

1

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Characterization of Biological Motion Using Motion Sensing Superpixels

Felix Y. Zhou1, *, Carlos Ruiz-Puig1, Richard P. Owen1,

Michael J. White1, Jens Rittscher1, 2, 3, * and Xin Lu1, *

1Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom; 2Institute of

Biomedical Engineering, University of Oxford, Oxford, United Kingdom; 3Big Data Institute, University of

Oxford, Oxford, United Kingdom

*For correspondence: felix.zhou@ludwig.ox.ac.uk; jens.rittscher@eng.ox.ac.uk; xin.lu@ludwig.ox.ac.uk

[Abstract] Precise spatiotemporal regulation is the foundation for the healthy development and

maintenance of living organisms. All cells must correctly execute their function in the right place at the

right time. Cellular motion is thus an important dynamic readout of signaling in key disease-relevant

molecular pathways. However despite the rapid advancement of imaging technology, a comprehensive

quantitative description of motion imaged under different imaging modalities at all spatiotemporal scales;

molecular, cellular and tissue-level is still lacking. Generally, cells move either ‘individually’ or

‘collectively’ as a group with nearby cells. Current computational tools specifically focus on one or the

other regime, limiting their general applicability. To address this, we recently developed and reported a

new computational framework, Motion Sensing Superpixels (MOSES). Incorporating the individual

advantages of single cell trackers for individual cell and particle image velocimetry (PIV) for collective

cell motion analyses, MOSES enables ‘mesoscale’ analysis of both single-cell and collective motion

over arbitrarily long times. At the same time, MOSES readily complements existing single-cell tracking

workflows with additional characterization of global motion patterns and interaction analysis between

cells and also operates directly on PIV extracted motion fields to yield rich motion trajectories analogous

for single-cell tracks suitable for high-throughput motion phenotyping. This protocol provides a step-by-

step practical guide for those interested in applying MOSES to their own datasets. The protocol

highlights the salient features of a MOSES analysis and demonstrates the ease-of-use and wide

applicability of MOSES to biological imaging through demo experimental analyses with ready-to-use

code snippets of four datasets from different microscope modalities; phase-contrast, fluorescent,

lightsheet and intra-vital microscopy. In addition we discuss critical points of consideration in the analysis.

Keywords: Biological motion, Cell tracking, Dynamic mesh, Superpixels, Motion map, High-throughput

screening

[Background] In general, cells exhibit two types of movement; ‘single-cell’ or ‘individual’ migration in

which each cell migrates independently or ‘collective’ migration where nearby cells migrate as a group

in a coordinated fashion. Current computational tools focus on one or the other regime. To date

numerous single-cell tracking methods have been developed that extract the movement trajectories of

individual cells to build rich motion feature descriptors suitable for the unbiased analysis of high-

throughput screens (Padfield et al., 2011; Meijering et al., 2012; Maška et al., 2014; Schiegg et al., 2015;

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
mailto:felix.zhou@ludwig.ox.ac.uk
mailto:jens.rittscher@eng.ox.ac.uk
mailto:xin.lu@ludwig.ox.ac.uk
https://elifesciences.org/articles/40162#bib33
https://elifesciences.org/articles/40162#bib27
https://elifesciences.org/articles/40162#bib26
https://elifesciences.org/articles/40162#bib42

2

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Nketia et al., 2017). However the performance of these algorithms re quires accurate delineation or

segmentation and subsequent temporal association of individual identified cells between video frames.

This process is unfortunately difficult to generalize across applications, requires significant expertise

and computationally scales poorly with increasing cell number. Single-cell tracking thus places an

inherent upper limit to the time duration that can be imaged and tracked. In contrast, collective motion

analysis tools such as Particle Image Velocimetry (PIV) exploit local correlation between image patch

intensity values to derive velocities for all image pixels between all pairs of frames (Szabó et al., 2006;

Petitjean et al., 2010; Milde et al., 2012). Advantageously this avoids errors introduced by image

segmentation, is much easier to use for non-experts and is computationally efficient, scaling only with

the number of region of interests (ROI) the image is divided into. Unfortunately, despite attempts to

extract more descriptive motion parameters aside from PIV velocity such as including appearance

parameters (Neumann et al., 2006; Zaritsky et al., 2012; 2014; 2015 and 2017), systematic

characterization of the PIV extracted velocity fields to derive similarly rich ‘signatures’ as afforded by

single-cell track measurements over arbitrarily long times for clustering motion patterns within and

across videos is lacking. Further investigation of how the pixel-based or ROI measurements relate to

particular individual cells or cell groups in the moving collectives has also been underexplored. As such

PIV based analyses have exhibited limited success when studying phenomena associated with complex

cellular movement such as boundary formation and chemoattraction in-vivo.

 Recently we developed Motion Sensing Superpixels (MOSES) (Zhou et al., 2019), a computational

framework that marries together the ability to generate rich motion features offered by single-cell tracking

trajectories with the ease-of-use and computational efficiency of segmentation-free PIV methods.

MOSES achieves this by firstly extending PIV-type methods to generate long-time motion trajectories

analogous to single-cell tracks for user-defined ROIs called superpixels and secondly the construction

of a mesh over the extracted motion trajectories to systematically capture the spatio-temporal interaction

between neighboring ROIs. This protocol through ready-to-use code snippets details how to do this

practically using the previously published MOSES code as a Python library.

Equipment

1. Single-channel or multi-channel time-lapse microscope, for taking videos of any modality, e.g.,

fluorescence, phase contrast

Note: Videos should be in one of the standard bio-formats (TIFF, STK, LSM or FluoView) or a

commonly used general video format (.mp4, .avi, .mov).

2. Computer

Recommended PC requirements:

Processor (CPU): minimum Intel i5 2.4GHz

RAM: minimum 8GB, recommended > 16GB

Hard disk: few MBs per multi-channel image

Note: The recommended requirements are given for 1024 x 1344 RGB images. The use of

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://elifesciences.org/articles/40162#bib32
https://elifesciences.org/articles/40162#bib47
https://elifesciences.org/articles/40162#bib38
https://elifesciences.org/articles/40162#bib29
https://elifesciences.org/articles/40162#bib31
https://elifesciences.org/articles/40162#bib53
https://elifesciences.org/articles/40162#bib54
https://elifesciences.org/articles/40162#bib55

3

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

smaller sized or downsampled images require less RAM and less powerful CPU specifications

Software

1. Windows/MacOS/Linux Operating system (64-bit)

2. Python 2.7 or 3.6 Python Anaconda installation

3. Git (https://git-scm.com/)

4. Motion Sensing Superpixels (MOSES, https://github.com/fyz11/MOSES)

5. Fiji ImageJ for visualization (https://fiji.sc/)

Procedure

We describe the general protocol to extract superpixel long-time trajectories and motion measurements

as described in our original publication (Zhou et al., 2019). The presented code snippets in this section

are also provided in the supplementary Python script file (‘general_analysis_protocol.py’) to aid re-

implementation. Adaptation of the basic procedure for the analysis of different datasets acquired by

different microscope modalities is detailed in the Data Analysis section. The code and protocols should

work for both Python 2 and 3 installations. They were originally developed using Python 2.7 under a

Linux Mint Cinnamon 17 operating system. We assume throughout basic familiarity with working with

command line prompts and terminals such as folder navigation using the cd or dir commands and

basic Python usage including the importing of Python modules using import, array indexing using

NumPy and plotting using Matplotlib libraries.

A. Protocol Nomenclature

1. “Open a terminal”: refers to the launching of an appropriate terminal window on your operating

system (OS) to issue command-line commands. On Windows the terminal is the command

prompt or Git bash program. On Windows systems a command prompt can be launched by

opening the Start Menu, typing in the search bar cmd and clicking on the command prompt logo,

usually the first search result. On MacOS one can execute the shortcut key combination (⌘ +

Ctrl T). On Linux systems one can execute the shortcut key combination (Ctrl-Alt T).

2. Commands to be executed in a terminal are distinguished from regular text by use of the true

typewriter font Courier New for example python script.py.

3. <input folder>: angular brackets denote text placeholders. The user should replace the

placeholder with an appropriate text string (enclosed by speech marks or without spaces)

according to the prompt text written in true typewriter font within the brackets. Usually, this is the

path to a particular input/output file or folder.

B. Installing Python and MOSES

1. Download the appropriate Python Anaconda installer for your operating system.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://git-scm.com/
https://github.com/fyz11/MOSES
https://fiji.sc/
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip
https://www.anaconda.com/distribution/#download-section

4

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

2. Install Python Anaconda following the on-screen instruction prompts of the graphical installer to

install for macOS and Windows. For Linux distributions open a terminal, execute bash <path

to installer file> and proceed to follow the instructions in the terminal.

3. (Optional) Create a new anaconda environment just for MOSES. Open a terminal and execute

conda create --name <myenv> pip. This will create a new virtual environment with the

name myenv and pip, a package manager for Python. Check the environment was successfully

created by executing conda info --envs. We can now install Python software libraries only

to this environment without affecting previous Python installations using conda by executing

conda install <package_name> --name <myenv>. To load and use this environment

execute conda activate <myenv> or source activate <myenv> in MacOS and Linux

or activate myenv in Windows. For more information regarding the management of virtual

environments see https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-

pkgs.html.

Note: This optional step helps to keep all software dependencies for MOSES isolated from the

rest of your Python installations.

4. Download the MOSES scripts from https://github.com/fyz11/MOSES. Either:

a. Clone the github repository, git clone https://github.com/fyz11/MOSES.git.

b. Click the green ‘Clone or download’ button. Then click ‘Download ZIP’ and extract the .zip

contents.

5. Install MOSES. Either:

a. Install to your Python installation to make it available system wide. This can be done by

executing python setup.py install in the downloaded Github folder. Installation in

this manner enables the scripts to be imported and used no matter the location of your

analysis scripts. If you have set up a virtual environment previously for MOSES, load the

environment before executing the command.

b.Copy and paste the entire contents of the ‘MOSES’ folder in the Github repository

into your top-level or root project folder such that ‘MOSES’ is co-located in the same

subfolder used to store the analysis scripts (

c. Figure 1).

Note: Option a) minimizes code replication across projects whilst, option b) offers the

greatest ease for prototyping and customizing the MOSES scripts.

Figure 1. Assumed folder structure if copy and pasting MOSES code for installation

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
https://github.com/fyz11/MOSES
https://github.com/fyz11/MOSES.git

5

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

6. Install MOSES dependencies. MOSES depends on the number of externally managed Python

code libraries that needs to be installed. Using option a) (Step B5b) above automates these

steps. If using option b) (Step B5b) execute pip install –r requirements.txt in the

terminal loading the virtual environment before execution if required. Please note MoviePy, one

of the external Python dependencies required for reading and writing general video formats

depends on the FFMPEG library (https://ffmpeg.org/). This library should be automatically

installed when MoviePy is installed. If this is not the case, please install manually.

Note: requirements.txt is a file in the downloaded MOSES Github repository which

contains the names of all the required Python dependencies.

C. Structure of the MOSES Library

The MOSES library is organized according to

Figure 2. Scripts are in general organized by function. For example ‘Motion_Analysis’ contains all

scripts related to the analysis of motion such as the computation of motion metrics,

‘Optical_Flow_Tracking’ contains scripts related to the computation of the motion field and the

tracking of superpixels to generate superpixel tracks and ‘Utility_Functions’ contains useful scripts

for file manipulation such as the reading and writing of videos. Importing of MOSES functions follow

standard Python practice.

Note: Detailed documentation of each implemented function can also be browsed viewed offline by

navigating to and opening the index.html file with any web browser. Within Python the normal

help(<function>)can be used to read the corresponding documentation for a given function.

For the remaining sections of the protocol, we assume the exemplar folder structure in

Figure 1 placing the analysis script and video data in separate folders.

