

CT lung characterisation using bispectrum analysis

We characterised CoP and NCoP CT lung tissues using 
bispectrum analysis based on a higher-order spectrum 
(HOS). Bispectrum analysis is based on the principle of 
coupling of components of spectral signals. If there is a 
sudden change in grayscale image density (as is the case 
for COVID-19-infected tissues), then higher bispectrum (or 
B) values are generated. This property of bispectrum analy-
sis can be exploited to identify COVID-19-infected tissue 
quickly. This study is intended to identify NCoP and CoP 
patients without using AI-based techniques.
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Fig. 1   Mean K10 classification 
accuracies (in %) of two ML, 
two TL, and two DL architec-
tures. The bar chart is presented 
in increasing order of accuracy

Fig. 2   Comparison of bispectrum (2D) plots of CoP and NCoP patients

Fig. 3   Comparison of bispec-
trum (3D) plots of CoP and 
NCoP patients
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Generally, COVID-19-infected lungs are characterised 
by a hyper-intensity region. We separated those pixels from 
lung CT images and passed them into a Radon transform, 
which acts as a signal for HOS to generate B values. The 
images of CoP patients have much higher B values. The 
2D and 3D bispectrum plots for CoP and NCoP patients are 
shown in Figs. 2 and 3.

Performance evaluation of AI models and its 
clinical validation

Receiver operating characteristics

The ability of all six AI models to differentiate CoP and 
NCoP data sets is illustrated in Fig. 4. We used the K10 
protocol to compute receiver operating characteristic (ROC) 
curves. As expected, the simplest ML model (i.e., k-NN) 
performed the worst in this regard, achieving a score of just 
0.744 area under the curve (AUC) (P < 0.0001). The best-
performing model was the novel iCNN DL, whose AUC 
score was 0.993 (P < 0.0001). Other AI models based on 

their increasing AUC values are TL-based InceptionV3, 
machine learning-based RF, transfer learning-based VGG19, 
and our custom deep learning CNN.

A comparison of six AI models based on multiple 
classification metrics

We compared six AI models based on a COVID-19 data set 
containing 377 samples (99 NCoP patients and 278 CoP 
patients). We choose ten classification metrics for this com-
parison: sensitivity, specificity, precision, negative predic-
tion value (NPR), false positive rate (FPR), false discovery 
rate (FDR), false negative rate (FNR), F1 score, Matthews 
correlation coefficient (MCC), and Cohen’s Kappa coeffi-
cient. Cohen Kappa and F1 score are measure of AI methods 
performance metrics calculated based on true positive, false 
positive and true negative and false negative values. F1 score 
[37] can be calculated using the formula:

We adopted Matthew’s correlation coefficient [28] for 
quantifying the quality of binary classification since it is 
typically used in machine learning. It was in 1975 that the 
biochemist Brian W. Matthews had introduced this measure. 
Given the truth table values represented as TP: true positive, 
FP: false positive, TN: true negative, FN: false negative, we 
mathematically express MCC as shown in Eq. 2.

Note that MCC represents the correlation between predicted 
and observed binary classification. It returns a value between 
−1 or +1. The perfect prediction is represented when MCC 
is +1, and −1 represents total disagreement between predic-
tion and observation.

The results of the study are summarised in Table 2. Both 
the DL models (CNN and iCNN) and one of the TL models 
(VGG19) performed equally well. Both ML models (RF and 

(1)F
1
=

TP

TP +
1

2
(FP + FN)

(2)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Fig. 4   ROC plots for the six AI models (two ML, two TL, and two 
DL), along with their corresponding AUC values

Table 2   Comparison of the 
six AI models on the basis of 
multiple classification metrics

*Arch: architecture; Sens: sensitivity; Spec: specificity; Prec: precision MCC: Mathew’s correlation coef-
ficient; F1: F1-score; IV3: InceptionV3;

Arch* Sens Spec Prec NPR FPR FDR FNR F1 MCC Kappa

k-NN 0.5097 0.9099 0.798 0.7266 0.0901 0.2020 0.4903 0.6220 0.4692 0.444
RF 0.9065 0.9926 0.9798 0.964 0.0074 0.0202 0.0935 0.9417 0.9212 0.920
IV3 0.8624 0.9813 0.9495 0.946 0.0187 0.0505 0.1376 0.9038 0.8692 0.867
VGG19 0.9899 0.9964 0.9899 0.9964 0.0036 0.0101 0.0101 0.9899 0.9863 0.986
CNN 0.9899 0.9964 0.9899 0.9964 0.0036 0.0101 0.0101 0.9899 0.9863 0.986
iCNN 0.9899 0.9964 0.9899 0.9964 0.0036 0.0101 0.0101 0.9899 0.9863 0.986
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k-NN) and the second TL model (InceptionV3) did not per-
form well in comparison with the DL models.

