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[Abstract] Precise spatiotemporal regulation is the foundation for the healthy development and 

maintenance of living organisms. All cells must correctly execute their function in the right place at the 

right time. Cellular motion is thus an important dynamic readout of signaling in key disease-relevant 

molecular pathways. However despite the rapid advancement of imaging technology, a comprehensive 

quantitative description of motion imaged under different imaging modalities at all spatiotemporal scales; 

molecular, cellular and tissue-level is still lacking. Generally, cells move either ‘individually’ or 

‘collectively’ as a group with nearby cells. Current computational tools specifically focus on one or the 

other regime, limiting their general applicability. To address this, we recently developed and reported a 

new computational framework, Motion Sensing Superpixels (MOSES). Incorporating the individual 

advantages of single cell trackers for individual cell and particle image velocimetry (PIV) for collective 

cell motion analyses, MOSES enables ‘mesoscale’ analysis of both single-cell and collective motion 

over arbitrarily long times. At the same time, MOSES readily complements existing single-cell tracking 

workflows with additional characterization of global motion patterns and interaction analysis between 

cells and also operates directly on PIV extracted motion fields to yield rich motion trajectories analogous 

for single-cell tracks suitable for high-throughput motion phenotyping. This protocol provides a step-by-

step practical guide for those interested in applying MOSES to their own datasets. The protocol 

highlights the salient features of a MOSES analysis and demonstrates the ease-of-use and wide 

applicability of MOSES to biological imaging through demo experimental analyses with ready-to-use 

code snippets of four datasets from different microscope modalities; phase-contrast, fluorescent, 

lightsheet and intra-vital microscopy. In addition we discuss critical points of consideration in the analysis.  

Keywords: Biological motion, Cell tracking, Dynamic mesh, Superpixels, Motion map, High-throughput 

screening 

 

[Background] In general, cells exhibit two types of movement; ‘single-cell’ or ‘individual’ migration in 

which each cell migrates independently or ‘collective’ migration where nearby cells migrate as a group 

in a coordinated fashion. Current computational tools focus on one or the other regime. To date 

numerous single-cell tracking methods have been developed that extract the movement trajectories of 

individual cells to build rich motion feature descriptors suitable for the unbiased analysis of high-

throughput screens (Padfield et al., 2011; Meijering et al., 2012; Maška et al., 2014; Schiegg et al., 2015; 
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Nketia et al., 2017). However the performance of these algorithms re quires accurate delineation or 

segmentation and subsequent temporal association of individual identified cells between video frames. 

This process is unfortunately difficult to generalize across applications, requires significant expertise 

and computationally scales poorly with increasing cell number. Single-cell tracking thus places an 

inherent upper limit to the time duration that can be imaged and tracked. In contrast, collective motion 

analysis tools such as Particle Image Velocimetry (PIV) exploit local correlation between image patch 

intensity values to derive velocities for all image pixels between all pairs of frames (Szabó et al., 2006; 

Petitjean et al., 2010; Milde et al., 2012). Advantageously this avoids errors introduced by image 

segmentation, is much easier to use for non-experts and is computationally efficient, scaling only with 

the number of region of interests (ROI) the image is divided into. Unfortunately, despite attempts to 

extract more descriptive motion parameters aside from PIV velocity such as including appearance 

parameters (Neumann et al., 2006; Zaritsky et al., 2012; 2014; 2015 and 2017), systematic 

characterization of the PIV extracted velocity fields to derive similarly rich ‘signatures’ as afforded by 

single-cell track measurements over arbitrarily long times for clustering motion patterns within and 

across videos is lacking. Further investigation of how the pixel-based or ROI measurements relate to 

particular individual cells or cell groups in the moving collectives has also been underexplored. As such 

PIV based analyses have exhibited limited success when studying phenomena associated with complex 

cellular movement such as boundary formation and chemoattraction in-vivo.  

  Recently we developed Motion Sensing Superpixels (MOSES) (Zhou et al., 2019), a computational 

framework that marries together the ability to generate rich motion features offered by single-cell tracking 

trajectories with the ease-of-use and computational efficiency of segmentation-free PIV methods. 

MOSES achieves this by firstly extending PIV-type methods to generate long-time motion trajectories 

analogous to single-cell tracks for user-defined ROIs called superpixels and secondly the construction 

of a mesh over the extracted motion trajectories to systematically capture the spatio-temporal interaction 

between neighboring ROIs. This protocol through ready-to-use code snippets details how to do this 

practically using the previously published MOSES code as a Python library. 

 

Equipment 

 

1. Single-channel or multi-channel time-lapse microscope, for taking videos of any modality, e.g., 

fluorescence, phase contrast  

Note: Videos should be in one of the standard bio-formats (TIFF, STK, LSM or FluoView) or a 

commonly used general video format (.mp4, .avi, .mov). 

2. Computer  

Recommended PC requirements: 

Processor (CPU): minimum Intel i5 2.4GHz  

RAM: minimum 8GB, recommended > 16GB  

Hard disk: few MBs per multi-channel image 

Note: The recommended requirements are given for 1024 x 1344 RGB images. The use of 
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smaller sized or downsampled images require less RAM and less powerful CPU specifications   

 

Software 

 

1. Windows/MacOS/Linux Operating system (64-bit) 

2. Python 2.7 or 3.6 Python Anaconda installation 

3. Git (https://git-scm.com/) 

4. Motion Sensing Superpixels (MOSES, https://github.com/fyz11/MOSES) 

5. Fiji ImageJ for visualization (https://fiji.sc/) 

 

Procedure 

 

We describe the general protocol to extract superpixel long-time trajectories and motion measurements 

as described in our original publication (Zhou et al., 2019). The presented code snippets in this section 

are also provided in the supplementary Python script file (‘general_analysis_protocol.py’) to aid re-

implementation. Adaptation of the basic procedure for the analysis of different datasets acquired by 

different microscope modalities is detailed in the Data Analysis section. The code and protocols should 

work for both Python 2 and 3 installations. They were originally developed using Python 2.7 under a 

Linux Mint Cinnamon 17 operating system. We assume throughout basic familiarity with working with 

command line prompts and terminals such as folder navigation using the cd or dir commands and 

basic Python usage including the importing of Python modules using import, array indexing using 

NumPy and plotting using Matplotlib libraries.  

 

A. Protocol Nomenclature 

1. “Open a terminal”: refers to the launching of an appropriate terminal window on your operating 

system (OS) to issue command-line commands. On Windows the terminal is the command 

prompt or Git bash program. On Windows systems a command prompt can be launched by 

opening the Start Menu, typing in the search bar cmd and clicking on the command prompt logo, 

usually the first search result. On MacOS one can execute the shortcut key combination (⌘ + 

Ctrl T). On Linux systems one can execute the shortcut key combination (Ctrl-Alt T). 

2. Commands to be executed in a terminal are distinguished from regular text by use of the true 

typewriter font Courier New for example python script.py. 

3. <input folder>: angular brackets denote text placeholders. The user should replace the 

placeholder with an appropriate text string (enclosed by speech marks or without spaces) 

according to the prompt text written in true typewriter font within the brackets. Usually, this is the 

path to a particular input/output file or folder. 

 

B. Installing Python and MOSES 

1. Download the appropriate Python Anaconda installer for your operating system.  
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2. Install Python Anaconda following the on-screen instruction prompts of the graphical installer to 

install for macOS and Windows. For Linux distributions open a terminal, execute bash <path 

to installer file> and proceed to follow the instructions in the terminal. 

3. (Optional) Create a new anaconda environment just for MOSES. Open a terminal and execute 

conda create --name <myenv> pip. This will create a new virtual environment with the 

name myenv and pip, a package manager for Python. Check the environment was successfully 

created by executing conda info --envs. We can now install Python software libraries only 

to this environment without affecting previous Python installations using conda by executing 

conda install <package_name> --name <myenv>. To load and use this environment 

execute conda activate <myenv> or source activate <myenv> in MacOS and Linux 

or activate myenv in Windows. For more information regarding the management of virtual 

environments see https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-

pkgs.html.  

Note: This optional step helps to keep all software dependencies for MOSES isolated from the 

rest of your Python installations.  

4. Download the MOSES scripts from https://github.com/fyz11/MOSES. Either: 

a. Clone the github repository, git clone https://github.com/fyz11/MOSES.git. 

b. Click the green ‘Clone or download’ button. Then click ‘Download ZIP’ and extract the .zip 

contents. 

5. Install MOSES. Either: 

a. Install to your Python installation to make it available system wide. This can be done by 

executing python setup.py install in the downloaded Github folder. Installation in 

this manner enables the scripts to be imported and used no matter the location of your 

analysis scripts. If you have set up a virtual environment previously for MOSES, load the 

environment before executing the command. 

b.Copy and paste the entire contents of the ‘MOSES’ folder in the Github repository 

into your top-level or root project folder such that ‘MOSES’ is co-located in the same 

subfolder used to store the analysis scripts ( 

c. Figure 1).  

Note: Option a) minimizes code replication across projects whilst, option b) offers the 

greatest ease for prototyping and customizing the MOSES scripts. 

 

 

Figure 1. Assumed folder structure if copy and pasting MOSES code for installation 

 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
https://github.com/fyz11/MOSES
https://github.com/fyz11/MOSES.git


                 

5 
 

www.bio-protocol.org/e3365      
Bio-protocol 9(18): e3365. 

DOI:10.21769/BioProtoc.3365

xxxx55555111112000 

 

  Copyright Zhou et al., 2019 

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). 

6. Install MOSES dependencies. MOSES depends on the number of externally managed Python 

code libraries that needs to be installed. Using option a) (Step B5b) above automates these 

steps. If using option b) (Step B5b) execute pip install –r requirements.txt in the 

terminal loading the virtual environment before execution if required. Please note MoviePy, one 

of the external Python dependencies required for reading and writing general video formats 

depends on the FFMPEG library (https://ffmpeg.org/). This library should be automatically 

installed when MoviePy is installed. If this is not the case, please install manually. 

Note: requirements.txt is a file in the downloaded MOSES Github repository which 

contains the names of all the required Python dependencies. 