Figure 2. Folder and file structure of the MOSES Github code repository

D. Running Python

Several ways exist to run Python. We recommend for scientific computing the use of Spyder as an

integrated development environment for scientific analysis. If not available under the current

environment it can be installed using conda install –c conda-forge spyder --name

<myenv>.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://ffmpeg.org/

6

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

1.Launch Spyder using the terminal spyder &. The interface is similar to that of RStudio

for R users (

2. Figure 3).

3. Copy and paste code snippets into the editor and save the script.

4. Run the entire script using the keyboard shortcut F5 or by clicking the green ‘play’ button. Run

selected lines of code using the keyboard shortcut F9.

Figure 3. Graphical user interface (GUI) of Spyder for scientific programming

E. Compute MOSES Superpixel Tracks

1.Download the ‘c_EPC2(G)_CP-A(R)_KSFM+RPMI_5_Fast GFP.tif_R-G.tif’ video file to

use as an example red-green fluorescent .tif timelapse video from the following Google Drive

link and save this to a ‘Videos’ subfolder underneath the ‘Data’ folder as in

2. Figure 1.

3. Read in the video as a numpy array object by importing and using the function

read_multiimg_PIL. For multi-channel videos, this gives a 4-dimensional matrix, for single-

channel videos this gives a 3-dimensional matrix.

Note: More generally one can use the function read_multiimg_stack instead to read in a

general bio-format image with additional z-slices.

from MOSES.Utility_Functions.file_io import read_multiimg_PIL

infile = ’../Data/Videos/c_EPC2(G)_CP-

A(R)_KSFM+RPMI_5_Fast_GFP.tif_R-G.tif’

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://drive.google.com/drive/folders/0BwFVL6r9ww5BTWRzNWw5MEhpRXM
https://drive.google.com/drive/folders/0BwFVL6r9ww5BTWRzNWw5MEhpRXM

7

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

vidstack = read_multiimg_PIL(infile)

Check the read size was expected.

n_frame, n_rows, n_cols, n_channels = vidstack.shape

print(‘Size of video: (%d,%d,%d,%d)’ %(n_frame, n_rows, n_cols,

n_channels))

4. Define the optical flow parameter settings used for superpixel tracking. For more details of the

used Farnebäck flow computation to compute pixel velocities refer to the OpenCV

documentation and the original paper (Farnebäck, 2003). The parameters determine the

accuracy of the motion field computation (see Notes).

Note: Use more levels, e.g., 5, increase the winsize, e.g., 21 and increase iterations e.g., 5 to

capture discontinuous movement over larger distances (with respect to input image size as

measured in pixels), see also notes section of this protocol.

optical_flow_params = dict(pyr_scale=0.5, levels=3, winsize=15,

iteratons=3, poly_n=5, poly_sigma=1.2, flags=0)

5. Specify the target number of superpixels or square region of interests (ROI) to subdivide the

video frame. For an image size of 𝑛 × 𝑚 pixels, a specification of 𝑁 superpixels would yield

individual superpixels with an approximate size of ≈ √𝑛𝑚/𝑁 × √𝑛𝑚/𝑁 pixels. For 𝑛 = 512,

𝑚 = 512,𝑁 = 1000, each superpixel will be of size ≈ 16 × 16 pixels.

number of superpixels

n_spixels = 1000

6. For each image channel, extract the superpixel tracks and the computed motion field noting the

0-indexing.

from MOSES.Optical_Flow_Tracking.superpixel_track import

compute_grayscale_vid_superpixel_tracks

extract superpixel tracks for the 1st or ‘red’ channel

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html
https://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html

8

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

optflow_r, meantracks_r =

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,0],

optical_flow_params, n_spixels)

extract superpixel tracks for the 2nd or ‘green’ channel

optflow_g, meantracks_g =

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,1],

optical_flow_params, n_spixels)

7. Save the computed tracks in .mat MATLAB format. Alternative formats that support Python array

saving can be used such as Python pickle or HDF.

import scipy.io as spio

import os

fname = os.path.split(infile)[-1]

savetracksmat = (‘meantracks_’ + fname).replace(‘.tif’, ‘.mat’)

spio.savemat(savetracksmat, {‘meantracks_r’: meantracks_r,

‘meantracks_g’: meantracks_g})

8.(Optional) Visualize the motion field for select frames to check the computation (

9. Figure 4) and optionally save the computed motion field.

Note: For large images saving the motion field takes up a lot of hard disk space. It is therefore

not recommended to do so. The motion field is summarized by the superpixel tracks.

import pylab as plt

from MOSES.Visualisation_Tools.motion_field_visualisation import

view_ang_flow

visualize first frame of red and green motion fields

fig, ax = plt.subplots(nrows=1, ncols=2)

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

9

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

ax[0].imshow(view_ang_flow(optflow_g[0]))

ax[1].imshow(view_ang_flow(optflow_r[0]))

ax[0].grid(‘off’); ax[1].grid(‘off’)

plt.show()

save the flow

save_optflow_mat = (‘optflow_’+fname).replace(‘.tif’, ‘.mat’)

spio.savemat(save_optflow_mat, {‘optflow_r’: optflow_r, ‘optflow_g’:

optflow_g})

Figure 4. Visualization of the computed first frame motion field using optical flow for red

and green channel images. The individual pixel velocities are colored by their angular direction

using the color wheel with the color intensity encoding the pixel speed. Scale bars: 200 µm.

10.(Optional) Plot the superpixel tracks as a second sanity check. The shape of the tracks

should capture the dynamic range of the moving entities in the video. For epithelial sheets,

this is the shape of the leading edge of the sheet (

11. Figure 5).

Figure 5. Plot of the red and green channel superpixel tracks. The green EPC2 tracks end

on the right where it met the red CP-A tracks and was pushed back to the left. The red CP-A

tracks end on the left at the final position where it has pushed the green EPC2 cells to.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

10

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

12. (Optional for debugging) Produce a video of the superpixel tracks overlaid on the video, plotting

each track in temporal segments of 5 frames to avoid clutter. Frames are generated sequentially.

Subsequently, import the saved frames using Fiji ImageJ in temporal order, File → Import →

Image Sequence... and save as a multipage .tif video (File → Save As → Tiff...) or .avi video,

(File → Save As → AVI...).

from MOSES.Utility_Functions.file_io import mkdir
from MOSES.Visualisation_Tools.track_plotting import plot_tracks
import os

fname = os.path.split(infile)[-1]
specify the save folder and create this automatically.
save_frame_folder = 'track_video'
mkdir(save_frame_folder)

len_segment = 5

for frame in range(len_segment, n_frame, 1):
 frame_img = vidstack[frame]

 fig = plt.figure()
 fig.set_size_inches(float(n_cols)/n_rows, 1, forward=False)
 ax = plt.Axes(fig, [0., 0., 1., 1.]); ax.set_axis_off(); fig.add_axes(ax)
 ax.imshow(frame_img, alpha=0.6)
 # visualize only a short segment
 plot_tracks(meantracks_r[:, frame-len_segment:frame+1], ax, color='r', lw=1)
 plot_tracks(meantracks_g[:, frame-len_segment:frame+1], ax, color='g', lw=1)
 ax.set_xlim([0, n_cols]); ax.set_ylim([n_rows, 0])
 ax.grid('off'); ax.axis('off')
 # tip: use multiples of n_rows to increase image resolution
 fig.savefig(os.path.join(save_frame_folder, 'tracksimg-
%s_' %(str(frame+1).zfill(3))+fname.replace('.tif','.png')), dpi=n_rows)
 plt.show()

from MOSES.Utility_Functions.file_io import mkdir

from MOSES.Visualisation_Tools.track_plotting import plot_tracks

import os

fname = os.path.split(infile)[-1]

specify the save folder and create this automatically.

save_frame_folder = ‘track_video’

mkdir(save_frame_folder)

len_segment = 5

for frame in range(len_segment, n_frame, 1):

 frame_img = vidstack[frame]

 fig = plt.figure()

 fig.set_size_inches(float(n_cols)/n_rows, 1, forward=False)

 ax=plt.Axes(fig, [0.,0.,1.,1.]); ax.set_axis_off();

fig.add_axes(ax)

 ax.imshow(frame_img, alpha=0.6)

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

11

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

 # visualize only a short segment

 plot_tracks(meantracks_r[:,frame-len_segment:frame+1],ax,

color='r', lw=1)

 plot_tracks(meantracks_g[:,frame-len_segment:frame+1],ax,

color='g', lw=1)

 ax.set_xlim([0, n_cols]); ax.set_ylim([n_rows, 0])

 ax.grid('off'); ax.axis('off')

 # tip: use multiples of n_rows to increase image resolution

 fig.savefig(os.path.join(save_frame_folder,

'tracksimg-%s_' %(str(frame+1).zfill(3))+fname.replace('.tif','.png')

), dpi=n_rows)

 plt.show()

F. Construct Mesh from Superpixel Tracks

Any individual moving entity inevitably affects the motion of surrounding entities. Considering

superpixels as individual moving elements, it becomes natural to capture the interaction between

each superpixel and its neighbors. Computationally this interaction can be captured in a mesh or

graph with mesh edges representing the presence of an interaction. This mesh construction critically

depends on what one considers evidence of interaction or motion similarity. As such different

meshes can be constructed to better highlight different aspects of the cellular motion. We direct the

interested reader to the supplementary information of Zhou et al., 2019 for an extended discussion.

Below we describe the construction steps for three meshes which connect together superpixel

tracks based on different notions of spatial proximity.

1. Construct the MOSES mesh for individual image channels by connecting each superpixel track

to all superpixel tracks separated by at most a pixel distance less than a multiple (dist_thresh)

of the average superpixel width (spixel_size) based on the initial (𝑥, 𝑦) position of

superpixels.

Note: The MOSES mesh captures how superpixels move with respect to their initial neighbors.

from MOSES.Motion_Analysis.mesh_statistics_tools import construct_MOSES_mesh

specify the average superpixel size. This is roughly the width for squares
spixel_size = meantracks_r[1,0,1] - meantracks_r[1,0,0]

compute the MOSES mesh, linking together all superpixels located a distance
dist_thresh*spixel_size for each colour channel
MOSES_mesh_strain_time_r, MOSES_mesh_neighborlist_r = construct_MOSES_mesh(meantracks_r,
dist_thresh=1.2, spixel_size=spixel_size)
MOSES_mesh_strain_time_g, MOSES_mesh_neighborlist_g = construct_MOSES_mesh(meantracks_g,
dist_thresh=1.2, spixel_size=spixel_size)

from MOSES.Motion_Analysis.mesh_statistics_tools import

construct_MOSES_mesh

specify the average superpixel size. This is roughly the width for

squares

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

12

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

spixel_size = meantracks_r[1,0,1] - meantracks_r[1,0,0]

compute the MOSES mesh, linking together all superpixels located a

distance dist_thresh*spixel_size for each colour channel

MOSES_mesh_strain_time_r, MOSES_mesh_neighborlist_r =

construct_MOSES_mesh(meantracks_r, dist_thresh=1.2,

spixel_size=spixel_size)

MOSES_mesh_strain_time_g, MOSES_mesh_neighborlist_g =

construct_MOSES_mesh(meantracks_g, dist_thresh=1.2,

spixel_size=spixel_size)

2. Construct the radial neighbors mesh for individual image channels by connecting each

superpixel track to all superpixel tracks at time 𝑡 separated by at most a pixel distance less than

a multiple (dist_thresh) of the average superpixel width (spixel_size) based on the

(𝑥, 𝑦) position of the superpixels at time 𝑡.

Note: Unlike the MOSES mesh, the connections between neighbors in the radial neighbor mesh

dynamically changes over time.

from MOSES.Motion_Analysis.mesh_statistics_tools import

construct_radial_neighbour_mesh

radial_mesh_strain_time_r, radial_neighbourlist_time_r =

construct_radial_neighbour_mesh(meantracks_r, dist_thresh=1.2,

spixel_size=spixel_size, use_counts=False)

radial_mesh_strain_time_g, radial_neighbourlist_time_g =

construct_radial_neighbour_mesh(meantracks_g, dist_thresh=1.2,

spixel_size=spixel_size, use_counts=False)

3. Construct the K nearest neighbor mesh for individual image channels by connecting each

superpixel track to the K superpixel tracks at time 𝑡 that is spatially closest based on the (𝑥, 𝑦)

position of the superpixels at time 𝑡.