COVID risk stratification

Figure 5 presents the COVID-19 risk levels of patients as 
predicted by our custom CNN DL model. We created the fre-
quency distribution (Fig. 5a) by using a softmax function in 
the output layer of the model such that the model produced 
a probability score (ranging from 0 to 1) that indicates a 
patients’ COVID-19 risk. We divided the overall probability 
range into ten bins and added each CT image sample to one 
of the bins based on the output of the model. We considered 
three levels of risk: low risk (probability score of 0 to 0.3), 
moderate risk (0.3 to 0.7), and high risk (0.7 to 1). A cumu-
lative distribution plot of all 3788 lung CT samples is given 
in Fig. 5b. This distribution was computed by summing all 
the CT samples for each bin by adding the previous total of 
samples until all the COVID-19 risk probability bins are 
completed.

Clinical validation of COVID risk stratification

The ground-glass opacity values (GGO) correlation with 
CNN model was determined for each patient. For this, 
the mean of all CT scan slices of patient probability score 
was calculated and compared with GGO values. Similarly, 
bispectrum mean for each patient was calculated and com-
pared with GGO values. CONS values were also tested for 
their correlation with COVID severity and bispectrum val-
ues. A list of all patients’ values of GGO, CONS, sever-
ity, and bispectrum B values is given in Table S3 (Online 
Resources 1). The correlation between these fields among 
themselves is also given in Table S4 (Online Resources 1).

The association linear curve between COVID severity 
and GGO is shown in Fig. 6 and that between bispectrum 
(B) value and GGO is shown in Fig. 7. Similarly, the curve 
between bispectrum and COVID severity is also shown in 
Fig. 8.

Fig. 5   COVID risk assessment: a frequency distribution of COVID-19 risk for CoP and NCoP patients; b cumulative distribution of COVID-19 
risk

Fig. 6   Association between GGO and COVID severity

Fig. 7   Association between GGO and bispectrum B values
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Discussion

In this study, we tested our two custom DL models against 
two state-of-the-art TL models, using two popular ML 
models as baselines to resolve the CoP vs NCoP clas-
sification problem. We used the K10 protocol and com-
pared these models’ accuracy. We used COVID-19 data 
that we collected from patients, following specific privacy 
laws. Our relatively simple nine-layered iCNN model was 
the most accurate among the investigated models, and it 
achieved the highest AUC score of 0.993 (P < 0.0001). 
Surprisingly, we found that architectures that are even 
more straightforward compared to iCNN model (e.g., RF) 
can match which are comparable to the state-of-the-art TL 
models (e.g., InceptionV3) in terms of accuracy and AUC 
score when used for COVID-19 classification. TL models’ 
unremarkable performance could be because these models 
were not trained on CT images or any other radiology data. 

Moreover, the high separability in training data, which is 
being caught by other AI models, is not noticed by TL 
models.

The COVID risk stratification for each patient was vali-
dated by showing a strong correlation with ground-glass 
opacity values of the patient’s CT scans. Similarly, bispec-
trum was also validated against GGO values. The clinical 
tests also show the AI models which are having similar 
classification capabilities and which are significantly dif-
fering in accuracy values. This is more clear than visual 
inspection of accuracy and standard deviation values of 
each AI-model.

Benchmarking

Table 3 presents benchmarking data to compare the six AI 
models examined in our research with those considered in 
existing work on COVID classification. We have shortlisted 
four criteria for benchmarking: (1) the COVID-19 dataset 
used, (2) the AI model used by the researchers, (3) the accu-
racy of their proposed models, and (4) any other perfor-
mance measures used by the authors. Rows R1 to R5 present 
the research done by other researchers, and row R6 repre-
sents our research. It can be observed that the performance 
of our custom iCNN model is on par with models proposed 
by other researchers.

3D validation

The lung CT data of our Italian cohort was processed so 
that we could evaluate the degradation and fibrosis of lung 
parenchyma of CoP vs NCoP patients (Fig. 9). We used the 
image segmentation tool to process data in DICOM format. 
Using profile lining, we applied segmentation based on the 

Fig. 8   Association between COVID severity and bispectrum B values

Table 3   Benchmarking of six AI models with the existing work on COVID-19 classification

Row# Authors Dataset Model Accuracy Performance

R1 Polsinelli et al. [29] 360 CT scans of COVID-19 subjects and 397 CT scans of 
other kinds of illnesses

SqueezeNet 0.83 0.8333 of F1 Score

R2 Hasan et al. [30] 321 chest CT scans (118-COVID, 96, pneumonia, 107 
healthy)