 

C. Structure of the MOSES Library  

The MOSES library is organized according to  

Figure 2. Scripts are in general organized by function. For example ‘Motion_Analysis’ contains all 

scripts related to the analysis of motion such as the computation of motion metrics, 

‘Optical_Flow_Tracking’ contains scripts related to the computation of the motion field and the 

tracking of superpixels to generate superpixel tracks and ‘Utility_Functions’ contains useful scripts 

for file manipulation such as the reading and writing of videos. Importing of MOSES functions follow 

standard Python practice.  

Note: Detailed documentation of each implemented function can also be browsed viewed offline by 

navigating to and opening the index.html file with any web browser. Within Python the normal 

help(<function>)can be used to read the corresponding documentation for a given function. 

For the remaining sections of the protocol, we assume the exemplar folder structure in  

Figure 1 placing the analysis script and video data in separate folders.  

 

 

Figure 2. Folder and file structure of the MOSES Github code repository 

 

D. Running Python  

Several ways exist to run Python. We recommend for scientific computing the use of Spyder as an 

integrated development environment for scientific analysis. If not available under the current 

environment it can be installed using conda install –c conda-forge spyder --name 

<myenv>. 

http://www.bio-protocol.org/e3365
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1.Launch Spyder using the terminal spyder &. The interface is similar to that of RStudio 

for R users ( 

2. Figure 3). 

3. Copy and paste code snippets into the editor and save the script.  

4. Run the entire script using the keyboard shortcut F5 or by clicking the green ‘play’ button. Run 

selected lines of code using the keyboard shortcut F9. 

 

 

Figure 3. Graphical user interface (GUI) of Spyder for scientific programming 

 

E. Compute MOSES Superpixel Tracks 

1.Download the ‘c_EPC2(G)_CP-A(R)_KSFM+RPMI_5_Fast GFP.tif_R-G.tif’ video file to 

use as an example red-green fluorescent .tif timelapse video from the following Google Drive 

link and save this to a ‘Videos’ subfolder underneath the ‘Data’ folder as in  

2. Figure 1.  

3. Read in the video as a numpy array object by importing and using the function 

read_multiimg_PIL. For multi-channel videos, this gives a 4-dimensional matrix, for single-

channel videos this gives a 3-dimensional matrix.  

Note: More generally one can use the function read_multiimg_stack instead to read in a 

general bio-format image with additional z-slices.  

 

from MOSES.Utility_Functions.file_io import read_multiimg_PIL 

 

infile = ’../Data/Videos/c_EPC2(G)_CP-

A(R)_KSFM+RPMI_5_Fast_GFP.tif_R-G.tif’ 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
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vidstack = read_multiimg_PIL(infile) 

 

# Check the read size was expected. 

n_frame, n_rows, n_cols, n_channels = vidstack.shape 

print(‘Size of video: (%d,%d,%d,%d)’ %(n_frame, n_rows, n_cols, 

n_channels)) 

 

4. Define the optical flow parameter settings used for superpixel tracking. For more details of the 

used Farnebäck flow computation to compute pixel velocities refer to the OpenCV 

documentation and the original paper (Farnebäck, 2003). The parameters determine the 

accuracy of the motion field computation (see Notes).  

Note: Use more levels, e.g., 5, increase the winsize, e.g., 21 and increase iterations e.g., 5 to 

capture discontinuous movement over larger distances (with respect to input image size as 

measured in pixels), see also notes section of this protocol.  

 

optical_flow_params = dict(pyr_scale=0.5, levels=3, winsize=15, 

iteratons=3, poly_n=5, poly_sigma=1.2, flags=0) 

 

5. Specify the target number of superpixels or square region of interests (ROI) to subdivide the 

video frame. For an image size of 𝑛 ×  𝑚 pixels, a specification of 𝑁 superpixels would yield 

individual superpixels with an approximate size of ≈ √𝑛𝑚/𝑁 ×   √𝑛𝑚/𝑁  pixels. For 𝑛 = 512,

𝑚 = 512,𝑁 = 1000, each superpixel will be of size ≈ 16 × 16 pixels. 

 

# number of superpixels 

n_spixels = 1000 

 

6. For each image channel, extract the superpixel tracks and the computed motion field noting the 

0-indexing. 

 

from MOSES.Optical_Flow_Tracking.superpixel_track import 

compute_grayscale_vid_superpixel_tracks 

 

# extract superpixel tracks for the 1st or ‘red’ channel 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
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optflow_r, meantracks_r = 

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,0], 

optical_flow_params, n_spixels) 

# extract superpixel tracks for the 2nd or ‘green’ channel 

optflow_g, meantracks_g = 

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,1], 

optical_flow_params, n_spixels) 

 

7. Save the computed tracks in .mat MATLAB format. Alternative formats that support Python array 

saving can be used such as Python pickle or HDF. 

 

import scipy.io as spio 

import os 

fname = os.path.split(infile)[-1] 

savetracksmat = (‘meantracks_’ + fname).replace(‘.tif’, ‘.mat’) 

spio.savemat(savetracksmat, {‘meantracks_r’: meantracks_r, 

‘meantracks_g’: meantracks_g}) 

 

8.(Optional) Visualize the motion field for select frames to check the computation ( 

9. Figure 4) and optionally save the computed motion field.  

Note: For large images saving the motion field takes up a lot of hard disk space. It is therefore 

not recommended to do so. The motion field is summarized by the superpixel tracks.  

 

import pylab as plt  

from MOSES.Visualisation_Tools.motion_field_visualisation import 

view_ang_flow 

 

# visualize first frame of red and green motion fields 

fig, ax = plt.subplots(nrows=1, ncols=2) 

http://www.bio-protocol.org/e3365
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ax[0].imshow(view_ang_flow(optflow_g[0])) 

ax[1].imshow(view_ang_flow(optflow_r[0])) 

ax[0].grid(‘off’); ax[1].grid(‘off’) 

plt.show() 

 

# save the flow 

save_optflow_mat = (‘optflow_’+fname).replace(‘.tif’, ‘.mat’) 

spio.savemat(save_optflow_mat, {‘optflow_r’: optflow_r, ‘optflow_g’: 

optflow_g}) 

 

 

Figure 4. Visualization of the computed first frame motion field using optical flow for red 

and green channel images. The individual pixel velocities are colored by their angular direction 

using the color wheel with the color intensity encoding the pixel speed. Scale bars: 200 µm. 

 

10.(Optional) Plot the superpixel tracks as a second sanity check. The shape of the tracks 

should capture the dynamic range of the moving entities in the video. For epithelial sheets, 

this is the shape of the leading edge of the sheet ( 

11. Figure 5). 

 

 

Figure 5. Plot of the red and green channel superpixel tracks. The green EPC2 tracks end 

on the right where it met the red CP-A tracks and was pushed back to the left. The red CP-A 

tracks end on the left at the final position where it has pushed the green EPC2 cells to.  

http://www.bio-protocol.org/e3365
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12. (Optional for debugging) Produce a video of the superpixel tracks overlaid on the video, plotting 

each track in temporal segments of 5 frames to avoid clutter. Frames are generated sequentially. 

Subsequently, import the saved frames using Fiji ImageJ in temporal order, File → Import → 

Image Sequence... and save as a multipage .tif video (File → Save As → Tiff...) or .avi video, 

(File → Save As → AVI...). 

from MOSES.Utility_Functions.file_io import mkdir 
from MOSES.Visualisation_Tools.track_plotting import plot_tracks 
import os  
 
fname = os.path.split(infile)[-1] 
# specify the save folder and create this automatically. 
save_frame_folder = 'track_video' 
mkdir(save_frame_folder) 
 
len_segment = 5 
 
for frame in range(len_segment, n_frame, 1): 
    frame_img = vidstack[frame] 
     
    fig = plt.figure() 
    fig.set_size_inches(float(n_cols)/n_rows, 1, forward=False) 
    ax = plt.Axes(fig, [0., 0., 1., 1.]); ax.set_axis_off(); fig.add_axes(ax) 
    ax.imshow(frame_img, alpha=0.6) 
    # visualize only a short segment 
    plot_tracks(meantracks_r[:, frame-len_segment:frame+1], ax, color='r', lw=1) 
    plot_tracks(meantracks_g[:, frame-len_segment:frame+1], ax, color='g', lw=1) 
    ax.set_xlim([0, n_cols]); ax.set_ylim([n_rows, 0]) 
    ax.grid('off'); ax.axis('off') 
    # tip: use multiples of n_rows to increase image resolution 
    fig.savefig(os.path.join(save_frame_folder, 'tracksimg-
%s_' %(str(frame+1).zfill(3))+fname.replace('.tif','.png')), dpi=n_rows)  
    plt.show()  

from MOSES.Utility_Functions.file_io import mkdir 

from MOSES.Visualisation_Tools.track_plotting import plot_tracks 

import os  

fname = os.path.split(infile)[-1] 

# specify the save folder and create this automatically. 

save_frame_folder = ‘track_video’ 

mkdir(save_frame_folder) 

 

len_segment = 5 

 

for frame in range(len_segment, n_frame, 1): 

    frame_img = vidstack[frame] 

     

    fig = plt.figure() 

    fig.set_size_inches(float(n_cols)/n_rows, 1, forward=False) 

    ax=plt.Axes(fig, [0.,0.,1.,1.]); ax.set_axis_off(); 

fig.add_axes(ax) 

    ax.imshow(frame_img, alpha=0.6) 

http://www.bio-protocol.org/e3365
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    # visualize only a short segment 

    plot_tracks(meantracks_r[:,frame-len_segment:frame+1],ax, 

color='r', lw=1) 

    plot_tracks(meantracks_g[:,frame-len_segment:frame+1],ax, 

color='g', lw=1) 

    ax.set_xlim([0, n_cols]); ax.set_ylim([n_rows, 0]) 

    ax.grid('off'); ax.axis('off') 

    # tip: use multiples of n_rows to increase image resolution 

    fig.savefig(os.path.join(save_frame_folder, 

'tracksimg-%s_' %(str(frame+1).zfill(3))+fname.replace('.tif','.png')

), dpi=n_rows)  

    plt.show() 

 

F. Construct Mesh from Superpixel Tracks 

Any individual moving entity inevitably affects the motion of surrounding entities. Considering 

superpixels as individual moving elements, it becomes natural to capture the interaction between 

each superpixel and its neighbors. Computationally this interaction can be captured in a mesh or 

graph with mesh edges representing the presence of an interaction. This mesh construction critically 

depends on what one considers evidence of interaction or motion similarity. As such different 

meshes can be constructed to better highlight different aspects of the cellular motion. We direct the 

interested reader to the supplementary information of Zhou et al., 2019 for an extended discussion. 