Note: This mesh is constructed based on topological distance and is suitable when the physical

spatial separation is not a significant factor.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

13

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from MOSES.Motion_Analysis.mesh_statistics_tools import

construct_knn_neighbour_mesh

knn_mesh_strain_time_r, knn_neighbourlist_time_r =

construct_knn_neighbour_mesh(meantracks_r, k=4)

knn_mesh_strain_time_g, knn_neighbourlist_time_g =

construct_knn_neighbour_mesh(meantracks_g, k=4)

4. (Optional) Visualize the constructed mesh at select frames (here for example frame 20) to check

construction (Figure 6). The example code visualizes the MOSES mesh from Step F1. Any mesh

specified either as a networkx graph object or as a list specifying the array index of superpixels

connected to each superpixel 𝑖 can similarly be visualized.

from MOSES.Visualisation_Tools.mesh_visualisation import

visualize_mesh

from MOSES.Motion_Analysis.mesh_statistics_tools import

from_neighbor_list_to_graph

use networkx to visualize the mesh at frame 20. To do so need to

first convert the neighborlist into a networkx graph object.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

14

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

mesh_frame20_networkx_G_red =

from_neighbor_list_to_graph(meantracks_r, MOSES_mesh_neighborlist_r,

20)

mesh_frame20_networkx_G_green =

from_neighbor_list_to_graph(meantracks_g, MOSES_mesh_neighborlist_g,

20)

set up a 1 x 2 plotting canvas.

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,15))

plot the red mesh in left panel.

ax[0].imshow(vidstack[20], alpha=0.7)

visualise_mesh(mesh_frame20_networkx_G_red, meantracks_r[:,20,[1,0]],

ax[0], node_size=20, linewidths=1, width=1, node_color=’r’)

ax[0].set_ylim([n_rows,0])

ax[0].set_xlim([0,n_cols])

ax[0].grid(’off’); ax[0].axis(’off’)

plot the green mesh in right panel.

ax[1].imshow(vidstack[20], alpha=0.7)

visualise_mesh(mesh_frame20_networkx_G_green,

meantracks_g[:,20,[1,0]], ax[1], node_size=20, linewidths=1, width=1,

node_color=’g’)

ax[1].set_ylim([n_rows,0])

ax[1].set_xlim([0,n_cols])

ax[1].grid(’off’); ax[1].axis(’off’)

G. Extracting MOSES motion measurements

Several motion metrics were proposed in the original paper (Zhou et al., 2019). Here we show how

to compute the main proposed metrics using the provided functions in MOSES.

1. Construct the motion saliency map for each color. The motion saliency map reveals spatial

regions of significant motion concentration. It is computed by accumulating the mesh

deformation strain in local spatial regions across time.

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_motion_saliency_map

final_saliency_map_r, spatial_time_saliency_map_r =

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

15

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

compute_motion_saliency_map(meantracks_r, dist_thresh=5.*spixel_size,

shape=(n_rows, n_cols), filt=1, filt_size=spixel_size)

final_saliency_map_g, spatial_time_saliency_map_g =

compute_motion_saliency_map(meantracks_g, dist_thresh=5.*spixel_size,

shape=(n_rows, n_cols), filt=1, filt_size=spixel_size)

2. Compute the boundary formation index from the motion saliency map. The boundary formation

index is defined as the normalized ratio of the mean motion saliency map intensity values, 𝐼 in

high intensity image regions over low intensity image regions (‘red’ and ‘blue’ areas in Figure

7A). The intensity cut-off is automatically determined via Otsu thresholding so that a pixel with

image coordinate (𝑖, 𝑗) is in the ‘high’ region if 𝐼(𝑖, 𝑗) ≥ 𝐼𝑡ℎ𝑟𝑒𝑠ℎ or else is ‘low’. The boundary

formation index takes values between 0 and 1. The higher the value, the greater the propensity

of motion to be concentrated within a particular spatial region.

boundary formation index =
𝐼ℎ̅𝑖𝑔ℎ − 𝐼𝑙̅𝑜𝑤

𝐼ℎ̅𝑖𝑔ℎ

Note: Cells moving out of the field of view of the video cause superpixels to concentrate at the

boundary of the videos. This causes an artefactual increase in motion density at image edges.

To minimize this effect, the boundary formation index is computed in the region at least a

pad_multiple times spixel_size away from the image boundary.

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_boundary_formation_index

boundary_formation_index, av_saliency_map =

compute_boundary_formation_index(final_saliency_map_r,

final_saliency_map_g, spixel_size, pad_multiple=3)

fig = plt.figure()

plt.title('Boundary Formation

Index %.3f' %(boundary_formation_index))

plt.imshow(av_saliency_map, cmap='coolwarm')

plt.axis('off'); plt.grid('off')

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

16

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

plt.show()

Figure 6. Visualization of the constructed MOSES mesh linking individual superpixels

with centroids represented by dots

3. Compute the MOSES mesh strain curve of the video, the mean of curves of the individual red

and green channel curves (Figure 7B). The mesh strain curve measures the mean change in

the relative spatial arrangement (topology) between neighboring superpixels over time.

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_MOSES_mesh_strain_curve

import numpy as np

set normalise=True to obtain normalised curves between 0-1.

mesh_strain_r=compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_

r, normalise=False)

mesh_strain_g=compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_

g, normalise=False)

average the channel curves to get one curve for the video.

mesh_strain_curve_video = .5*(mesh_strain_r+mesh_strain_g)

normalise the curves, this is equivalent to normalise=True above

for a single channel.

normalised_mesh_strain_curve_video = mesh_strain_curve_video/

np.max(mesh_strain_curve_video)

4. Compute the mesh stability index defined as 1 minus the normalized gradient of the mesh strain

curve, 𝑦 over a small time window, Δ𝑇 at the end of the video motion (in the interval [𝑇, 𝑇 +

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

17

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Δ𝑇]). Here the time window is Δ𝑇 = 5 frames (Figure 7B).

mesh stability index = 1 −
1

Δ𝑇
𝑇0

∑ (𝑦̂𝑡+1 − 𝑦̂𝑡)

𝑇+Δ𝑇

𝑡=𝑇

 and 𝑦̂ =
𝑦

𝑦max

where 𝑦max is the maximum value of the mesh strain curve and 𝑇0 is the total number of video

frames. The mesh stability index is upper bounded by 1. For the example video, you should get

a value of 0.892.

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_MOSES_mesh_stability_index

the mesh stability index uses an average over the last number of

frame specified by the flag, last_frames. One should set this to

approximately cover the plateau region of the strain curve.

mesh_stability_index, normalised_mesh_strain_curve =

compute_MOSES_mesh_stability_index(MOSES_mesh_strain_time_r,

MOSES_mesh_strain_time_g, last_frames=5)

print('mesh stability index: %.3f' %(mesh_stability_index))

Figure 7. Motion saliency map, boundary formation index and mesh stability metrics. A.

Computed motion saliency map and associated boundary formation index. B. Non-normalized

MOSES mesh strain curve for red and green cell populations together with the average of the

two curves (black line). Shaded blue region shows the 5 frame window used to compute the

mesh stability index.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

18

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

5. Compute the mesh strain vector. The mesh strain vector of each superpixel 𝑖 is the vector sum

of the displacements of neighboring superpixels 𝑗 relative to the superpixel 𝑖 in the mesh.

mesh strain vector (𝑚⃗⃗ 𝑖) = ∑ 𝑚⃗⃗ 𝑗𝑖
𝑗∈𝒩

from MOSES.Motion_Analysis.mesh_statistics_tools import

construct_mesh_strain_vector

given a mesh as a list of neighbours (also known as a region

adjacency list), find the mesh strain vector

mesh_strain_vector_r = construct_mesh_strain_vector(meantracks_r,

[MOSES_mesh_neighborlist_r])

mesh_strain_vector_g = construct_mesh_strain_vector(meantracks_g,

[MOSES_mesh_neighborlist_r])

6. Compute the mesh order. The mesh order is the mean normalized mesh strain vector over all

superpixels 𝑖, (Figure 8A). If all mesh strain vectors were aligned in the same direction, this

value is 1. If there is no alignment it is 0. For the example video you should get 0.00325 (Figure

8B).

mesh order =
∑𝑚⃗⃗ 𝑖
∑|𝑚⃗⃗ 𝑖|

from MOSES.Motion_Analysis.mesh_statistics_tools import compute_mesh_order

mesh_order_curve_r = compute_mesh_order(mesh_strain_vector_r, remove_mean=False)
mesh_order_curve_g = compute_mesh_order(mesh_strain_vector_g, remove_mean=False)

av_mesh_order = .5*(mesh_order_curve_r + mesh_order_curve_g)
print('average mesh order: %.5f' %(np.nanmean(av_mesh_order)))

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_mesh_order

mesh_order_curve_r = compute_mesh_order(mesh_strain_vector_r,

remove_mean=False)

mesh_order_curve_g = compute_mesh_order(mesh_strain_vector_g,

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

19

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

remove_mean=False)

av_mesh_order = .5*(mesh_order_curve_r + mesh_order_curve_g)

print('average mesh order: %.5f' %(np.nanmean(av_mesh_order)))

Figure 8. Visualization of the mesh order and mesh order curve. A. Mesh strain vector

(colored arrows) of individual superpixels (mesh vertices) for each colored cell population

overlaid on top of the MOSES mesh for frame 20. B. Evolution of the mesh order over time for

individual colored populations and the average of the two colored curves (black line). Dashed

black line is the mean value of all temporal values reported as the mean mesh order for the

video.

Data analysis

The demo analyses presented in this section expands upon the general protocol detailed above by

walking through the standard steps of motion analysis using MOSES on various different biological

imaging datasets. The steps below illustrate how to adapt and work with MOSES to handle a breadth of

different datasets. The analyses are additionally provided as supplementary Python script files (.py).

Analysis 1: Single Cell Tracking (Phase Contrast Microscopy) (Supplementary files)

We use the data from the Cell Tracking Challenge (http://celltrackingchallenge.net/) to illustrate how to

use MOSES for single cell tracking analysis. As cell division is not currently explicitly modeled within the

motion extraction in MOSES, this analysis is most effective for videos where cell proliferation is minimal

or when extraction of the global ‘motion’ pattern is more important.

1. Register for a free account at http://celltrackingchallenge.net/registration/, the official challenge

website to download the datasets.

2. Download the U373 cell training dataset from http://celltrackingchallenge.net/2d-datasets/.

3. Unzip the downloaded ‘PhC-C2DH-U373.zip folder’. You should find 4 folders, ‘01’, ‘01_GT’, ‘02’

and ‘02_GT’ which specify two image sequences and their associated annotated ground truth

(GT). We will only use the image sequence in ‘01’ as an example.

4. Load and concatenate the image frames of ‘01’ in Python into a numpy array. The result should

be a (115, 520, 696) size NumPy array.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip
http://celltrackingchallenge.net/
http://celltrackingchallenge.net/registration/
http://celltrackingchallenge.net/2d-datasets/

20

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from skimage.exposure import rescale_intensity

import numpy as np

from MOSES.Utility_Functions.file_io import detect_files

from skimage.io import imread

vid_folder = '../Data/Videos/PhC-C2DH-U373/01'

load individal video frames saved as .tif files.

video_files, video_fnames = detect_files(vid_folder, ext='.tif')

read individual frames and concatenate frames after rescaling

intensity

vidstack = np.concatenate([rescale_intensity(imread(f))[None,:] for f

in video_files], axis=0)

5. Compute the superpixel tracks using n_spixels = 1000, (Figure 9A). Here we use

compute_grayscale_vid_superpixel_tracks_FB to extract additional ‘backward’ tracks

as a result of applying tracking running the video backward in time. Forward tracking reveals

where motion flows towards (sinks) whilst backward tracking reveals spatial origins (sources) of

motion, see advanced analysis section below.

