Skip to main content
. 2021 Feb 3;16(3):423–434. doi: 10.1007/s11548-021-02317-0

Table 3.

Benchmarking of six AI models with the existing work on COVID-19 classification

Row# Authors Dataset Model Accuracy Performance
R1 Polsinelli et al. [29] 360 CT scans of COVID-19 subjects and 397 CT scans of other kinds of illnesses SqueezeNet 0.83 0.8333 of F1 Score
R2 Hasan et al. [30] 321 chest CT scans (118-COVID, 96, pneumonia, 107 healthy) LSTM 1.00 X
R3 Jaiswal et al. [24] 1262 CT COVID-19-positive CT images, 1230 CT images of non-COVID patients DenseNet201 0.962 0.97 AUC
R4 Loey et al. [31] 345 images—COVID, 397 images—non-COVID CT scans ResNet50 0.829 Sensitivity of 77.66% and specificity of 87.62%
R5 Apostolopoulos et al. [32] 224 images—COVID-19, 714—bacterial pneumonia, 504—normal patients X-ray MobileNet v2 0.967 Sensitivity of 98.66% and specificity of 96.46%
R6 Proposed Study

2788 CoP/990 NCoP

CT scans

iCNN 1.00 0.993 AUC