Below we describe the construction steps for three meshes which connect together superpixel 

tracks based on different notions of spatial proximity.  

1. Construct the MOSES mesh for individual image channels by connecting each superpixel track 

to all superpixel tracks separated by at most a pixel distance less than a multiple (dist_thresh) 

of the average superpixel width (spixel_size) based on the initial (𝑥, 𝑦)  position of 

superpixels.  

Note: The MOSES mesh captures how superpixels move with respect to their initial neighbors. 

from MOSES.Motion_Analysis.mesh_statistics_tools import construct_MOSES_mesh 
 
# specify the average superpixel size. This is roughly the width for squares 
spixel_size = meantracks_r[1,0,1] - meantracks_r[1,0,0] 
 
# compute the MOSES mesh, linking together all superpixels located a distance 
dist_thresh*spixel_size for each colour channel 
MOSES_mesh_strain_time_r, MOSES_mesh_neighborlist_r = construct_MOSES_mesh(meantracks_r, 
dist_thresh=1.2, spixel_size=spixel_size) 
MOSES_mesh_strain_time_g, MOSES_mesh_neighborlist_g = construct_MOSES_mesh(meantracks_g, 
dist_thresh=1.2, spixel_size=spixel_size)  

from MOSES.Motion_Analysis.mesh_statistics_tools import 

construct_MOSES_mesh 

 

# specify the average superpixel size. This is roughly the width for 

squares 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/


                 

12 
 

www.bio-protocol.org/e3365      
Bio-protocol 9(18): e3365. 

DOI:10.21769/BioProtoc.3365

xxxx55555111112000 

 

  Copyright Zhou et al., 2019 

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). 

spixel_size = meantracks_r[1,0,1] - meantracks_r[1,0,0] 

 

# compute the MOSES mesh, linking together all superpixels located a 

distance dist_thresh*spixel_size for each colour channel 

MOSES_mesh_strain_time_r, MOSES_mesh_neighborlist_r = 

construct_MOSES_mesh(meantracks_r, dist_thresh=1.2, 

spixel_size=spixel_size) 

MOSES_mesh_strain_time_g, MOSES_mesh_neighborlist_g = 

construct_MOSES_mesh(meantracks_g, dist_thresh=1.2, 

spixel_size=spixel_size)  

 

2. Construct the radial neighbors mesh for individual image channels by connecting each 

superpixel track to all superpixel tracks at time 𝑡 separated by at most a pixel distance less than 

a multiple (dist_thresh) of the average superpixel width (spixel_size) based on the 

(𝑥, 𝑦)  position of the superpixels at time  𝑡.  

Note: Unlike the MOSES mesh, the connections between neighbors in the radial neighbor mesh 

dynamically changes over time.  

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

construct_radial_neighbour_mesh 

 

radial_mesh_strain_time_r, radial_neighbourlist_time_r = 

construct_radial_neighbour_mesh(meantracks_r, dist_thresh=1.2, 

spixel_size=spixel_size, use_counts=False) 

radial_mesh_strain_time_g, radial_neighbourlist_time_g = 

construct_radial_neighbour_mesh(meantracks_g, dist_thresh=1.2, 

spixel_size=spixel_size, use_counts=False) 

 

3. Construct the K nearest neighbor mesh for individual image channels by connecting each 

superpixel track to the K superpixel tracks at time 𝑡 that is spatially closest based on the (𝑥, 𝑦) 

position of the superpixels at time 𝑡.  

Note: This mesh is constructed based on topological distance and is suitable when the physical 

spatial separation is not a significant factor.  

http://www.bio-protocol.org/e3365
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from MOSES.Motion_Analysis.mesh_statistics_tools import 

construct_knn_neighbour_mesh 

 

knn_mesh_strain_time_r, knn_neighbourlist_time_r = 

construct_knn_neighbour_mesh(meantracks_r, k=4) 

knn_mesh_strain_time_g, knn_neighbourlist_time_g = 

construct_knn_neighbour_mesh(meantracks_g, k=4) 

 

4. (Optional) Visualize the constructed mesh at select frames (here for example frame 20) to check 

construction (Figure 6). The example code visualizes the MOSES mesh from Step F1. Any mesh 

specified either as a networkx graph object or as a list specifying the array index of superpixels 

connected to each superpixel 𝑖 can similarly be visualized.  

 

from MOSES.Visualisation_Tools.mesh_visualisation import 

visualize_mesh 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

from_neighbor_list_to_graph 

 

# use networkx to visualize the mesh at frame 20. To do so need to 

first convert the neighborlist into a networkx graph object. 

http://www.bio-protocol.org/e3365
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mesh_frame20_networkx_G_red = 

from_neighbor_list_to_graph(meantracks_r, MOSES_mesh_neighborlist_r, 

20) 

mesh_frame20_networkx_G_green = 

from_neighbor_list_to_graph(meantracks_g, MOSES_mesh_neighborlist_g, 

20) 

 

# set up a 1 x 2 plotting canvas. 

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,15)) 

# plot the red mesh in left panel. 

ax[0].imshow(vidstack[20], alpha=0.7) 

visualise_mesh(mesh_frame20_networkx_G_red, meantracks_r[:,20,[1,0]], 

ax[0], node_size=20, linewidths=1, width=1, node_color=’r’) 

ax[0].set_ylim([n_rows,0]) 

ax[0].set_xlim([0,n_cols]) 

ax[0].grid(’off’); ax[0].axis(’off’) 

# plot the green mesh in right panel. 

ax[1].imshow(vidstack[20], alpha=0.7) 

visualise_mesh(mesh_frame20_networkx_G_green, 

meantracks_g[:,20,[1,0]], ax[1], node_size=20, linewidths=1, width=1, 

node_color=’g’) 

ax[1].set_ylim([n_rows,0]) 

ax[1].set_xlim([0,n_cols]) 

ax[1].grid(’off’); ax[1].axis(’off’) 

 

G. Extracting MOSES motion measurements 

Several motion metrics were proposed in the original paper (Zhou et al., 2019). Here we show how 

to compute the main proposed metrics using the provided functions in MOSES.   

1. Construct the motion saliency map for each color. The motion saliency map reveals spatial 

regions of significant motion concentration. It is computed by accumulating the mesh 

deformation strain in local spatial regions across time.  

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_motion_saliency_map 

 

final_saliency_map_r, spatial_time_saliency_map_r = 

http://www.bio-protocol.org/e3365
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compute_motion_saliency_map(meantracks_r, dist_thresh=5.*spixel_size, 

shape=(n_rows, n_cols), filt=1, filt_size=spixel_size) 

final_saliency_map_g, spatial_time_saliency_map_g = 

compute_motion_saliency_map(meantracks_g, dist_thresh=5.*spixel_size, 

shape=(n_rows, n_cols), filt=1, filt_size=spixel_size) 

 

2. Compute the boundary formation index from the motion saliency map. The boundary formation 

index is defined as the normalized ratio of the mean motion saliency map intensity values, 𝐼 in 

high intensity image regions over low intensity image regions (‘red’ and ‘blue’ areas in Figure 

7A). The intensity cut-off is automatically determined via Otsu thresholding so that a pixel with 

image coordinate (𝑖, 𝑗) is in the ‘high’ region if 𝐼(𝑖, 𝑗) ≥ 𝐼𝑡ℎ𝑟𝑒𝑠ℎ  or else is ‘low’. The boundary 

formation index takes values between 0 and 1. The higher the value, the greater the propensity 

of motion to be concentrated within a particular spatial region.  

 

boundary formation index =
𝐼ℎ̅𝑖𝑔ℎ − 𝐼𝑙̅𝑜𝑤

𝐼ℎ̅𝑖𝑔ℎ

  

 

Note: Cells moving out of the field of view of the video cause superpixels to concentrate at the 

boundary of the videos. This causes an artefactual increase in motion density at image edges. 

To minimize this effect, the boundary formation index is computed in the region at least a 

pad_multiple times spixel_size away from the image boundary. 

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_boundary_formation_index 

 

boundary_formation_index, av_saliency_map = 

compute_boundary_formation_index(final_saliency_map_r, 

final_saliency_map_g, spixel_size, pad_multiple=3) 

 

fig = plt.figure() 

plt.title('Boundary Formation 

Index %.3f' %(boundary_formation_index)) 

plt.imshow(av_saliency_map, cmap='coolwarm') 

plt.axis('off'); plt.grid('off') 
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plt.show() 

 

 

Figure 6. Visualization of the constructed MOSES mesh linking individual superpixels 

with centroids represented by dots 

 

3. Compute the MOSES mesh strain curve of the video, the mean of curves of the individual red 

and green channel curves (Figure 7B). The mesh strain curve measures the mean change in 

the relative spatial arrangement (topology) between neighboring superpixels over time. 

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_MOSES_mesh_strain_curve 

import numpy as np 

# set normalise=True to obtain normalised curves between 0-1.  

mesh_strain_r=compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_

r, normalise=False) 

mesh_strain_g=compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_

g, normalise=False) 

# average the channel curves to get one curve for the video. 

mesh_strain_curve_video = .5*(mesh_strain_r+mesh_strain_g) 

# normalise the curves, this is equivalent to normalise=True above 

for a single channel. 

normalised_mesh_strain_curve_video = mesh_strain_curve_video/ 

np.max(mesh_strain_curve_video) 

 

4. Compute the mesh stability index defined as 1 minus the normalized gradient of the mesh strain 

curve, 𝑦 over a small time window, Δ𝑇 at the end of the video motion (in the interval [𝑇, 𝑇 +
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Δ𝑇]). Here the time window is Δ𝑇 = 5 frames (Figure 7B).  