Note: How will the superpixel tracks change when we increase or decrease n_spixels?

from MOSES.Optical_Flow_Tracking.superpixel_track import
compute_grayscale_vid_superpixel_tracks_FB
import scipy.io as spio

n_spixels = 1000
set the motion extraction parameters
opt_flow_params = {'pyr_scale':0.5, 'levels':7, 'winsize':25, 'iterations':3, 'poly_n':5,
'poly_sigma':1.2, 'flags':0}
compute superpixel tracks
optflow, tracks_F, tracks_B = compute_grayscale_vid_superpixel_tracks_FB(vidstack,
opt_flow_params, n_spixels=n_spixels)
save the tracks
spio.savemat('vid01_%d_spixels.mat' %(n_spixels), {'tracks_F':tracks_F,
 'tracks_B':tracks_B})

from MOSES.Optical_Flow_Tracking.superpixel_track import

compute_grayscale_vid_superpixel_tracks_FB

import scipy.io as spio

n_spixels = 1000

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

21

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

set the motion extraction parameters

opt_flow_params = {'pyr_scale':0.5, 'levels':7, 'winsize':25,

'iterations':3, 'poly_n':5, 'poly_sigma':1.2, 'flags':0}

compute superpixel tracks

optflow, tracks_F, tracks_B =

compute_grayscale_vid_superpixel_tracks_FB(vidstack, opt_flow_params,

n_spixels=n_spixels)

save the tracks

spio.savemat('vid01_%d_spixels.mat' %(n_spixels), {'tracks_F':

tracks_F, 'tracks_B': tracks_B})

6. To track cells present in the initial frame over time segment the individual cells automatically

using image thresholding and connected component analysis or by manual annotation. In the

paper (Zhou et al., 2019) manual annotation was used, here we use automated image

thresholding (Figure 9B).

Note: Exact segmentation is not required although the more accurate the segmentation,

generally the better the specificity of tracking. Results are nevertheless stable for less optimal

segmentations. How are the results if bounding boxes were used?

from skimage.filters import threshold_otsu, threshold_triangle

from skimage.measure import label

from skimage.morphology import remove_small_objects, binary_closing,

disk

from scipy.ndimage.morphology import binary_fill_holes

import pylab as plt

first frame of video

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

22

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

frame0 = vidstack[0]

basic quick cell segmentation by thresholding intensities

a) determine intensity threshold

thresh = np.mean(frame0) + .5*np.std(frame0)

binary = frame0 >= thresh

b) steps to refine the basic thresholding of a)

binary = remove_small_objects(binary, 200)

binary = binary_closing(binary, disk(5))

binary = binary_fill_holes(binary)

binary = remove_small_objects(binary, 1000)

c) connected component analysis to label binary cell segmentation

with integers

cells_frame0 = label(binary)

7. Use the segmentation mask to assign superpixel tracks to each segmented cell (Figure 9).

define a function 'assign_spixels' that can be called to assign superpixel tracks to
integer labelled mask
def assign_spixels(spixeltracks, mask):

 uniq_regions = np.unique(mask)
 initial_pos = spixeltracks[:,0,:]

 bool_mask = []
 # starts from 1-index not 0-index as the first is assigned to the background.
 for uniq_region in uniq_regions[1:]:
 mask_region = mask == uniq_region
 bool_mask.append(mask_region[initial_pos[:,0], initial_pos[:,1]])

 bool_mask = np.vstack(bool_mask)

 return bool_mask

cell_spixels = assign_spixels(tracks_F, cells_frame0)

define a function 'assign_spixels' that can be called to assign

superpixel tracks using an integer labelled mask

def assign_spixels(spixeltracks, mask):

uniq_regions = np.unique(mask)

initial_pos = spixeltracks[:,0,:]

bool_mask = []

starts from 1-index not 0-index as the first is assigned to the

background.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

23

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

for uniq_region in uniq_regions[1:]:

 mask_region = mask == uniq_region

 bool_mask.append(mask_region[initial_pos[:,0],

initial_pos[:,1]])

bool_mask = np.vstack(bool_mask)

return bool_mask

cell_spixels = assign_spixels(tracks_F, cells_frame0)

8. Select the longest track as summary of the cell’s motion for each segmented cell region (Figure

9C).

Note: Experiment with other ways to summarize the collection of tracks into one track such as

taking the mean or median of the tracks.

def find_characteristic_motion(tracks):

 # This function chooses the single longest superpixel track to summarise the single
cell motion.
 disps_tracks = tracks[:, 1:, :] - tracks[:, :-1, :]
 disps_mag = np.sum(np.sqrt(disps_tracks[:,:,0]**2 + disps_tracks[:,:,1]**2), axis=1)
 rank = np.argsort(disps_mag)[::-1]

 return tracks[rank[0]]

single_cell_tracks = []
iterate through each segmentation and store the single track
for i in range(len(cell_spixels)):

 # for cell i which superpixel ids belong capture it
 cell_spixel = cell_spixels[i]
 # for cell i retrieve the corresponding tracks
 cell_tracks = tracks_F[cell_spixel]
 # find the single track that summarise the motion of all associated superpixel tracks
 single_cell_track = find_characteristic_motion(cell_tracks)
 single_cell_tracks.append(single_cell_track[None,:])

single_cell_tracks = np.vstack(single_cell_tracks)

def find_characteristic_motion(tracks):

This function chooses the single longest superpixel track to

summarise the single cell motion.

disps_tracks = tracks[:, 1:, :] - tracks[:, :-1, :]

disps_mag = np.sum(np.sqrt(disps_tracks[:,:,0]**2 +

disps_tracks[:,:,1]**2), axis=1)

rank = np.argsort(disps_mag)[::-1]

return tracks[rank[0]]

 single_cell_tracks = []

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

24

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

 # iterate through each segmentation and store the single track

 for i in range(len(cell_spixels)):

for cell i which superpixel ids belong capture it

cell_spixel = cell_spixels[i]

for cell i retrieve the corresponding tracks

cell_tracks = tracks_F[cell_spixel]

find the single track that summarise the motion of all

associated superpixel tracks

single_cell_track = find_characteristic_motion(cell_tracks)

single_cell_tracks.append(single_cell_track[None,:])

single_cell_tracks = np.vstack(single_cell_tracks)

9. Visualize the inferred cell tracks, plotting each cell track with a unique color (Figure 9C).

from MOSES.Visualisation_Tools.track_plotting import plot_tracks
import seaborn as sns
cell_colors = sns.color_palette('Set1', n_colors=len(single_cell_tracks))

fig, ax = plt.subplots()
plt.title('Single Cell Tracks', fontsize=16)
ax.imshow(vidstack[0], cmap='gray')

for ii in range(len(single_cell_tracks)):
 single_cell_track = single_cell_tracks[ii]
 plot_tracks(single_cell_track[None,:], ax, color=cell_colors[ii], lw=3)

plt.grid('off')
plt.axis('off')
plt.show()

from MOSES.Visualisation_Tools.track_plotting import plot_tracks

import seaborn as sns

cell_colors =

sns.color_palette('Set1',n_colors=len(single_cell_tracks))

fig, ax = plt.subplots()

plt.title('Single Cell Tracks', fontsize=16)

ax.imshow(vidstack[0], cmap='gray')

for ii in range(len(single_cell_tracks)):

single_cell_track = single_cell_tracks[ii]

plot_tracks(single_cell_track[None,:], ax, color=cell_colors[ii],

lw=3)

 plt.grid('off'); plt.axis('off')

plt.show()

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

25

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Figure 9. Single-cell tracking using MOSES superpixel tracks. A. Extracted superpixel

tracks using a target number of 1,000 superpixels overlaid on the first video frame. B.

Automatically segmented cells from the initial frame. C. Predicted single cell tracks selecting the

longest superpixel track for each segmented cell region.

Advanced analysis:

10. Compute the motion saliency map using the forward and backward tracks to visualize where

the cells move to and from where (Figure 10).

Note: Try changing the dist_thresh used to see how this affects the computed motion saliency

map.

from MOSES.Motion_Analysis.mesh_statistics_tools import compute_motion_saliency_map
from skimage.filters import gaussian

dist_thresh = 30
spixel_size = tracks_B[1,0,1]-tracks_B[1,0,0]

saliency_F, saliency_spatial_time_F = compute_motion_saliency_map(tracks_F,
dist_thresh=dist_thresh, shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size)
saliency_B, saliency_spatial_time_B = compute_motion_saliency_map(tracks_B,
dist_thresh=dist_thresh, shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size)
Use Gaussian smoothing to create a more continuous heatmap
saliency_F_smooth = gaussian(saliency_F, spixel_size/2)
saliency_B_smooth = gaussian(saliency_B, spixel_size/2)

fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,15))
ax[0].set_title('Superpixel Tracks')
ax[0].imshow(frame0, cmap='gray')
plot_tracks(tracks_F, ax=ax[0], color='r'); ax[0].axis('off')
ax[1].set_title('Motion Saliency (Forward)')
ax[1].imshow(vidstack[-1], cmap='gray')
ax[1].imshow(saliency_F_smooth, cmap='coolwarm', alpha=0.7); ax[1].axis('off')
ax[2].set_title('Motion Saliency (Backward)')
ax[2].imshow(frame0, cmap='gray')
ax[2].imshow(saliency_B_smooth, cmap='coolwarm', alpha=0.7); ax[2].axis('off')
plt.show()

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_motion_saliency_map

from skimage.filters import Gaussian

dist_thresh = 30

spixel_size = tracks_B[1,0,1]-tracks_B[1,0,0]

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

26

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

saliency_F, saliency_spatial_time_F =

compute_motion_saliency_map(tracks_F, dist_thresh=dist_thresh,

shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size)

saliency_B, saliency_spatial_time_B =

compute_motion_saliency_map(tracks_B, dist_thresh=dist_thresh,

shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size)

Use Gaussian smoothing to create a more continuous heatmap

saliency_F_smooth = gaussian(saliency_F, spixel_size/2)

saliency_B_smooth = gaussian(saliency_B, spixel_size/2)

fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,15))

ax[0].set_title('Superpixel Tracks')

ax[0].imshow(frame0, cmap='gray')

plot_tracks(tracks_F, ax=ax[0], color='r'); ax[0].axis('off')

ax[1].set_title('Motion Saliency (Forward)')

ax[1].imshow(vidstack[-1], cmap='gray')

ax[1].imshow(saliency_F_smooth, cmap='coolwarm', alpha=0.7);

ax[1].axis('off')

ax[2].set_title('Motion Saliency (Backward)')

ax[2].imshow(frame0, cmap='gray')

ax[2].imshow(saliency_B_smooth, cmap='coolwarm', alpha=0.7);

ax[2].axis('off')

plt.show()

Figure 10. Motion saliency maps computed using forward and backward tracks visually

uncover motion sinks and sources respectively in cellular videos. A. Extracted forward

superpixel tracks using a target number of 1,000 superpixels overlaid on the first video frame.

B. Forward motion saliency map computed using the forward tracks on the left reveals motion

highlights the highly dynamic movement of individual cell boundaries which behave akin to

motion ‘sinks’. C. Backward motion saliency map computed using the backward tracks produced

tracking the video in reverse reveals motion origin or ‘sources’.

Analysis 2: Two Cell Epithelial Sheet Analysis (Fluorescence Microscopy) (Supplementary files)

The main analysis steps for the migration pattern of two color epithelial sheets acquired as presented in

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip

27

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

our previous work (Zhou et al., 2019) were documented in the main protocol section. Here we present

extended procedures more specifically targeted for the analysis of two-color epithelial sheets.