LSTM 1.00 X

R3 Jaiswal et al. [24] 1262 CT COVID-19-positive CT images, 1230 CT images 
of non-COVID patients

DenseNet201 0.962 0.97 AUC​

R4 Loey et al. [31] 345 images—COVID, 397 images—non-COVID CT scans ResNet50 0.829 Sensitivity of 
77.66% and 
specificity of 
87.62%

R5 Apostolopoulos et al.  [32] 224 images—COVID-19, 714—bacterial pneumonia, 504—
normal patients X-ray

MobileNet v2 0.967 Sensitivity of 
98.66% and 
specificity of 
96.46%

R6 Proposed Study 2788 CoP/990 NCoP
CT scans

iCNN 1.00 0.993 AUC​
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Hounsfield value (grey value) of the pixels belonging to the 
lung section [33]. A stacking process [34] was then applied 
to obtain a union, forming a 3D volume of the segmented 
region of interest [35]. This process was followed by region 
growing to develop the region of interest (in this case, the 
lung). The 3D volume was computed for the grown region to 
evaluate the volume and spatial distribution of lung paren-
chyma. We computed the spatial distribution of parenchyma 
associated with the rear end of the lung because the influ-
ence of spike proteins of COVID-19 is more significant in 
the deeper volume of the lung parenchyma [36].

Interpretation

DL models, particularly the CNN model that we used, are 
very good at recognising the spatial features of images with-
out human intervention, which supports our hypothesis. Both 
of our custom models ran well likely because of the visual 
features of COVID-19 in the lung CT images (e.g., ground-
glass opacities, consolidations, and pleural effusions). These 
features are very distinct for CoP when compared to NCoP. 
This notion is supported by the data representing the base-
lines characteristics of patients. If traditional ML classifiers 
are to work efficiently, their features need to be handcrafted, 
and their performance depends on the ingenuity of the mod-
el’s designer. TL models work better than DL models when 
there are relatively little data and training time. However, 
they must be pre-trained using similar dataset for which they 
are expected to be used. This limits the application of TL 
models in medical imaging unless such a model has been 
pre-trained on similar data.

Strengths, weakness, and extensions

Strengths: The architectures that we designed and developed 
in this work are relatively simple and easy to use in research 
and clinical settings. Even without augmentation, we dem-
onstrated that their classification accuracies are high enough 
to be considered within the clinical range according to recent 
publications. Although the pilot trials were successful, the 
data sets that we used could be more balanced and could be 
multi-ethnic.

Weakness: Due to lack of non-COVID pneumonia data 
sets, the current models could not be tried. We intend to 
extend this to multiclass paradigms in future research [37]. 
Due to the limitation on the data sets regarding the “cen-
sorship” and “survival”, it was not possible to compute the 
survival analysis such as hazard curves and survival curves. 
However, in future, we will be collecting this information 
even though vaccines distributions have started.

Extensions: Even though the pilot study showed powerful 
results, one can design more robust automated segmentation 
step using stochastic segmentation strategies [38–40]. Exten-
sive ML features can be computed under ML framework in 
future [41,42]. More validations using multimodality spatial 
images can be conducted such as PET and CT based on reg-
istration methods [43,44]. Superior lung CAD models can 
be designed to improve scientific validation [12,45]. Since 
AI has fast developed and more transfer learning approaches 
have been developed, one can try extending the TL mod-
els using the pre-trained weights [37]. While six AI models 
were tried on a single set of data, multi-centre study could 
be conducted using the same models to avoid any bias. Thus, 

Fig. 9   (a1), (a2), and (a3): 
CoP lung samples showing the 
degradation and fibrosis of lung 
parenchyma; (b1), (b2), and 
(b3): three NCoP lung samples
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the current study can be a launching pad for multi-centre, 
multimodality, multi-ethnic, and multi-regional analysis.

Conclusion

We presented six types of AI-based models for CoP vs NCoP 
classification via CT lung scans taken from an Italian cohort. 
The proposed CNN-based AI-model outperformed the TL 
and ML systems that were investigated. Further, we showed 
that when using higher-order spectra, bispectrum could dif-
ferentiate CoP patients from NCoP patients, thus further 
validating our hypothesis. As part of clinical validation, a 
novel COVID risk factor calculation was introduced using 
CNN output probability values and validated against GGO 
values of all patients.

Our AI system was implemented on a multi-GPU system 
such that the online system was a few seconds per scan. The 
system can be extended to multiclass data sets where data 
can also be taken from community pneumonia or interstitial 
viral pneumonia. The system was validated against the well-
accepted existing data sets (e.g., a biometric data set and a 
DL animal data set).

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s1154​8-021-02317​-0.
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