 

mesh stability index = 1 −
1

Δ𝑇
𝑇0

∑ (𝑦̂𝑡+1 − 𝑦̂𝑡)

𝑇+Δ𝑇

𝑡=𝑇

     and    𝑦̂ =
𝑦

𝑦max

  

 

where 𝑦max is the maximum value of the mesh strain curve and 𝑇0 is the total number of video 

frames. The mesh stability index is upper bounded by 1. For the example video, you should get 

a value of 0.892. 

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_MOSES_mesh_stability_index 

 

# the mesh stability index uses an average over the last number of 

frame specified by the flag, last_frames. One should set this to 

approximately cover the plateau region of the strain curve.  

mesh_stability_index, normalised_mesh_strain_curve = 

compute_MOSES_mesh_stability_index(MOSES_mesh_strain_time_r, 

MOSES_mesh_strain_time_g, last_frames=5) 

print('mesh stability index: %.3f' %(mesh_stability_index)) 

 

 

Figure 7. Motion saliency map, boundary formation index and mesh stability metrics. A. 

Computed motion saliency map and associated boundary formation index. B. Non-normalized 

MOSES mesh strain curve for red and green cell populations together with the average of the 

two curves (black line). Shaded blue region shows the 5 frame window used to compute the 

mesh stability index.  
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5. Compute the mesh strain vector. The mesh strain vector of each superpixel 𝑖 is the vector sum 

of the displacements of neighboring superpixels 𝑗 relative to the superpixel 𝑖 in the mesh. 

 

mesh strain vector (𝑚⃗⃗ 𝑖) = ∑ 𝑚⃗⃗ 𝑗𝑖
𝑗∈𝒩

  

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

construct_mesh_strain_vector 

 

# given a mesh as a list of neighbours (also known as a region 

adjacency list), find the mesh strain vector 

mesh_strain_vector_r = construct_mesh_strain_vector(meantracks_r, 

[MOSES_mesh_neighborlist_r]) 

mesh_strain_vector_g = construct_mesh_strain_vector(meantracks_g, 

[MOSES_mesh_neighborlist_r]) 

 

6. Compute the mesh order. The mesh order is the mean normalized mesh strain vector over all 

superpixels 𝑖, (Figure 8A). If all mesh strain vectors were aligned in the same direction, this 

value is 1. If there is no alignment it is 0. For the example video you should get 0.00325 (Figure 

8B). 

mesh order =
∑𝑚⃗⃗ 𝑖
∑|𝑚⃗⃗ 𝑖|

 

 

from MOSES.Motion_Analysis.mesh_statistics_tools import compute_mesh_order 
 
mesh_order_curve_r = compute_mesh_order(mesh_strain_vector_r, remove_mean=False) 
mesh_order_curve_g = compute_mesh_order(mesh_strain_vector_g, remove_mean=False)  
 
av_mesh_order = .5*(mesh_order_curve_r + mesh_order_curve_g) 
print('average mesh order: %.5f' %(np.nanmean(av_mesh_order)))  

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_mesh_order 

 

mesh_order_curve_r = compute_mesh_order(mesh_strain_vector_r, 

remove_mean=False) 

mesh_order_curve_g = compute_mesh_order(mesh_strain_vector_g, 
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remove_mean=False) 

 

av_mesh_order = .5*(mesh_order_curve_r + mesh_order_curve_g) 

print('average mesh order: %.5f' %(np.nanmean(av_mesh_order))) 

 

 

Figure 8. Visualization of the mesh order and mesh order curve. A. Mesh strain vector 

(colored arrows) of individual superpixels (mesh vertices) for each colored cell population 

overlaid on top of the MOSES mesh for frame 20. B. Evolution of the mesh order over time for 

individual colored populations and the average of the two colored curves (black line). Dashed 

black line is the mean value of all temporal values reported as the mean mesh order for the 

video.  

 

Data analysis 

 

The demo analyses presented in this section expands upon the general protocol detailed above by 

walking through the standard steps of motion analysis using MOSES on various different biological 

imaging datasets. The steps below illustrate how to adapt and work with MOSES to handle a breadth of 

different datasets. The analyses are additionally provided as supplementary Python script files (.py). 

 

Analysis 1: Single Cell Tracking (Phase Contrast Microscopy) (Supplementary files) 

We use the data from the Cell Tracking Challenge (http://celltrackingchallenge.net/) to illustrate how to 

use MOSES for single cell tracking analysis. As cell division is not currently explicitly modeled within the 

motion extraction in MOSES, this analysis is most effective for videos where cell proliferation is minimal 

or when extraction of the global ‘motion’ pattern is more important. 

 

1. Register for a free account at http://celltrackingchallenge.net/registration/, the official challenge 

website to download the datasets.  

2. Download the U373 cell training dataset from http://celltrackingchallenge.net/2d-datasets/. 

3. Unzip the downloaded ‘PhC-C2DH-U373.zip folder’. You should find 4 folders, ‘01’, ‘01_GT’, ‘02’ 

and ‘02_GT’ which specify two image sequences and their associated annotated ground truth 

(GT). We will only use the image sequence in ‘01’ as an example.  

4. Load and concatenate the image frames of ‘01’ in Python into a numpy array. The result should 

be a (115, 520, 696) size NumPy array.  

http://www.bio-protocol.org/e3365
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from skimage.exposure import rescale_intensity 

import numpy as np  

from MOSES.Utility_Functions.file_io import detect_files 

from skimage.io import imread 

 

vid_folder = '../Data/Videos/PhC-C2DH-U373/01' 

# load individal video frames saved as .tif files.  

video_files, video_fnames = detect_files(vid_folder, ext='.tif') 

# read individual frames and concatenate frames after rescaling 

intensity  

vidstack = np.concatenate([rescale_intensity(imread(f))[None,:] for f 

in video_files], axis=0) 

 

5. Compute the superpixel tracks using n_spixels = 1000, (Figure 9A). Here we use 

compute_grayscale_vid_superpixel_tracks_FB to extract additional ‘backward’ tracks 

as a result of applying tracking running the video backward in time. Forward tracking reveals 

where motion flows towards (sinks) whilst backward tracking reveals spatial origins (sources) of 

motion, see advanced analysis section below.  

Note: How will the superpixel tracks change when we increase or decrease n_spixels? 

from MOSES.Optical_Flow_Tracking.superpixel_track import 
compute_grayscale_vid_superpixel_tracks_FB 
import scipy.io as spio 
 
n_spixels = 1000 
# set the motion extraction parameters 
opt_flow_params = {'pyr_scale':0.5, 'levels':7, 'winsize':25, 'iterations':3, 'poly_n':5, 
'poly_sigma':1.2, 'flags':0} 
# compute superpixel tracks 
optflow, tracks_F, tracks_B = compute_grayscale_vid_superpixel_tracks_FB(vidstack, 
opt_flow_params, n_spixels=n_spixels) 
# save the tracks  
spio.savemat('vid01_%d_spixels.mat' %(n_spixels), {'tracks_F':tracks_F,  
                                                   'tracks_B':tracks_B})  

from MOSES.Optical_Flow_Tracking.superpixel_track import 

compute_grayscale_vid_superpixel_tracks_FB 

import scipy.io as spio 

 

n_spixels = 1000 
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# set the motion extraction parameters 

opt_flow_params = {'pyr_scale':0.5, 'levels':7, 'winsize':25, 

'iterations':3, 'poly_n':5, 'poly_sigma':1.2, 'flags':0} 

# compute superpixel tracks 

optflow, tracks_F, tracks_B = 

compute_grayscale_vid_superpixel_tracks_FB(vidstack, opt_flow_params, 

n_spixels=n_spixels) 

# save the tracks  

spio.savemat('vid01_%d_spixels.mat' %(n_spixels), {'tracks_F': 

tracks_F, 'tracks_B': tracks_B}) 

 

6. To track cells present in the initial frame over time segment the individual cells automatically 

using image thresholding and connected component analysis or by manual annotation. In the 

paper (Zhou et al., 2019) manual annotation was used, here we use automated image 

thresholding (Figure 9B).  

Note: Exact segmentation is not required although the more accurate the segmentation, 

generally the better the specificity of tracking. Results are nevertheless stable for less optimal 

segmentations. How are the results if bounding boxes were used?  

 

 

from skimage.filters import threshold_otsu, threshold_triangle 

from skimage.measure import label 

from skimage.morphology import remove_small_objects, binary_closing, 

disk 

from scipy.ndimage.morphology import binary_fill_holes 

import pylab as plt  

 

# first frame of video 

http://www.bio-protocol.org/e3365
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frame0 = vidstack[0] 

 

# basic quick cell segmentation by thresholding intensities 

# a) determine intensity threshold 

thresh = np.mean(frame0) + .5*np.std(frame0) 

binary = frame0 >= thresh 

# b) steps to refine the basic thresholding of a) 

binary = remove_small_objects(binary, 200) 

binary = binary_closing(binary, disk(5)) 

binary = binary_fill_holes(binary) 

binary = remove_small_objects(binary, 1000) 

 
# c) connected component analysis to label binary cell segmentation 

with integers 

cells_frame0 = label(binary) 

 

 

 

7. Use the segmentation mask to assign superpixel tracks to each segmented cell (Figure 9).  

# define a function 'assign_spixels' that can be called to assign superpixel tracks to 
integer labelled mask 
def assign_spixels(spixeltracks, mask): 
     
    uniq_regions = np.unique(mask) 
    initial_pos = spixeltracks[:,0,:] 
     
    bool_mask = [] 
    # starts from 1-index not 0-index as the first is assigned to the background. 
    for uniq_region in uniq_regions[1:]: 
        mask_region = mask == uniq_region 
        bool_mask.append(mask_region[initial_pos[:,0], initial_pos[:,1]]) 
         
    bool_mask = np.vstack(bool_mask) 
 
    return bool_mask    
 
cell_spixels = assign_spixels(tracks_F, cells_frame0)  

# define a function 'assign_spixels' that can be called to assign 

superpixel tracks using an integer labelled mask 

def assign_spixels(spixeltracks, mask):     

 

uniq_regions = np.unique(mask) 

initial_pos = spixeltracks[:,0,:] 

 

bool_mask = [] 

# starts from 1-index not 0-index as the first is assigned to the 

background. 
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for uniq_region in uniq_regions[1:]: 

    mask_region = mask == uniq_region 

    bool_mask.append(mask_region[initial_pos[:,0], 

initial_pos[:,1]]) 

         

bool_mask = np.vstack(bool_mask)  

return bool_mask    

 

cell_spixels = assign_spixels(tracks_F, cells_frame0) 

 

8. Select the longest track as summary of the cell’s motion for each segmented cell region (Figure 

9C).  