A. Analysis of the interface between two cell populations

1.Visualize the interface appearance using video kymographs. A kymograph is a

projection of the 2D temporal dataset that collapses one of the spatial dimensions to allow the

movement to be visualized as an image. Here the maximum along of each image pixel column

was taken to summarise the motion along the image rows (

2. Figure 12). The maximum was used to get the strongest possible signal for the interface.

from MOSES.Visualisation_Tools.kymographs import kymograph_img

import numpy as np

import pylab as plt

project and collapse in the 'y' direction (rows)

vid_max_slice = kymograph_img(vidstack, axis=1, proj_fn=np.max)

fig, ax = plt.subplots()

ax.imshow(vid_max_slice)

ax.set_aspect('auto')

plt.show()

3. Visualize the interface movement between the two cell populations using velocity kymographs.

Analogous to video kymographs above, velocity kymographs compress the 2D temporal motion

field in one dimension to visualize the information as a single image. Here we take the median

x-direction velocity value along each image pixel column to summarize the velocity variation

across the rows. The median was used for projecting the information as it is an average statistic

that is well-known to be robust to outlier values. MOSES provides two functions to compute the

velocity kymograph depending on whether the input is a motion field or motion tracks.

a.Compute the velocity kymograph of the pixel motion field (

b. Figure 12A).

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

28

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

import scipy.io as spio

load the previously computed motion field

save_optflow_mat = ('optflow_'+fname).replace('.tif', '.mat')

optflow_r = spio.loadmat(save_optflow_mat)['optflow_r']

optflow_g = spio.loadmat(save_optflow_mat)['optflow_g']

construct the full motion field

optflow = optflow_r + optflow_g

take only the 'x' component

optflow_x = optflow[...,0]

kymograph 1: Dense optical flow.

optflow_median_slice = kymograph_img(optflow_x, axis=1,

proj_fn=np.nanmedian)

c. Compute the velocity kymograph of the superpixel tracks following tracking of a

fixed number of superpixels, here 1,000 superpixels, (

d. Figure 12B).

from MOSES.Visualisation_Tools.kymographs import

construct_spatial_time_MOSES_velocity_x

load the previously computed superpixel tracks

savetracksmat = ('meantracks_'+fname).replace('.tif', '.mat')

meantracks_r = spio.loadmat(savetracksmat)['meantracks_r']

meantracks_g = spio.loadmat(savetracksmat)['meantracks_g']

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

29

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

kymograph 2: Superpixel tracks. (fixed superpixel number)

velocity_kymograph_x_tracks_r =

construct_spatial_time_MOSES_velocity_x(meantracks_r, shape=(n_frame,

n_cols), n_samples=51, axis=1)

velocity_kymograph_x_tracks_g =

construct_spatial_time_MOSES_velocity_x(meantracks_g, shape=(n_frame,

n_cols), n_samples=51, axis=1)

velocity_kymograph_x_tracks = velocity_kymograph_x_tracks_r +

velocity_kymograph_x_tracks_g

e.(Optional) Compute the velocity kymograph using the superpixel tracks extracted by

dense superpixel tracking, (

f. Figure 12C). Starting from an initial user-specified number of 𝑁 superpixels, dense tracking

continuously monitors the spatial density of superpixels frame to frame. The image area is

regularly partitioned into 𝑁 region of interests (ROI). If an ROI contains a number of

superpixels less than the minimum number specified by the mindensity parameter, a new

superpixel is dynamically added to the ROI and tracked in all subsequent frames. As such

starting from 𝑁 = 1000 superpixels, the final number of superpixel tracks is variable. It

could be 2,000 for videos with relatively little movement or even 6,000 for significant

movement.

Note: Dense superpixel tracking is the preferred tracking approach when one expects the

video to contain significant movement and is set by specifying dense=True.

compute dense tracks by setting dense=True (default is False)

_, meantracks_r_dense =

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,0],

optical_flow_params, n_spixels, dense=True, mindensity=1)

_, meantracks_g_dense =

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

30

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,1],

optical_flow_params, n_spixels, dense=True, mindensity=1)

save the computed tracks

savetracksmat = ('meantracks-dense_'+fname).replace('.tif', '.mat')

spio.savemat(savetracksmat, {'meantracks_r':meantracks_r_dense,

 'meantracks_g':meantracks_g_dense})

 # kymograph 3: using dense superpixel tracking.

velocity_kymograph_x_tracks_r_dense =

construct_spatial_time_MOSES_velocity_x(meantracks_r_dense,

shape=(n_rows, n_cols), n_samples=51, axis=1)

velocity_kymograph_x_tracks_g_dense =

construct_spatial_time_MOSES_velocity_x(meantracks_g_dense,

shape=(n_rows, n_cols), n_samples=51, axis=1)

velocity_kymograph_x_tracks_dense =

velocity_kymograph_x_tracks_r_dense +

velocity_kymograph_x_tracks_g_dense

g.Visualize the velocity kymographs to compare the differences between the velocity

kymographs computed from the three different inputs in a)-c) above (

Figure 12

h. Figure 12. Velocity kymographs summarising the velocity with distance away from the interface.

The velocity kymograph computed taking the median of column values of the pixel motion field

(A), the superpixel tracks from tracking a fixed number of 1,000 superpixels (B) and when

dense superpixel tracking is used (C).).

fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,5))

ax[0].set_title('Motion Field')

ax[0].imshow(optflow_median_slice, cmap='RdBu_r', vmin=-10, vmax=10)

ax[0].axis('off')

ax[0].set_aspect('auto')

ax[1].set_title('1000 Superpixels (fixed)')

ax[1].imshow(velocity_kymograph_x_tracks, cmap='RdBu_r', vmin=-10,

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

31

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

vmax=10)

ax[1].axis('off')

ax[1].set_aspect('auto')

ax[2].set_title('1000 Superpixels (dynamic)')

ax[2].imshow(velocity_kymograph_x_tracks_dense, cmap='RdBu_r', vmin=-

10, vmax=10)

ax[2].axis('off')

ax[2].set_aspect('auto')

plt.show()

Figure 11. Kymograph of the video highlighting movement of the wound through time.

The spatial row dimension of the 2D video was collapsed by using the maximum intensity along

each pixel column.

Figure 12. Velocity kymographs summarising the velocity with distance away from the

interface. The velocity kymograph computed taking the median of column values of the pixel

motion field (A), the superpixel tracks from tracking a fixed number of 1,000 superpixels (B) and

when dense superpixel tracking is used (C).

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

32

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

4. Locate the interface boundary line frame to frame using the extracted superpixel tracks and

subsequently fit the line to a spline approximation to enable interpolation from the image y-

coordinates (Figure 13).

from MOSES.Motion_Analysis.wound_statistics_tools import

boundary_superpixel_meantracks_RGB

boundary_curves, curves_lines, curve_img, boundary_line =

boundary_superpixel_meantracks_RGB(vidstack, meantracks_r,

meantracks_g, movement_thresh=0.2, t_av_motion=5, robust=False,

lenient=False, debug_visual=False, max_dist=1.5, y_bins=50,

y_frac_thresh=0.50)

5. Estimate the frame of gap closure by computing the distance between the boundary between

both colored sheets from image segmentation. For the example you should get

wound_closure_frame = 26 (Figure 14A).

from MOSES.Motion_Analysis.wound_close_sweepline_area_segmentation

import wound_sweep_area_segmentation

wound_closure_frame = wound_sweep_area_segmentation(vidstack,

spixel_size, max_frame=50, n_sweeps=50, n_points_keep=1,

n_clusters=2, p_als=0.001, to_plot=True)

print('predicted gap closure frame is: %d' %(wound_closure_frame))

Figure 13. Tracking the interface automatically using the superpixel tracks. A. Fitted cubic

spline approximation of the interface boundary plotted on the last video frame (96h). B.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

33

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Maximum intensity projection of the tracked interface boundary plotted on the video kymograph.

B. Interaction analysis

1. Compute the maximum velocity cross-correlation index between red and green superpixel

tracks as evidence of correlated motion of the two sheets. This measure ranges from 0 to 1 with

1 being completely correlated. For the example video, you should get a maximum velocity cross-

correlation before and after gap closure of 0.022 and 0.234 suggesting increased correlation

between the movement directionality of both sheets.

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_max_vccf_cells_before_after_gap

(max_vccf_before, _), (max_vccf_after, _) =

compute_max_vccf_cells_before_after_gap(meantracks_r, meantracks_g,

wound_heal_frame=wound_closure_frame, err_frame=5)

print('max velocity cross-correlation

before: %.3f' %(max_vccf_before))

print('max velocity cross-correlation after: %.3f' %(max_vccf_after))

2. Compute the spatial correlation index to assess on average the extent of movement correlation

between superpixel tracks and by extension cellular groups in the image. Distance is measured

in normalized units as the number of superpixels away. For our video, compute the spatial

correlation over a distance range of 1-6 superpixels and fit an exponential decay curve with

equation, 𝑦 = 𝑎𝑒−𝑥 𝑏⁄ to extract the canonical distance, 𝑏 = 2.94 over which motion is

correlated (Figure 14B).

Note: The computation of spatial correlation index is typically slow. Use a smaller distance range

to speed up computation.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

34

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_spatial_correlation_function

spatial_corr_curve, (spatial_corr_pred, a_value, b_value, r_value) =

compute_spatial_correlation_function(meantracks_r,

wound_closure_frame, wound_heal_err=5, dist_range=np.arange(1,6,1))

plot the curve and the fitted curve to y=a*exp(-x/b) to get the

(a,b) parameters.

plt.figure()

plt.title('Fitted Spatial Correlation: a=%.3f, b=%.3f' %(a_value,

b_value))

plt.plot(np.arange(1,6,1), spatial_corr_curve, 'ko',

label='measured')

plt.plot(np.arange(1,6,1), spatial_corr_pred, 'g-', label='fitted')

plt.xlabel('Distance (Number of Superpixels)')

plt.ylabel('Spatial Correlation')

plt.legend(loc='best')

plt.show()

Figure 14. Example distance curve for estimating the frame of gap closure and example

spatial correlation curve for estimating the distance over which cellular motion is

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

35

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

correlated. A. Plot of the separation distance normalized by the maximum separation distance

between red and green boundary points as extracted by image segmentation. Blue triangle is

the final predicted gap closure frame. B. Variation of mean spatial correlation between

superpixel tracks for the example video as a function of the number of superpixels away as

measured by multiples of the average superpixel width. Green line is the fitted exponential decay

to the black data points.

C. Motion maps

One of the primary benefits of using the superpixel tracks and meshes extracted by MOSES as

discussed in our previous work (Zhou et al., 2019) was for the construction of a motion map that

can be used to visually interrogate motion phenotypes. Here we describe the steps we used in the

paper to construct a motion map by applying principal components analysis (PCA) to the MOSES

mesh strain curve using a smaller dataset. The full datasets are available through Mendeley

Datasets with DOI: https://dx.doi.org/10.17632/j8yrmntc7x.1 and

https://dx.doi.org/10.17632/vrhtsdhprr.1.

1. Download all videos from the two folders, 0% FBS and 5% FBS folders in the Google drive (6

videos in total). They contain 3 examples each of the 0% and 5% serum cultured cell videos

without EGF addition.

2.Place the downloaded videos into two subfolders, 0%_FBS and 5%_FBS under a newly

created top level ‘Motion_Map_Videos’ folder following the structure in

3. Figure 1 as before.

4. Automatically detect the two subfolders in the ‘Motion_Map_Videos’ folder as two separate

experiment folders. The code should print a Python list with the values ['0%_FBS' '5%_FBS'].

from MOSES.Utility_Functions.file_io import detect_experiments

detect experiment folders as subfolders under a top-level

directory.

rootfolder = '../Data/Motion_Map_Videos'

expt_folders = detect_experiments(rootfolder,

exclude=['meantracks','optflow'], level1=False)

print(expt_folders) # print the detected folder names.