Note: Experiment with other ways to summarize the collection of tracks into one track such as 

taking the mean or median of the tracks. 

def find_characteristic_motion(tracks): 
     
    # This function chooses the single longest superpixel track to summarise the single 
cell motion. 
    disps_tracks = tracks[:, 1:, :] - tracks[:, :-1, :] 
    disps_mag = np.sum(np.sqrt(disps_tracks[:,:,0]**2 + disps_tracks[:,:,1]**2), axis=1) 
    rank = np.argsort(disps_mag)[::-1] 
 
    return tracks[rank[0]] 
 
single_cell_tracks = [] 
# iterate through each segmentation and store the single track 
for i in range(len(cell_spixels)): 
     
    # for cell i which superpixel ids belong capture it 
    cell_spixel = cell_spixels[i] 
    # for cell i retrieve the corresponding tracks  
    cell_tracks = tracks_F[cell_spixel] 
    # find the single track that summarise the motion of all associated superpixel tracks 
    single_cell_track = find_characteristic_motion(cell_tracks) 
    single_cell_tracks.append(single_cell_track[None,:]) 
 
single_cell_tracks = np.vstack(single_cell_tracks) 

def find_characteristic_motion(tracks): 

 

# This function chooses the single longest superpixel track to 

summarise the single cell motion. 

disps_tracks = tracks[:, 1:, :] - tracks[:, :-1, :] 

disps_mag = np.sum(np.sqrt(disps_tracks[:,:,0]**2 + 

disps_tracks[:,:,1]**2), axis=1) 

rank = np.argsort(disps_mag)[::-1] 

 

return tracks[rank[0]] 

    

   single_cell_tracks = [] 
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   # iterate through each segmentation and store the single track 

   for i in range(len(cell_spixels)): 

# for cell i which superpixel ids belong capture it 

cell_spixel = cell_spixels[i] 

# for cell i retrieve the corresponding tracks  

cell_tracks = tracks_F[cell_spixel] 

# find the single track that summarise the motion of all 

associated superpixel tracks 

single_cell_track = find_characteristic_motion(cell_tracks) 

single_cell_tracks.append(single_cell_track[None,:]) 

 

single_cell_tracks = np.vstack(single_cell_tracks) 

 

9. Visualize the inferred cell tracks, plotting each cell track with a unique color (Figure 9C). 

from MOSES.Visualisation_Tools.track_plotting import plot_tracks 
import seaborn as sns  
cell_colors = sns.color_palette('Set1', n_colors=len(single_cell_tracks)) 
 
fig, ax = plt.subplots() 
plt.title('Single Cell Tracks', fontsize=16) 
ax.imshow(vidstack[0], cmap='gray') 
 
for ii in range(len(single_cell_tracks)): 
    single_cell_track = single_cell_tracks[ii] 
    plot_tracks(single_cell_track[None,:], ax, color=cell_colors[ii], lw=3) 
 
plt.grid('off') 
plt.axis('off') 
plt.show()  

from MOSES.Visualisation_Tools.track_plotting import plot_tracks 

import seaborn as sns  

 

cell_colors = 

sns.color_palette('Set1',n_colors=len(single_cell_tracks)) 

 

fig, ax = plt.subplots() 

plt.title('Single Cell Tracks', fontsize=16) 

ax.imshow(vidstack[0], cmap='gray') 

 

for ii in range(len(single_cell_tracks)): 

single_cell_track = single_cell_tracks[ii] 

plot_tracks(single_cell_track[None,:], ax, color=cell_colors[ii], 

lw=3) 

 

       plt.grid('off'); plt.axis('off') 

plt.show() 
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Figure 9. Single-cell tracking using MOSES superpixel tracks. A. Extracted superpixel 

tracks using a target number of 1,000 superpixels overlaid on the first video frame. B. 

Automatically segmented cells from the initial frame. C. Predicted single cell tracks selecting the 

longest superpixel track for each segmented cell region. 

 

 

Advanced analysis: 

10. Compute the motion saliency map using the forward and backward tracks to visualize where 

the cells move to and from where (Figure 10).  

Note: Try changing the dist_thresh used to see how this affects the computed motion saliency 

map. 

from MOSES.Motion_Analysis.mesh_statistics_tools import compute_motion_saliency_map 
from skimage.filters import gaussian 
 
dist_thresh = 30 
spixel_size = tracks_B[1,0,1]-tracks_B[1,0,0] 
 
saliency_F, saliency_spatial_time_F = compute_motion_saliency_map(tracks_F, 
dist_thresh=dist_thresh, shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size) 
saliency_B, saliency_spatial_time_B = compute_motion_saliency_map(tracks_B, 
dist_thresh=dist_thresh, shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size) 
# Use Gaussian smoothing to create a more continuous heatmap 
saliency_F_smooth = gaussian(saliency_F, spixel_size/2) 
saliency_B_smooth = gaussian(saliency_B, spixel_size/2) 
 
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,15)) 
ax[0].set_title('Superpixel Tracks') 
ax[0].imshow(frame0, cmap='gray') 
plot_tracks(tracks_F, ax=ax[0], color='r'); ax[0].axis('off') 
ax[1].set_title('Motion Saliency (Forward)') 
ax[1].imshow(vidstack[-1], cmap='gray') 
ax[1].imshow(saliency_F_smooth, cmap='coolwarm', alpha=0.7); ax[1].axis('off') 
ax[2].set_title('Motion Saliency (Backward)') 
ax[2].imshow(frame0, cmap='gray') 
ax[2].imshow(saliency_B_smooth, cmap='coolwarm', alpha=0.7); ax[2].axis('off') 
plt.show()  

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_motion_saliency_map 

from skimage.filters import Gaussian 

 

dist_thresh = 30 

spixel_size = tracks_B[1,0,1]-tracks_B[1,0,0] 
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saliency_F, saliency_spatial_time_F = 

compute_motion_saliency_map(tracks_F, dist_thresh=dist_thresh, 

shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size) 

saliency_B, saliency_spatial_time_B = 

compute_motion_saliency_map(tracks_B, dist_thresh=dist_thresh, 

shape=frame0.shape, max_frame=None, filt=1, filt_size=spixel_size) 

# Use Gaussian smoothing to create a more continuous heatmap 

saliency_F_smooth = gaussian(saliency_F, spixel_size/2) 

saliency_B_smooth = gaussian(saliency_B, spixel_size/2) 

 

fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,15)) 

ax[0].set_title('Superpixel Tracks') 

ax[0].imshow(frame0, cmap='gray') 

plot_tracks(tracks_F, ax=ax[0], color='r'); ax[0].axis('off') 

ax[1].set_title('Motion Saliency (Forward)') 

ax[1].imshow(vidstack[-1], cmap='gray') 

ax[1].imshow(saliency_F_smooth, cmap='coolwarm', alpha=0.7); 

ax[1].axis('off') 

ax[2].set_title('Motion Saliency (Backward)') 

ax[2].imshow(frame0, cmap='gray') 

ax[2].imshow(saliency_B_smooth, cmap='coolwarm', alpha=0.7); 

ax[2].axis('off') 

plt.show() 

 

 

Figure 10. Motion saliency maps computed using forward and backward tracks visually 

uncover motion sinks and sources respectively in cellular videos. A. Extracted forward 

superpixel tracks using a target number of 1,000 superpixels overlaid on the first video frame. 

B. Forward motion saliency map computed using the forward tracks on the left reveals motion 

highlights the highly dynamic movement of individual cell boundaries which behave akin to 

motion ‘sinks’. C. Backward motion saliency map computed using the backward tracks produced 

tracking the video in reverse reveals motion origin or ‘sources’.  

 

Analysis 2: Two Cell Epithelial Sheet Analysis (Fluorescence Microscopy) (Supplementary files) 

The main analysis steps for the migration pattern of two color epithelial sheets acquired as presented in 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://os.bio-protocol.org/attached/file/20190616/Supplementary%20Script%20Files.zip


                 

27 
 

www.bio-protocol.org/e3365      
Bio-protocol 9(18): e3365. 

DOI:10.21769/BioProtoc.3365

xxxx55555111112000 

 

  Copyright Zhou et al., 2019 

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). 

our previous work (Zhou et al., 2019) were documented in the main protocol section. Here we present 

extended procedures more specifically targeted for the analysis of two-color epithelial sheets.  

 

A. Analysis of the interface between two cell populations 

1.Visualize the interface appearance using video kymographs. A kymograph is a 

projection of the 2D temporal dataset that collapses one of the spatial dimensions to allow the 

movement to be visualized as an image. Here the maximum along of each image pixel column 

was taken to summarise the motion along the image rows ( 

2. Figure 12). The maximum was used to get the strongest possible signal for the interface.  

 

from MOSES.Visualisation_Tools.kymographs import kymograph_img 

import numpy as np  

import pylab as plt  

 

# project and collapse in the 'y' direction (rows) 

vid_max_slice = kymograph_img(vidstack, axis=1, proj_fn=np.max) 

 

fig, ax = plt.subplots() 

ax.imshow(vid_max_slice) 

ax.set_aspect('auto') 

plt.show() 

 

3. Visualize the interface movement between the two cell populations using velocity kymographs. 

Analogous to video kymographs above, velocity kymographs compress the 2D temporal motion 

field in one dimension to visualize the information as a single image. Here we take the median 

x-direction velocity value along each image pixel column to summarize the velocity variation 

across the rows. The median was used for projecting the information as it is an average statistic 

that is well-known to be robust to outlier values. MOSES provides two functions to compute the 

velocity kymograph depending on whether the input is a motion field or motion tracks. 

a.Compute the velocity kymograph of the pixel motion field ( 

b. Figure 12A).  

http://www.bio-protocol.org/e3365
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import scipy.io as spio 

# load the previously computed motion field 

save_optflow_mat = ('optflow_'+fname).replace('.tif', '.mat') 

optflow_r = spio.loadmat(save_optflow_mat)['optflow_r'] 

optflow_g = spio.loadmat(save_optflow_mat)['optflow_g'] 

# construct the full motion field 

optflow = optflow_r + optflow_g 

# take only the 'x' component 

optflow_x = optflow[...,0] 

 

# kymograph 1: Dense optical flow.  

optflow_median_slice = kymograph_img(optflow_x, axis=1, 

proj_fn=np.nanmedian) 

 

c. Compute the velocity kymograph of the superpixel tracks following tracking of a 

fixed number of superpixels, here 1,000 superpixels, ( 

d. Figure 12B).  