5. Use the in-built Python glob library to detect all video files using their ‘.tif’ extension in each

experiment (subfolder), loading individual file paths into a single NumPy array. Subsequently

create a separate integer array based on the detected files to denote if the video file came from

either the ‘0%_FBS’ or ‘5%_FBS’ subfolder assigned integers ‘0’ and ‘1’ respectively.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.17632/j8yrmntc7x.1
https://dx.doi.org/10.17632/vrhtsdhprr.1
https://drive.google.com/drive/folders/0BwFVL6r9ww5BaTh6NExLR1JMUXM

36

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

import glob

import numpy as np

detect each .tif file in each folder.

videofiles = [glob.glob(os.path.join(rootfolder, expt_folder, '*.tif'))

for expt_folder in expt_folders]

should give now [[0,0,0],[1,1,1]]

labels = [[i]*len(videofiles[i]) for i in range(len(videofiles))]

flatten everything into single array

videofiles = np.hstack(videofiles)

labels = np.hstack(labels)

6. Extract superpixel tracks and compute the MOSES mesh strain curves for each video. Then

concatenate the mesh strain curves of each video into one NumPy array. This constructs a

feature matrix of size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 required for PCA.

Note: Augment the MOSES mesh strain curve features with image-based features such as the

mean pixel intensity and texture features of the superpixel image patch to additionally describe

appearance.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

37

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from MOSES.Utility_Functions.file_io import read_multiimg_PIL

from MOSES.Motion_Analysis.mesh_statistics_tools import

construct_MOSES_mesh, compute_MOSES_mesh_strain_curve

set motion extraction parameters.

n_spixels = 1000

optical_flow_params = dict(pyr_scale=0.5, levels=3, winsize=15,

iterations=3, poly_n=5, poly_sigma=1.2, flags=0)

n_videos = len(videofiles)

initialise arrays to save computed data

mesh_strain_all = []

for ii in range(n_videos):

videofile = videofiles[ii]

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

38

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

print(ii, videofile)

vidstack = read_multiimg_PIL(videofile)

1. compute superpixel tracks

_, meantracks_r =

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,0],

optical_flow_params, n_spixels)

_, meantracks_g =

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,1],

optical_flow_params, n_spixels)

spixel_size = meantracks_r[1,0,1] - meantracks_r[1,0,0]

2a. compute MOSES mesh.

MOSES_mesh_strain_time_r, MOSES_mesh_neighborlist_r =

construct_MOSES_mesh(meantracks_r, dist_thresh=1.2,

spixel_size=spixel_size)

MOSES_mesh_strain_time_g, MOSES_mesh_neighborlist_g =

construct_MOSES_mesh(meantracks_g, dist_thresh=1.2,

spixel_size=spixel_size)

2b. compute the MOSES mesh strain curve for the video.

mesh_strain_r =

compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_r,

normalise=False)

mesh_strain_g =

compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_g,

normalise=False)

mesh_strain_curve_video = .5*(mesh_strain_r+mesh_strain_g)

(optional normalization)

normalised_mesh_strain_curve_video = mesh_strain_curve_video/

np.max(mesh_strain_curve_video)

3. append the computed mesh strain curves.

mesh_strain_all.append(normalised_mesh_strain_curve_video)

 # stack all the mesh strain curves into one

mesh_strain_all = np.vstack(mesh_strain_all)

7. Apply PCA to the mesh strain curves of the 5% FBS videos only to set the two principal

components for mapping.

Note: 0% serum videos could also have been used. Generally to learn the data variation it is

recommended to use the larger dataset.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

39

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from sklearn.decomposition import PCA

initialise the PCA model

pca_model = PCA(n_components=2, random_state=0)

1. learn the PCA using only the 5% FBS a.k.a label=1

pca_5_percent_mesh =

pca_model.fit_transform(mesh_strain_all[labels==1])

8. Project the mesh strain curves of the 0% FBS videos using the principal components defined

by the 5% FBS videos.

pca_0_percent_mesh = pca_model.transform(mesh_strain_all[labels==0])

9. Visualize the projected PCA components on a 2D x-y axis plotting the first principal components

(x-axis) vs the second principal component (y-axis) (Figure 15).

Note: The resulting PCA plot should clearly highlight the distinct separation of motion behavior

between 0% FBS and 5% FBS. The exact numerical values may differ depending on installed

library versions of scikit-learn, OS and random number generation settings.

fig, ax = plt.subplots(figsize=(3,3))

ax.plot(pca_5_percent_mesh[:,0], pca_5_percent_mesh[:,1], 'o', ms=10,

color='g', label='5% FBS')

ax.plot(pca_0_percent_mesh[:,0], pca_0_percent_mesh[:,1], 'o', ms=10,

color='r', label='0% FBS')

ax.set_xlim([-2,2])

ax.set_ylim([-2,2])

plt.legend(loc='best')

plt.show()

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

40

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Figure 15. Motion map analysis of a reduced set of 0% and 5% serum two color epithelial

cell videos

D. Superpixel track cleaning for two color cell populations

Fluorescent dyes are imperfect. Despite best efforts there will often be a degree of cross-

contamination across acquired color channels. This can lead to noise in the extracted motion tracks,

namely green channel motion tracks may exhibit some movement when theoretically there should

be none due to bleed-through from the red channel. Post-processing of the tracks can help ‘clean’

up the unspecific motion and retain only the motion of the specific superpixel tracks relevant to each

initial object of interest in the respective colored channels. In doing so, one can improve the accuracy

and sensitivity of analysis. One general method for cleaning is image segmentation of individual

objects and retaining only the tracks that cover the segmented objects (see demo Analysis 1: Single

Cell Tracking). In our paper, (Zhou et al., 2019) we instead implemented a more robust

segmentation-free method that exploits motion information for colored two cell populations.

1. Jointly clean red and green superpixel tracks by considering the connectivity between superpixel

tracks that move between the initial frame 0 and the frame specified by frame2. The resulting

filtered tracks, meantracks_r_filt, meantracks_g_filt can now be used instead of

meantracks_r, meantracks_g in any of the given steps for the analysis of two cell populations.

Note: Our implementation is specific for two color videos, however the principle of motion and

connectivity it is based on is generalizable.

from MOSES.Track_Filtering.filter_meantracks_superpixels import filter_red_green_tracks

meantracks_r_filt, meantracks_g_filt = filter_red_green_tracks(meantracks_r, meantracks_g,
img_shape=(n_rows, n_cols), frame2=1)

from MOSES.Track_Filtering.filter_meantracks_superpixels import

filter_red_green_tracks

meantracks_r_filt, meantracks_g_filt =

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

41

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

filter_red_green_tracks(meantracks_r, meantracks_g,

img_shape=(n_rows, n_cols), frame2=1)

Analysis 3: Analysis of Drosophila Motion in Development (SiMView lightsheet Microscopy)

(Supplementary files)

To demonstrate the ability of MOSES to analyze global tissue and local cellular motion patterns jointly

we analyze the supplementary videos of drosophila development published by Amat et al., 2014. In

addition this analysis illustrates i) how one can handle larger videos that contain a lot of temporal frames

or have large video frames to speed up processing, ii) how to cluster tracks to reveal local spatial

patterns and iii) how to work with general video formats such as .avi, mp4 and .mov.

1. Download supplementary movie 1 (‘nmeth.3036-sv1.avi’) of Amat et al., 2014, entitled ‘SiMView

imaging of Drosophila embryogenesis’.

2. Construct a function to read the .avi video using the moviepy library with optional rescaling of

video frame dimensions through the resize parameter. For more information using moviepy

please refer to https://zulko.github.io/moviepy/.

def read_movie(moviefile, resize=1.):

from moviepy.editor import VideoFileClip

from tqdm import tqdm

from skimage.transform import rescale

import numpy as np

vidframes = []

clip = VideoFileClip(moviefile)

count = 0

for frame in tqdm(clip.iter_frames()):

 vidframes.append(np.uint8(rescale(frame, 1./resize,

preserve_range=True)))

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip
https://zulko.github.io/moviepy/

42

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

 count+=1

vidframes = np.array(vidframes)

return vidframes

 moviefile = '../Data/Videos/nmeth.3036-sv1.avi'

 # read in the movie, downsampling frames by 4.

 movie = read_movie(moviefile, resize=4.)

 n_frame, n_rows, n_cols, n_channels = movie.shape

print('Size of video:

(%d,%d,%d,%d)' %(n_frame,n_rows,n_cols,n_channels))

3. Set motion parameters as before and extract forward and backward superpixel tracks using

dense superpixel tracking.

from MOSES.Optical_Flow_Tracking.superpixel_track import

compute_grayscale_vid_superpixel_tracks_FB

motion extraction parameters.

optical_flow_params = dict(pyr_scale=0.5, levels=5, winsize=21,

iterations=5, poly_n=5, poly_sigma=1.2, flags=0)

number of superpixels

n_spixels = 1000

extract forward and backward tracks.

optflow, meantracks_F, meantracks_B =

compute_grayscale_vid_superpixel_tracks_FB(movie[:,:,:,1],

optical_flow_params, n_spixels, dense=True)

4. Cluster superpixels according to track similarity to group together similar tracks. This requires

the construction of a feature matrix for each superpixel track.

a. Construct the track feature, 𝑓𝑖 for superpixel track 𝑖 by concatenating the (𝑥, 𝑦)

coordinates at each time frame up to frame 𝑇 such that 𝑓 =

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

43

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

[𝑥1, 𝑥2, … , 𝑥𝑇−1, 𝑥𝑇 , 𝑦1, 𝑦2,… , 𝑦𝑇−1, 𝑦𝑇]. For this example, the final feature matrix, X is a matrix

of 2628 x 1104.

import numpy as np

X = np.hstack([meantracks_F[:,:,0], meantracks_F[:,:,1]])

b. Reduce dimensionality of feature matrix, X using principal components analysis (PCA) to

compress features and improve clustering.

from sklearn.decomposition import PCA

pca_model = PCA(n_components = 3, whiten=True, random_state=0)

X_pca = pca_model.fit_transform(X)

c. Cluster tracks using the PCA reduced features using a Gaussian mixture model (GMM)

specifying 10 clusters. The result is given as a vector array, track_labels specifying

using unique integer values the group that each superpixel track has been assigned to by

the GMM model. Note colors will be different for different runs of the algorithm due to

randomness in the setting of the GMM algorithm.

Note: Any other clustering algorithm operating on a matrix can be used such as hierarchical

clustering, K-means clustering and density based clustering.

from sklearn import mixture

n_clusters = 10

gmm = mixture.GaussianMixture(n_components=n_clusters,

covariance_type='full', random_state=0)

gmm.fit(X_pca)

get the labels

track_labels = gmm.predict(X_pca)

5. Visualize the clustered superpixel tracks coloring each unique group with a different color

(Figure 16).