 

from MOSES.Visualisation_Tools.kymographs import 

construct_spatial_time_MOSES_velocity_x 

 

# load the previously computed superpixel tracks 

savetracksmat = ('meantracks_'+fname).replace('.tif', '.mat') 

meantracks_r = spio.loadmat(savetracksmat)['meantracks_r'] 

meantracks_g = spio.loadmat(savetracksmat)['meantracks_g'] 

http://www.bio-protocol.org/e3365
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# kymograph 2: Superpixel tracks. (fixed superpixel number) 

velocity_kymograph_x_tracks_r = 

construct_spatial_time_MOSES_velocity_x(meantracks_r, shape=(n_frame, 

n_cols), n_samples=51, axis=1) 

velocity_kymograph_x_tracks_g = 

construct_spatial_time_MOSES_velocity_x(meantracks_g, shape=(n_frame, 

n_cols), n_samples=51, axis=1) 

velocity_kymograph_x_tracks = velocity_kymograph_x_tracks_r + 

velocity_kymograph_x_tracks_g 

 

e.(Optional) Compute the velocity kymograph using the superpixel tracks extracted by 

dense superpixel tracking, ( 

f. Figure 12C). Starting from an initial user-specified number of 𝑁 superpixels, dense tracking 

continuously monitors the spatial density of superpixels frame to frame. The image area is 

regularly partitioned into 𝑁  region of interests (ROI). If an ROI contains a number of 

superpixels less than the minimum number specified by the mindensity parameter, a new 

superpixel is dynamically added to the ROI and tracked in all subsequent frames. As such 

starting from 𝑁 = 1000  superpixels, the final number of superpixel tracks is variable. It 

could be 2,000 for videos with relatively little movement or even 6,000 for significant 

movement.  

Note: Dense superpixel tracking is the preferred tracking approach when one expects the 

video to contain significant movement and is set by specifying dense=True. 

 

# compute dense tracks by setting dense=True (default is False) 

_, meantracks_r_dense = 

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,0], 

optical_flow_params, n_spixels, dense=True, mindensity=1) 

_, meantracks_g_dense = 

http://www.bio-protocol.org/e3365
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compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,1], 

optical_flow_params, n_spixels, dense=True, mindensity=1) 

# save the computed tracks 

savetracksmat = ('meantracks-dense_'+fname).replace('.tif', '.mat') 

spio.savemat(savetracksmat, {'meantracks_r':meantracks_r_dense,  

                                   'meantracks_g':meantracks_g_dense}) 

   # kymograph 3: using dense superpixel tracking.  

velocity_kymograph_x_tracks_r_dense = 

construct_spatial_time_MOSES_velocity_x(meantracks_r_dense, 

shape=(n_rows, n_cols), n_samples=51, axis=1) 

velocity_kymograph_x_tracks_g_dense = 

construct_spatial_time_MOSES_velocity_x(meantracks_g_dense, 

shape=(n_rows, n_cols), n_samples=51, axis=1) 

velocity_kymograph_x_tracks_dense = 

velocity_kymograph_x_tracks_r_dense + 

velocity_kymograph_x_tracks_g_dense 

 

g.Visualize the velocity kymographs to compare the differences between the velocity 

kymographs computed from the three different inputs in a)-c) above ( 

Figure 12 

h. Figure 12. Velocity kymographs summarising the velocity with distance away from the interface. 

The velocity kymograph computed taking the median of column values of the pixel motion field 

(A), the superpixel tracks from tracking a fixed number of 1,000 superpixels (B) and when 

dense superpixel tracking is used (C).).  

 

fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(15,5)) 

ax[0].set_title('Motion Field') 

ax[0].imshow(optflow_median_slice, cmap='RdBu_r', vmin=-10, vmax=10) 

ax[0].axis('off') 

ax[0].set_aspect('auto') 

ax[1].set_title('1000 Superpixels (fixed)') 

ax[1].imshow(velocity_kymograph_x_tracks, cmap='RdBu_r', vmin=-10, 

http://www.bio-protocol.org/e3365
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vmax=10) 

ax[1].axis('off') 

ax[1].set_aspect('auto') 

ax[2].set_title('1000 Superpixels (dynamic)') 

ax[2].imshow(velocity_kymograph_x_tracks_dense, cmap='RdBu_r', vmin=-

10, vmax=10) 

ax[2].axis('off') 

ax[2].set_aspect('auto') 

plt.show() 

 

 

Figure 11. Kymograph of the video highlighting movement of the wound through time. 

The spatial row dimension of the 2D video was collapsed by using the maximum intensity along 

each pixel column.  

 

 
 

Figure 12. Velocity kymographs summarising the velocity with distance away from the 

interface. The velocity kymograph computed taking the median of column values of the pixel 

motion field (A), the superpixel tracks from tracking a fixed number of 1,000 superpixels (B) and 

when dense superpixel tracking is used (C). 
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4. Locate the interface boundary line frame to frame using the extracted superpixel tracks and 

subsequently fit the line to a spline approximation to enable interpolation from the image y-

coordinates (Figure 13). 

from MOSES.Motion_Analysis.wound_statistics_tools import 

boundary_superpixel_meantracks_RGB 

 

boundary_curves, curves_lines, curve_img, boundary_line = 

boundary_superpixel_meantracks_RGB(vidstack, meantracks_r, 

meantracks_g, movement_thresh=0.2, t_av_motion=5, robust=False, 

lenient=False, debug_visual=False, max_dist=1.5, y_bins=50, 

y_frac_thresh=0.50) 

 

5. Estimate the frame of gap closure by computing the distance between the boundary between 

both colored sheets from image segmentation. For the example you should get 

wound_closure_frame = 26 (Figure 14A).  

from MOSES.Motion_Analysis.wound_close_sweepline_area_segmentation 

import wound_sweep_area_segmentation 

 

wound_closure_frame = wound_sweep_area_segmentation(vidstack, 

spixel_size, max_frame=50, n_sweeps=50, n_points_keep=1, 

n_clusters=2, p_als=0.001, to_plot=True) 

print('predicted gap closure frame is: %d' %(wound_closure_frame)) 

 

 

Figure 13. Tracking the interface automatically using the superpixel tracks. A. Fitted cubic 

spline approximation of the interface boundary plotted on the last video frame (96h). B. 

http://www.bio-protocol.org/e3365
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Maximum intensity projection of the tracked interface boundary plotted on the video kymograph. 

 

B. Interaction analysis 

1. Compute the maximum velocity cross-correlation index between red and green superpixel 

tracks as evidence of correlated motion of the two sheets. This measure ranges from 0 to 1 with 

1 being completely correlated. For the example video, you should get a maximum velocity cross-

correlation before and after gap closure of 0.022 and 0.234 suggesting increased correlation 

between the movement directionality of both sheets. 

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_max_vccf_cells_before_after_gap 

 

(max_vccf_before, _), (max_vccf_after, _) = 

compute_max_vccf_cells_before_after_gap(meantracks_r, meantracks_g, 

wound_heal_frame=wound_closure_frame, err_frame=5) 

 

print('max velocity cross-correlation 

before: %.3f' %(max_vccf_before)) 

print('max velocity cross-correlation after: %.3f' %(max_vccf_after)) 

 

2. Compute the spatial correlation index to assess on average the extent of movement correlation 

between superpixel tracks and by extension cellular groups in the image. Distance is measured 

in normalized units as the number of superpixels away. For our video, compute the spatial 

correlation over a distance range of 1-6 superpixels and fit an exponential decay curve with 

equation, 𝑦 = 𝑎𝑒−𝑥 𝑏⁄   to extract the canonical distance, 𝑏 = 2.94  over which motion is 

correlated (Figure 14B).  

Note: The computation of spatial correlation index is typically slow. Use a smaller distance range 

to speed up computation.  

http://www.bio-protocol.org/e3365
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from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_spatial_correlation_function 

 

spatial_corr_curve, (spatial_corr_pred, a_value, b_value, r_value) = 

compute_spatial_correlation_function(meantracks_r, 

wound_closure_frame, wound_heal_err=5, dist_range=np.arange(1,6,1)) 

 

# plot the curve and the fitted curve to y=a*exp(-x/b) to get the 

(a,b) parameters. 

plt.figure() 

plt.title('Fitted Spatial Correlation: a=%.3f, b=%.3f' %(a_value, 

b_value)) 

plt.plot(np.arange(1,6,1), spatial_corr_curve, 'ko', 

label='measured') 

plt.plot(np.arange(1,6,1), spatial_corr_pred, 'g-', label='fitted') 

plt.xlabel('Distance (Number of Superpixels)') 

plt.ylabel('Spatial Correlation') 

plt.legend(loc='best') 

plt.show() 

 

 

Figure 14. Example distance curve for estimating the frame of gap closure and example 

spatial correlation curve for estimating the distance over which cellular motion is 
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correlated. A. Plot of the separation distance normalized by the maximum separation distance 

between red and green boundary points as extracted by image segmentation. Blue triangle is 

the final predicted gap closure frame. B. Variation of mean spatial correlation between 

superpixel tracks for the example video as a function of the number of superpixels away as 

measured by multiples of the average superpixel width. Green line is the fitted exponential decay 

to the black data points. 

 

C. Motion maps 

One of the primary benefits of using the superpixel tracks and meshes extracted by MOSES as 

discussed in our previous work (Zhou et al., 2019) was for the construction of a motion map that 

can be used to visually interrogate motion phenotypes. Here we describe the steps we used in the 

paper to construct a motion map by applying principal components analysis (PCA) to the MOSES 

mesh strain curve using a smaller dataset. The full datasets are available through Mendeley 

Datasets with DOI: https://dx.doi.org/10.17632/j8yrmntc7x.1 and 

https://dx.doi.org/10.17632/vrhtsdhprr.1. 

1. Download all videos from the two folders, 0% FBS and 5% FBS folders in the Google drive (6 

videos in total). They contain 3 examples each of the 0% and 5% serum cultured cell videos 

without EGF addition. 

2.Place the downloaded videos into two subfolders, 0%_FBS and 5%_FBS under a newly 

created top level ‘Motion_Map_Videos’ folder following the structure in  

3. Figure 1 as before. 

4. Automatically detect the two subfolders in the ‘Motion_Map_Videos’ folder as two separate 

experiment folders. The code should print a Python list with the values ['0%_FBS' '5%_FBS']. 

from MOSES.Utility_Functions.file_io import detect_experiments 

# detect experiment folders as subfolders under a top-level 

directory. 

rootfolder = '../Data/Motion_Map_Videos' 

expt_folders = detect_experiments(rootfolder, 

exclude=['meantracks','optflow'], level1=False) 

print(expt_folders) # print the detected folder names. 

 

5. Use the in-built Python glob library to detect all video files using their ‘.tif’ extension in each 

experiment (subfolder), loading individual file paths into a single NumPy array. Subsequently 

create a separate integer array based on the detected files to denote if the video file came from 

either the ‘0%_FBS’ or ‘5%_FBS’ subfolder assigned integers ‘0’ and ‘1’ respectively. 

http://www.bio-protocol.org/e3365
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import glob 

import numpy as np  

# detect each .tif file in each folder.  

videofiles = [glob.glob(os.path.join(rootfolder, expt_folder, '*.tif')) 

for expt_folder in expt_folders] 

# should give now [[0,0,0],[1,1,1]] 

labels = [[i]*len(videofiles[i]) for i in range(len(videofiles))]   

# flatten everything into single array 

videofiles = np.hstack(videofiles) 

labels = np.hstack(labels) 

 

6. Extract superpixel tracks and compute the MOSES mesh strain curves for each video. Then 

concatenate the mesh strain curves of each video into one NumPy array. This constructs a 

feature matrix of size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 required for PCA.  

Note: Augment the MOSES mesh strain curve features with image-based features such as the 

mean pixel intensity and texture features of the superpixel image patch to additionally describe 

appearance. 

http://www.bio-protocol.org/e3365
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from MOSES.Utility_Functions.file_io import read_multiimg_PIL 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

construct_MOSES_mesh, compute_MOSES_mesh_strain_curve 

 

# set motion extraction parameters. 

n_spixels = 1000 

optical_flow_params = dict(pyr_scale=0.5, levels=3, winsize=15, 

iterations=3, poly_n=5, poly_sigma=1.2, flags=0) 

 

n_videos = len(videofiles) 

# initialise arrays to save computed data 

mesh_strain_all = [] 

 

for ii in range(n_videos): 

videofile = videofiles[ii] 
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print(ii, videofile) 

vidstack = read_multiimg_PIL(videofile) 

 

# 1. compute superpixel tracks  

_, meantracks_r =  

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,0], 

optical_flow_params, n_spixels) 

_, meantracks_g =  

compute_grayscale_vid_superpixel_tracks(vidstack[:,:,:,1], 

optical_flow_params, n_spixels) 

spixel_size = meantracks_r[1,0,1] - meantracks_r[1,0,0] 

# 2a. compute MOSES mesh. 

MOSES_mesh_strain_time_r, MOSES_mesh_neighborlist_r = 

construct_MOSES_mesh(meantracks_r, dist_thresh=1.2, 

spixel_size=spixel_size) 

MOSES_mesh_strain_time_g, MOSES_mesh_neighborlist_g = 

construct_MOSES_mesh(meantracks_g, dist_thresh=1.2, 

spixel_size=spixel_size) 

# 2b. compute the MOSES mesh strain curve for the video.  

mesh_strain_r = 

compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_r, 

normalise=False) 

mesh_strain_g = 

compute_MOSES_mesh_strain_curve(MOSES_mesh_strain_time_g, 

normalise=False) 

mesh_strain_curve_video = .5*(mesh_strain_r+mesh_strain_g) 

# (optional normalization) 

normalised_mesh_strain_curve_video = mesh_strain_curve_video/ 

np.max(mesh_strain_curve_video) 

# 3. append the computed mesh strain curves.  

mesh_strain_all.append(normalised_mesh_strain_curve_video) 

 

       # stack all the mesh strain curves into one 

mesh_strain_all = np.vstack(mesh_strain_all) 

 

7. Apply PCA to the mesh strain curves of the 5% FBS videos only to set the two principal 

components for mapping.  

Note: 0% serum videos could also have been used. Generally to learn the data variation it is 

recommended to use the larger dataset. 
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from sklearn.decomposition import PCA 

# initialise the PCA model 

pca_model = PCA(n_components=2, random_state=0) 

# 1. learn the PCA using only the 5% FBS a.k.a label=1 

pca_5_percent_mesh = 

pca_model.fit_transform(mesh_strain_all[labels==1]) 

 

8. Project the mesh strain curves of the 0% FBS videos using the principal components defined 

by the 5% FBS videos. 

 

pca_0_percent_mesh = pca_model.transform(mesh_strain_all[labels==0]) 

 

9. Visualize the projected PCA components on a 2D x-y axis plotting the first principal components 

(x-axis) vs the second principal component (y-axis) (Figure 15).  

Note: The resulting PCA plot should clearly highlight the distinct separation of motion behavior 

between 0% FBS and 5% FBS. The exact numerical values may differ depending on installed 

library versions of scikit-learn, OS and random number generation settings. 

fig, ax = plt.subplots(figsize=(3,3)) 

ax.plot(pca_5_percent_mesh[:,0], pca_5_percent_mesh[:,1], 'o', ms=10, 

color='g', label='5% FBS') 

ax.plot(pca_0_percent_mesh[:,0], pca_0_percent_mesh[:,1], 'o', ms=10, 

color='r', label='0% FBS') 

ax.set_xlim([-2,2]) 

ax.set_ylim([-2,2]) 

plt.legend(loc='best') 

plt.show() 
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Figure 15. Motion map analysis of a reduced set of 0% and 5% serum two color epithelial 

cell videos 

 

D. Superpixel track cleaning for two color cell populations 

Fluorescent dyes are imperfect. Despite best efforts there will often be a degree of cross-

contamination across acquired color channels. This can lead to noise in the extracted motion tracks, 

namely green channel motion tracks may exhibit some movement when theoretically there should 

be none due to bleed-through from the red channel. Post-processing of the tracks can help ‘clean’ 

up the unspecific motion and retain only the motion of the specific superpixel tracks relevant to each 

initial object of interest in the respective colored channels. In doing so, one can improve the accuracy 

and sensitivity of analysis. One general method for cleaning is image segmentation of individual 

objects and retaining only the tracks that cover the segmented objects (see demo Analysis 1: Single 

Cell Tracking). In our paper, (Zhou et al., 2019) we instead implemented a more robust 

segmentation-free method that exploits motion information for colored two cell populations. 

 

1. Jointly clean red and green superpixel tracks by considering the connectivity between superpixel 

tracks that move between the initial frame 0 and the frame specified by frame2. The resulting 

filtered tracks, meantracks_r_filt, meantracks_g_filt can now be used instead of 

meantracks_r, meantracks_g in any of the given steps for the analysis of two cell populations. 

Note: Our implementation is specific for two color videos, however the principle of motion and 

connectivity it is based on is generalizable. 

from MOSES.Track_Filtering.filter_meantracks_superpixels import filter_red_green_tracks 
 
meantracks_r_filt, meantracks_g_filt = filter_red_green_tracks(meantracks_r, meantracks_g, 
img_shape=(n_rows, n_cols), frame2=1) 

from MOSES.Track_Filtering.filter_meantracks_superpixels import 

filter_red_green_tracks 

 

meantracks_r_filt, meantracks_g_filt = 
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filter_red_green_tracks(meantracks_r, meantracks_g, 

img_shape=(n_rows, n_cols), frame2=1) 

 

Analysis 3: Analysis of Drosophila Motion in Development (SiMView lightsheet Microscopy) 

(Supplementary files) 

To demonstrate the ability of MOSES to analyze global tissue and local cellular motion patterns jointly 

we analyze the supplementary videos of drosophila development published by Amat et al., 2014. In 

addition this analysis illustrates i) how one can handle larger videos that contain a lot of temporal frames 

or have large video frames to speed up processing, ii) how to cluster tracks to reveal local spatial 

patterns and iii) how to work with general video formats such as .avi, mp4 and .mov.  

1. Download supplementary movie 1 (‘nmeth.3036-sv1.avi’) of Amat et al., 2014, entitled ‘SiMView 

imaging of Drosophila embryogenesis’. 

2. Construct a function to read the .avi video using the moviepy library with optional rescaling of 

video frame dimensions through the resize parameter. For more information using moviepy 

please refer to https://zulko.github.io/moviepy/. 

def read_movie(moviefile, resize=1.): 

from moviepy.editor import VideoFileClip 

from tqdm import tqdm  

from skimage.transform import rescale 

import numpy as np  

 

vidframes = [] 

clip = VideoFileClip(moviefile) 

count = 0 

for frame in tqdm(clip.iter_frames()): 

     vidframes.append(np.uint8(rescale(frame, 1./resize, 

preserve_range=True))) 

http://www.bio-protocol.org/e3365
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    count+=1 

vidframes = np.array(vidframes) 

     

return vidframes 

 

        moviefile = '../Data/Videos/nmeth.3036-sv1.avi' 

  # read in the movie, downsampling frames by 4. 

 movie = read_movie(moviefile, resize=4.) 