Note: We confirmed differences in GMM clustering results between different OS and scikit-learn

library versions with the same code. The reported figure was obtained for Windows 10, scikit-

learn version 0.21.2.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

44

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from MOSES.Visualisation_Tools.track_plotting import plot_tracks
import seaborn as sns
import pylab as plt

Generate colours for each unique cluster.
cluster_colors = sns.color_palette('hls', n_clusters)

overlay cluster tracks and clustered superpixels
fig, ax = plt.subplots(nrows=1,ncols=3, figsize=(15,15))
ax[0].imshow(movie[0]); ax[0].grid('off'); ax[0].axis('off'); ax[0].set_title('Initial
Points')
ax[1].imshow(movie[-1]); ax[1].grid('off'); ax[1].axis('off'); ax[1].set_title('Final
Points')
ax[2].imshow(movie[0]); ax[2].grid('off'); ax[2].axis('off'); ax[2].set_title('Clustered
Tracks')
for ii, lab in enumerate(np.unique(track_labels)):
 # plot coloured initial points
 ax[0].plot(meantracks_F[track_labels==lab,0,1],
 meantracks_F[track_labels==lab,0,0], 'o', color=cluster_colors[ii], alpha=1)
 # plot coloured final points
 ax[1].plot(meantracks_F[track_labels==lab,-1,1],
 meantracks_F[track_labels==lab,-1,0], 'o', color=cluster_colors[ii], alpha=1)
 # plot coloured tracks
 plot_tracks(meantracks_F[track_labels==lab], ax[2], color=cluster_colors[ii], lw=1.0,
alpha=0.7)
plt.show()

from MOSES.Visualisation_Tools.track_plotting import plot_tracks

import seaborn as sns

import pylab as plt

Generate colours for each unique cluster.

cluster_colors = sns.color_palette('hls', n_clusters)

overlay cluster tracks and clustered superpixels

fig, ax = plt.subplots(nrows=1,ncols=3, figsize=(15,15))

ax[0].imshow(movie[0]); ax[0].grid('off'); ax[0].axis('off');

ax[0].set_title('Initial Points')

ax[1].imshow(movie[-1]); ax[1].grid('off'); ax[1].axis('off');

ax[1].set_title('Final Points')

ax[2].imshow(movie[0]); ax[2].grid('off'); ax[2].axis('off');

ax[2].set_title('Clustered Tracks')

for ii, lab in enumerate(np.unique(track_labels)):

plot coloured initial points

ax[0].plot(meantracks_F[track_labels==lab,0,1],

 meantracks_F[track_labels==lab,0,0], 'o',

color=cluster_colors[ii], alpha=1)

plot coloured final points

ax[1].plot(meantracks_F[track_labels==lab,-1,1],

 meantracks_F[track_labels==lab,-1,0], 'o',

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

45

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

color=cluster_colors[ii], alpha=1)

plot coloured tracks

plot_tracks(meantracks_F[track_labels==lab], ax[2],

color=cluster_colors[ii], lw=1.0, alpha=0.7)

plt.show()

Figure 16. Unsupervised clustering of superpixel tracks to group local motion during

Drosophila embryogenesis. Initial (A) and final (B) centroid positions of superpixels plotted as

a dot and colored by assigned group using Gaussian mixture model for clustering.

Corresponding superpixel tracks colored by cluster (C).

6. Compute the motion saliency map of the forward and backward tracks to find motion sources

and sinks (

7. Figure 17).

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_motion_saliency_map

from skimage.exposure import equalize_hist

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

46

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

from skimage.filters import Gaussian

specify a large threshold to capture long-distances.

dist_thresh = 20

spixel_size = meantracks[1,0,1]-meantracks[1,0,0]

motion_saliency_F, motion_saliency_spatial_time_F =

compute_motion_saliency_map(meantracks, dist_thresh=dist_thresh,

shape=movie.shape[1:-1], max_frame=None, filt=1,

filt_size=spixel_size)

motion_saliency_B, motion_saliency_spatial_time_B =

compute_motion_saliency_map(meantracks_B, dist_thresh=dist_thresh,

shape=movie.shape[1:-1], max_frame=None, filt=1,

filt_size=spixel_size)

smooth the discrete looking motion saliency maps.

motion_saliency_F_smooth = gaussian(motion_saliency_F,

spixel_size/2.)

motion_saliency_B_smooth = gaussian(motion_saliency_B,

spixel_size/2.)

visualise the computed results.

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,15))

ax[0].imshow(movie[0], cmap='gray'); ax[0].grid('off');

ax[0].axis('off')

ax[1].imshow(movie[0], cmap='gray'); ax[1].grid('off');

ax[1].axis('off')

ax[0].set_title('Motion Sinks'); ax[1].set_title('Motion Sources')

ax[0].imshow(equalize_hist(motion_saliency_F_smooth),

cmap='coolwarm', alpha=0.5, vmin=0, vmax=1)

ax[1].imshow(equalize_hist(motion_saliency_B_smooth),

cmap='coolwarm', alpha=0.5, vmin=0, vmax=1)

plt.show()

Figure 17. Motion saliency map to highlight spatial areas of motion sinks (A) and sources

(B) during Drosophila embryogenesis

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

47

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Analysis 4: Intra-vital Imaging Analysis (Multiphoton Microscopy) (Supplementary files)

Intra-vital imaging has enabled direct in-vivo imaging of the movement of fluorescently tagged cells in

their native microenvironment. A common application is the study of immune cell behavior with respect

to the local vasculature and extracellular matrix in tissue (Li et al., 2012). Typically it is desired to extract

the global motion patterns of individual cell population despite their stochastic individual motion. Using

automatic single-cell tracking approaches is frequently unreliable due to the lower imaging magnification

and poorer spatial resolution of the acquired images compared to in-vitro imaging. For example, it is

difficult for humans to manually distinguish between individually migrating fluorescent immune cells.

Here we demonstrate how to use MOSES to nevertheless extract the global motion pattern of individual

neutrophil cells to a laser-induced wound site for quantitative analysis.

1. Download supplementary movie 1 of Li et al., 2012.

2. Read the movie using the example read_movie function defined in Analysis 3 above. As the

video is short and we want to retain high spatial fidelity, the native pixel resolution of image

frames is used without downsampling (resize=1.).

moviefile = '../Data/Videos/nprot.2011.438-S5.mov'

movie = read_movie(moviefile, resize=1.)

3. Set the motion extraction parameters and extract both forward and backward superpixel tracks

using 1,000 superpixels. Optionally set dense=True.

from MOSES.Optical_Flow_Tracking.superpixel_track import

compute_grayscale_vid_superpixel_tracks_FB

motion extraction parameters.

optical_flow_params = dict(pyr_scale=0.5, levels=5, winsize=21,

iterations=5, poly_n=5, poly_sigma=1.2, flags=0)

number of superpixels

n_spixels = 1000

extract superpixel tracks for the 2nd or 'green' GFP+ cell channel

optflow, meantracks_F, meantracks_B =

compute_grayscale_vid_superpixel_tracks_FB(movie[:,:,:,1],

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip

48

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

optical_flow_params, n_spixels, dense=True)

4. Compute the mean temporal optical flow to summarize the mean motion of image pixels over

the imaged duration. Through averaging, stochastic motion is removed and globally consistent

trends are reinforced. Color map the computed mean optical flow according to the directionality

of motion using an HSV color scheme to visualize the average global motion pattern of GFP+

neutrophil cells (Figure 18A).

from MOSES.Visualisation_Tools.motion_field_visualisation import

view_ang_flow

import numpy as np

mean_opt_flow = np.mean(optflow, axis=0)

mean_colored_flow = view_ang_flow(mean_opt_flow)

5. Compute the average velocity of individual superpixel tracks and the mean temporal (𝑥, 𝑦)

coordinates of superpixel tracks as the MOSES superpixel track equivalent to Step 4 above

(Figure 18B).

from MOSES.Motion_Analysis.tracks_statistics_tools import

average_displacement_tracks

mean_disps_tracks = average_displacement_tracks(meantracks)

parse out the mean (u,v) velocities of tracks

U_tra = mean_disps_tracks[:,1]

this is negative to convert image coordinates to proper (x,y) used

in matplotlib quiverplot.

V_tra = -mean_disps_tracks[:,0]

Mag_tra = np.hypot(U_tra, V_tra)

compute the mean (x,y) position of tracks

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

49

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

X_mean = np.mean(meantracks[:,:,1], axis=-1)

Y_mean = np.mean(meantracks[:,:,0], axis=-1)

6. Compute the forward and backward motion saliency maps using the forward and backward

superpixel tracks to reveal motion ‘sinks’ and ‘sources’ respectively (Figure 18B).

from MOSES.Motion_Analysis.mesh_statistics_tools import

compute_motion_saliency_map

from skimage.exposure import equalize_hist

from skimage.filters import Gaussian

specify a large threshold to capture long-distances.

dist_thresh = 5

spixel_size = meantracks[1,0,1]-meantracks[1,0,0]

compute the forward and backward motion saliency maps.

motion_saliency_F, motion_saliency_spatial_time_F =

compute_motion_saliency_map(meantracks, dist_thresh=dist_thresh,

shape=movie.shape[1:-1], max_frame=None, filt=1,

filt_size=spixel_size)

motion_saliency_B, motion_saliency_spatial_time_B =

compute_motion_saliency_map(meantracks_B, dist_thresh=dist_thresh,

shape=movie.shape[1:-1], max_frame=None, filt=1,

filt_size=spixel_size)

smooth the discrete looking motion saliency maps.

motion_saliency_F_smooth = gaussian(motion_saliency_F,

spixel_size/2.)

motion_saliency_B_smooth = gaussian(motion_saliency_B,

spixel_size/2.)

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

50

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

Figure 18. MOSES analysis unbiasedly uncovers the migration of GFP+ neutrophil cells

to site of laser injury. A. Mean motion field after averaging over all time points. Direction of

motion is colored according to the inset color wheel. Colour intensity represents the magnitude

of the velocity. B. Overlay of the mean superpixel track velocities represented as green arrows

plotted on top of the first video frame. Additionally, the computed forward and backward motion

saliency maps are shown as red and green heatmaps revealing local motion sinks and sources

respectively. Square box in the middle indicates the induced laser injury site.

Notes

We highlight key common considerations that arise when conducting a MOSES analysis to extract

superpixel tracks, computing the motion saliency map and constructing motion maps. In general,

MOSES is reproducible, produces consistent and interpretable results for all types of imaging as

long as its primary modeling assumptions are satisfied.

1. Key analysis assumptions of MOSES–two general key principles govern the behavior and

accuracy of MOSES

a. MOSES implicitly assumes that the motion of interest is the most dominant contributor of

motion in the video. This is the most important assumption of MOSES. Given a video many

factors may influence the motion of the image pixels for example camera movement and

stage movement cause global shifts in the field of view and cell division induce local motion.

MOSES does not explicitly disentangle the contribution to the global measured motion from

different sources. If multiple sources of motion are present with similar magnitudes such as

the deformation of the extra-cellular matrix and cellular migration in intra-vital images, non-

rigid image registration should be applied first to remove the extra-cellular deformations

before running MOSES to analyze only the cellular motion component.

b. MOSES superpixel tracks extract the movement trajectory that follows the most dominant

local motion pattern. Individual superpixels are updated through time according to the

average (mean or median) velocity of individual pixels within it. Should bimodality exist in

the local directionality, MOSES would update the superpixel position according to the more

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

51

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

dominant direction. This may cause the superpixels to no longer follow the same moving

entity. Thus single MOSES tracks are not guaranteed to follow any individual cell or cell

group however the extraction of dominant global and local motion patterns and the analysis

of motion source and sinks becomes very natural. Given no restriction on the movement of

superpixels as they are updated over time, should dominant local motion patterns exist then

they will naturally aggregate together surrounding superpixels and statistically upvote these

image regions. By exploiting these phenomena, the salient motion patterns within a video

can be efficiently and unbiasedly uncovered and encoded into ‘signatures’ for phenotyping.

2. Setting the number of superpixels

The number of superpixels directly determines the size of the region of interest (ROI) being

tracked. Less superpixels or larger ROI capture coarse motion patterns that affect larger areas

but lose resolution in the motion information due to computing the average over a larger spatial

area. Conversely more superpixels or smaller ROI better capture finer motion patterns but

velocities may be more subject to outliers. Finally, there is a speed consideration. More

superpixels take longer to track. Typically the number of superpixels used should be the

minimum necessary to capture the spatial scale of the desired motion pattern. As a guide start

with 1,000 superpixels. If too fine try 100 superpixels, if too coarse try 10,000 superpixels.

3. Setting the optical flow motion extraction parameters

Optical flow algorithms aim to estimate the local motion field by finding the optimal set of

displacements (Δ𝑥, Δ𝑦) that minimize the difference of the pixel intensities between two frames

separated by a small time Δ𝑡. Mathematically this solves for the following equality

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑡 + Δ𝑡)

where 𝐼(𝑥, 𝑦, 𝑡) is the pixel intensity values of the video frame at time 𝑡 . The OpenCV

Farnebäck optical flow algorithm used in MOSES solves this problem using local image patches

of a fixed user-specified size similar to particle image velocimetry. To capture larger

displacements than the fixed window size (given by the number of pixels), the original image is

first downsampled and smoothed multiple times resulting in an image pyramid. The optimization

problem is then solved progressively starting from the lowest level of the image pyramid with

the most downsampled image and ending at the topmost level of the image pyramid, the original

image to yield the final set of displacements. In this manner, the same fixed window size in lower

pyramid levels corresponds to increasingly larger areas at the original image scale. The main

consideration when setting the parameters for optical flow estimation is choosing a set of

parameters that best captures any long, discontinuous displacements between successive

video frames. This type of motion is very common for particle-like objects and cells undergoing

single-cell motion. To better capture large, discontinuous displacements one can increase the

window size (winsize), increase the number of levels in the pyramid (levels) or decrease

the scaling factor (pyr_scale) to create smaller images per pyramid level. Note the number of

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

52

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

pyramid levels and pyramid scale is related as the upper limit of the number of pyramid levels

is bounded by the original image size and the scaling factor. In practice changing the number of

levels is easier to tune. The optimization process is iterative thus increasing the number of

iterations leads to more accurate results. Adjustment of these parameters typically requires

longer computation times per video frame. We recommended starting parameters of

pyr_scale=0.5, levels=3, winsize=15, iterations=3 for confluent cell motion

similar to those in epithelial sheets.

4. Rescaling image intensity before optical flow extraction

It is important to rescale image intensities prior to motion extraction with optical flow. Ideally all

video frames should be of the same brightness and well contrasted. If this is not the case it is

recommended to rescale the image intensities of each video frame to their respective minimum

and maximum values. Alternatively one can correct for the brightness variation using a known

mathematical model for example an exponential decay model for fluorescence microscopy.

5. Setting the distance threshold in the mesh construction and motion saliency map computation

Similar to the number of superpixels, the distance threshold should be set according to the

spatial range of the phenomena to be captured. Larger distance thresholds capture more

neighboring superpixel tracks and give more information regarding events that act on longer

spatial scales such as boundary formation. Conversely smaller distance thresholds are more

useful when considering phenomena that occur over a very localized region such as neutrophil

migration to local wound sites. We recommend experimenting with different values for the

distance threshold. It should be noted that results are generally stable over a wide range of

distance thresholds.

6. Feature construction for use in motion map construction

The interested reader should refer to the supplementary information of the original MOSES

paper (Zhou et al., 2019) where we discussed in detail how to construct informative features for

more general datasets. In brief, there is no one method fits all approach. Users should construct

a set of features that best capture the appearance and movement variation exhibited by moving

entities in the video. For epithelial sheets where individual cell morphology is not readily visible,

the use of only motion-based features like the proposed mesh strain curve should be sufficient.

For sparsely plated single cells that exhibit morphological changes over time, the incorporation

of appearance features is also important. For large datasets, one might consider training deep

learning feature extractors. The more informative the features used, the less sophisticated the

algorithm required for projecting the features when constructing a 2D or 3D motion map.

Acknowledgments

This work is an accompaniment to our original methods paper published in eLife (Zhou et al., 2019)

and extends the original work to showcase more the practical use of MOSES on a wide variety of

imaging datasets. We thank Prof. Hiroshi Nakagawa for the generous donation of EPC2 cells

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/

53

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

originally used in the study of Harada et al. 2013. We thank Mark Shipman for technical assistance

with timelapse microscopy in the collection of the two cell population dataset. This work was mainly

funded by the Ludwig Institute for Cancer Research (LICR) with additional support from a CRUK

grant to XL (C9720/A18513). FYZ is funded through the EPSRC Life Sciences Interface Doctoral

Training Centre EP/F500394/1 and LICR, CRP and XL are funded by LICR, RPO is supported by

LICR, the Oxford Health Services Research Committee and Oxford University Clinical Academic

Graduate School supported by the National Institute for Health Research (NIHR) Biomedical

Research Centre based at the Oxford University Hospitals Trust, Oxford, MJW is supported by

CRUK (C5255/A19498, through an Oxford Cancer Research Centre Clinical Research Training

Fellowship), and JR is funded by LICR and the EPSRC SeeBiByte Programme Grant

(EP/M013774/1). The views expressed herein are those of the authors and not necessarily those of

the NHS, the NIHR or the Department of Health.

Competing interests

A patent is pending for MOSES (UK application no. GB1716893.1, International application no.

PCT/GB2018/052935). MOSES is available open-source and free for all academic and non-profit

users under a Ludwig academic and non-profit license.

References

1. Amat, F., Lemon, W., Mossing, D. P., McDole, K., Wan, Y., Branson, K., Myers, E. W. and Keller,

P. J. (2014). Fast, accurate reconstruction of cell lineages from large-scale fluorescence

microscopy data. Nat Methods 11(9): 951-958.

2. Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In: Bigun,

J. and Gustavsson, T. (Eds.). Image Analysis. SCIA 2003. Lecture Notes in Computer Science,

vol 2749. Springer, Berlin, Heidelberg.

3. Harada, H., Nakagawa, H., Oyama, K., Takaoka, M., Andl, C.D., Jacobmeier, B., von Werder,

A., Enders, G.H., Opitz, O.G. and Rustgi, A.K. (2003). Telomerase induces immortalization of

human esophageal keratinocytes without p16INK4a inactivation. Molecular Cancer

Research, 1(10): 729-738.

4. Li, J. L., Goh, C. C., Keeble, J. L., Qin, J. S., Roediger, B., Jain, R., Wang, Y., Chew, W. K.,

Weninger, W. and Ng, L. G. (2012). Intravital multiphoton imaging of immune responses in the

mouse ear skin. Nat Protoc 7(2): 221-234.

5. Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Urbiola, A., Espana, T.,

Venkatesan, S., Balak, D. M., Karas, P., Bolckova, T., Streitova, M., Carthel, C., Coraluppi, S.,

Harder, N., Rohr, K., Magnusson, K. E., Jalden, J., Blau, H. M., Dzyubachyk, O., Krizek, P.,

Hagen, G. M., Pastor-Escuredo, D., Jimenez-Carretero, D., Ledesma-Carbayo, M. J., Munoz-

Barrutia, A., Meijering, E., Kozubek, M. and Ortiz-de-Solorzano, C. (2014). A benchmark for

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/pubmed/25042785
http://www.ncbi.nlm.nih.gov/pubmed/25042785
https://link.springer.com/chapter/10.1007%2F3-540-45103-X_50
http://www.ncbi.nlm.nih.gov/pubmed/12939398
http://www.ncbi.nlm.nih.gov/pubmed/12939398
http://www.ncbi.nlm.nih.gov/pubmed/22240584
http://www.ncbi.nlm.nih.gov/pubmed/22240584
http://www.ncbi.nlm.nih.gov/pubmed/24526711

54

www.bio-protocol.org/e3365
Bio-protocol 9(18): e3365.

DOI:10.21769/BioProtoc.3365

xxxx55555111112000

 Copyright Zhou et al., 2019

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

comparison of cell tracking algorithms. Bioinformatics 30(11): 1609-1617.

6. Meijering, E., Dzyubachyk, O. and Smal, I. (2012). Methods for cell and particle tracking.

Methods Enzymol 504: 183-200.

7. Milde, F., Franco, D., Ferrari, A., Kurtcuoglu, V., Poulikakos, D. and Koumoutsakos, P. (2012).

Cell Image Velocimetry (CIV): boosting the automated quantification of cell migration in wound

healing assays. Integr Biol (Camb) 4(11): 1437-1447.

8. Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R. and Ellenberg, J. (2006).

High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3(5):

385-390.

9. Nketia, T. A., Sailem, H., Rohde, G., Machiraju, R. and Rittscher, J. (2017). Analysis of live cell

images: Methods, tools and opportunities. Methods 115: 65-79.

10. Padfield, D., Rittscher, J. and Roysam, B. (2011). Coupled minimum-cost flow cell tracking for

high-throughput quantitative analysis. Med Image Anal 15(4): 650-668.

11. Petitjean, L., Reffay, M., Grasland-Mongrain, E., Poujade, M., Ladoux, B., Buguin, A. and

Silberzan, P. (2010). Velocity fields in a collectively migrating epithelium. Biophys J 98(9): 1790-

1800.

12. Schiegg, M., Hanslovsky, P., Haubold, C., Koethe, U., Hufnagel, L. and Hamprecht, F. A. (2015).

Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics

31(6): 948-956.

13. Szabó, B., Szöllösi, G. J., Gönci, B., Jurányi, Z., Selmeczi, D. and Vicsek, T. (2006). Phase

transition in the collective migration of tissue cells: experiment and model. Phys Rev E Stat

Nonlin Soft Matter Phys 74(6 Pt 1): 061908.

14. Zaritsky, A., Natan, S., Ben-Jacob, E. and Tsarfaty, I. (2012). Emergence of HGF/SF-induced

coordinated cellular motility. PLoS One 7(9): e44671.

15. Zaritsky, A., Kaplan, D., Hecht, I., Natan, S., Wolf, L., Gov, N. S., Ben-Jacob, E. and Tsarfaty,

I. (2014). Propagating waves of directionality and coordination orchestrate collective cell

migration. PLoS Comput Biol 10(7): e1003747.

16. Zaritsky, A., Welf, E. S., Tseng, Y. Y., Angeles Rabadan, M., Serra-Picamal, X., Trepat, X. and

Danuser, G. (2015). Seeds of locally aligned motion and stress coordinate a collective cell

migration. Biophys J 109(12): 2492-2500.

17. Zaritsky, A., Tseng, Y. Y., Rabadan, M. A., Krishna, S., Overholtzer, M., Danuser, G. and Hall,

A. (2017). Diverse roles of guanine nucleotide exchange factors in regulating collective cell

migration. J Cell Biol 216(6): 1543-1556.

18. Zhou, F. Y., Ruiz-Puig, C., Owen, R. P., White, M. J., Rittscher, J. and Lu, X. (2019). Motion

sensing superpixels (MOSES) is a systematic computational framework to quantify and discover

cellular motion phenotypes. Elife 8: pii: e40162.

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/pubmed/24526711
http://www.ncbi.nlm.nih.gov/pubmed/22264535
http://www.ncbi.nlm.nih.gov/pubmed/23047374
http://www.ncbi.nlm.nih.gov/pubmed/23047374
http://www.ncbi.nlm.nih.gov/pubmed/16628209
http://www.ncbi.nlm.nih.gov/pubmed/28242295
http://www.ncbi.nlm.nih.gov/pubmed/28242295
http://www.ncbi.nlm.nih.gov/pubmed/20864383
http://www.ncbi.nlm.nih.gov/pubmed/20864383
http://www.ncbi.nlm.nih.gov/pubmed/20441742
http://www.ncbi.nlm.nih.gov/pubmed/25406328
http://www.ncbi.nlm.nih.gov/pubmed/17280097
http://www.ncbi.nlm.nih.gov/pubmed/17280097
http://www.ncbi.nlm.nih.gov/pubmed/22970283
http://www.ncbi.nlm.nih.gov/pubmed/22970283
http://www.ncbi.nlm.nih.gov/pubmed/25058592
http://www.ncbi.nlm.nih.gov/pubmed/25058592
http://www.ncbi.nlm.nih.gov/pubmed/26682808
http://www.ncbi.nlm.nih.gov/pubmed/26682808
http://www.ncbi.nlm.nih.gov/pubmed/28512143
http://www.ncbi.nlm.nih.gov/pubmed/28512143
http://www.ncbi.nlm.nih.gov/pubmed/30803483
http://www.ncbi.nlm.nih.gov/pubmed/30803483
http://www.ncbi.nlm.nih.gov/pubmed/30803483