 

 n_frame, n_rows, n_cols, n_channels = movie.shape 

print('Size of video: 

(%d,%d,%d,%d)' %(n_frame,n_rows,n_cols,n_channels)) 

 

3. Set motion parameters as before and extract forward and backward superpixel tracks using 

dense superpixel tracking. 

from MOSES.Optical_Flow_Tracking.superpixel_track import 

compute_grayscale_vid_superpixel_tracks_FB 

 

# motion extraction parameters.  

optical_flow_params = dict(pyr_scale=0.5, levels=5, winsize=21, 

iterations=5, poly_n=5, poly_sigma=1.2, flags=0) 

# number of superpixels 

n_spixels = 1000 

 

# extract forward and backward tracks.  

optflow, meantracks_F, meantracks_B = 

compute_grayscale_vid_superpixel_tracks_FB(movie[:,:,:,1], 

optical_flow_params, n_spixels, dense=True) 

 

4. Cluster superpixels according to track similarity to group together similar tracks. This requires 

the construction of a feature matrix for each superpixel track.  

a. Construct the track feature, 𝑓𝑖  for superpixel track 𝑖  by concatenating the (𝑥, 𝑦) 

coordinates at each time frame up to frame 𝑇  such that 𝑓 =
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[𝑥1, 𝑥2, … , 𝑥𝑇−1, 𝑥𝑇 , 𝑦1, 𝑦2,… , 𝑦𝑇−1, 𝑦𝑇]. For this example, the final feature matrix, X is a matrix 

of 2628 x 1104. 

import numpy as np 

X = np.hstack([meantracks_F[:,:,0], meantracks_F[:,:,1]]) 

 

b. Reduce dimensionality of feature matrix, X using principal components analysis (PCA) to 

compress features and improve clustering. 

from sklearn.decomposition import PCA 

pca_model = PCA(n_components = 3, whiten=True, random_state=0) 

X_pca = pca_model.fit_transform(X) 

 

c. Cluster tracks using the PCA reduced features using a Gaussian mixture model (GMM) 

specifying 10 clusters. The result is given as a vector array, track_labels specifying 

using unique integer values the group that each superpixel track has been assigned to by 

the GMM model. Note colors will be different for different runs of the algorithm due to 

randomness in the setting of the GMM algorithm.  

Note: Any other clustering algorithm operating on a matrix can be used such as hierarchical 

clustering, K-means clustering and density based clustering. 

from sklearn import mixture 

n_clusters = 10 

gmm = mixture.GaussianMixture(n_components=n_clusters, 

covariance_type='full', random_state=0) 

gmm.fit(X_pca) 

# get the labels 

track_labels = gmm.predict(X_pca) 

 

5. Visualize the clustered superpixel tracks coloring each unique group with a different color 

(Figure 16).  

Note: We confirmed differences in GMM clustering results between different OS and scikit-learn 

library versions with the same code. The reported figure was obtained for Windows 10, scikit-

learn version 0.21.2.  
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from MOSES.Visualisation_Tools.track_plotting import plot_tracks 
import seaborn as sns 
import pylab as plt  
 
# Generate colours for each unique cluster. 
cluster_colors = sns.color_palette('hls', n_clusters) 
 
# overlay cluster tracks and clustered superpixels 
fig, ax = plt.subplots(nrows=1,ncols=3, figsize=(15,15)) 
ax[0].imshow(movie[0]); ax[0].grid('off'); ax[0].axis('off'); ax[0].set_title('Initial 
Points') 
ax[1].imshow(movie[-1]); ax[1].grid('off'); ax[1].axis('off'); ax[1].set_title('Final 
Points') 
ax[2].imshow(movie[0]); ax[2].grid('off'); ax[2].axis('off'); ax[2].set_title('Clustered 
Tracks') 
for ii, lab in enumerate(np.unique(track_labels)): 
    # plot coloured initial points  
    ax[0].plot(meantracks_F[track_labels==lab,0,1],  
            meantracks_F[track_labels==lab,0,0], 'o', color=cluster_colors[ii], alpha=1) 
    # plot coloured final points  
    ax[1].plot(meantracks_F[track_labels==lab,-1,1],  
            meantracks_F[track_labels==lab,-1,0], 'o', color=cluster_colors[ii], alpha=1) 
    # plot coloured tracks 
    plot_tracks(meantracks_F[track_labels==lab], ax[2], color=cluster_colors[ii], lw=1.0, 
alpha=0.7) 
plt.show() 

from MOSES.Visualisation_Tools.track_plotting import plot_tracks 

import seaborn as sns 

import pylab as plt  

 

# Generate colours for each unique cluster. 

cluster_colors = sns.color_palette('hls', n_clusters) 

 

# overlay cluster tracks and clustered superpixels 

fig, ax = plt.subplots(nrows=1,ncols=3, figsize=(15,15)) 

ax[0].imshow(movie[0]); ax[0].grid('off'); ax[0].axis('off'); 

ax[0].set_title('Initial Points') 

ax[1].imshow(movie[-1]); ax[1].grid('off'); ax[1].axis('off'); 

ax[1].set_title('Final Points') 

ax[2].imshow(movie[0]); ax[2].grid('off'); ax[2].axis('off'); 

ax[2].set_title('Clustered Tracks') 

for ii, lab in enumerate(np.unique(track_labels)): 

# plot coloured initial points  

ax[0].plot(meantracks_F[track_labels==lab,0,1],  

             meantracks_F[track_labels==lab,0,0], 'o', 

color=cluster_colors[ii], alpha=1) 

# plot coloured final points  

ax[1].plot(meantracks_F[track_labels==lab,-1,1],  

             meantracks_F[track_labels==lab,-1,0], 'o', 
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color=cluster_colors[ii], alpha=1) 

# plot coloured tracks 

plot_tracks(meantracks_F[track_labels==lab], ax[2], 

color=cluster_colors[ii], lw=1.0, alpha=0.7) 

plt.show() 

 

 

Figure 16. Unsupervised clustering of superpixel tracks to group local motion during 

Drosophila embryogenesis. Initial (A) and final (B) centroid positions of superpixels plotted as 

a dot and colored by assigned group using Gaussian mixture model for clustering. 

Corresponding superpixel tracks colored by cluster (C).  

 

6. Compute the motion saliency map of the forward and backward tracks to find motion sources 

and sinks ( 

7. Figure 17). 

 

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_motion_saliency_map 

from skimage.exposure import equalize_hist 
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from skimage.filters import Gaussian 

# specify a large threshold to capture long-distances. 

dist_thresh = 20 

spixel_size = meantracks[1,0,1]-meantracks[1,0,0] 

 

motion_saliency_F, motion_saliency_spatial_time_F = 

compute_motion_saliency_map(meantracks, dist_thresh=dist_thresh, 

shape=movie.shape[1:-1], max_frame=None, filt=1, 

filt_size=spixel_size) 

motion_saliency_B, motion_saliency_spatial_time_B = 

compute_motion_saliency_map(meantracks_B, dist_thresh=dist_thresh,                                                                   

shape=movie.shape[1:-1], max_frame=None, filt=1, 

filt_size=spixel_size) 

# smooth the discrete looking motion saliency maps. 

motion_saliency_F_smooth = gaussian(motion_saliency_F, 

spixel_size/2.) 

motion_saliency_B_smooth = gaussian(motion_saliency_B, 

spixel_size/2.) 

 

# visualise the computed results. 

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,15)) 

ax[0].imshow(movie[0], cmap='gray'); ax[0].grid('off'); 

ax[0].axis('off') 

ax[1].imshow(movie[0], cmap='gray'); ax[1].grid('off'); 

ax[1].axis('off') 

ax[0].set_title('Motion Sinks'); ax[1].set_title('Motion Sources') 

ax[0].imshow(equalize_hist(motion_saliency_F_smooth), 

cmap='coolwarm', alpha=0.5, vmin=0, vmax=1) 

ax[1].imshow(equalize_hist(motion_saliency_B_smooth), 

cmap='coolwarm', alpha=0.5, vmin=0, vmax=1) 

plt.show() 

 

 

Figure 17. Motion saliency map to highlight spatial areas of motion sinks (A) and sources 

(B) during Drosophila embryogenesis 
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Analysis 4: Intra-vital Imaging Analysis (Multiphoton Microscopy) (Supplementary files) 

Intra-vital imaging has enabled direct in-vivo imaging of the movement of fluorescently tagged cells in 

their native microenvironment. A common application is the study of immune cell behavior with respect 

to the local vasculature and extracellular matrix in tissue (Li et al., 2012). Typically it is desired to extract 

the global motion patterns of individual cell population despite their stochastic individual motion. Using 

automatic single-cell tracking approaches is frequently unreliable due to the lower imaging magnification 

and poorer spatial resolution of the acquired images compared to in-vitro imaging. For example, it is 

difficult for humans to manually distinguish between individually migrating fluorescent immune cells. 

Here we demonstrate how to use MOSES to nevertheless extract the global motion pattern of individual 

neutrophil cells to a laser-induced wound site for quantitative analysis. 

1. Download supplementary movie 1 of Li et al., 2012.  

2. Read the movie using the example read_movie function defined in Analysis 3 above. As the 

video is short and we want to retain high spatial fidelity, the native pixel resolution of image 

frames is used without downsampling (resize=1.).  

moviefile = '../Data/Videos/nprot.2011.438-S5.mov' 

movie = read_movie(moviefile, resize=1.) 

 

3. Set the motion extraction parameters and extract both forward and backward superpixel tracks 

using 1,000 superpixels. Optionally set dense=True.  

from MOSES.Optical_Flow_Tracking.superpixel_track import 

compute_grayscale_vid_superpixel_tracks_FB 

# motion extraction parameters.  

optical_flow_params = dict(pyr_scale=0.5, levels=5, winsize=21, 

iterations=5, poly_n=5, poly_sigma=1.2, flags=0) 

# number of superpixels 

n_spixels = 1000 

 

# extract superpixel tracks for the 2nd or 'green' GFP+ cell channel 

optflow, meantracks_F, meantracks_B = 

compute_grayscale_vid_superpixel_tracks_FB(movie[:,:,:,1], 
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optical_flow_params, n_spixels, dense=True) 

 

4. Compute the mean temporal optical flow to summarize the mean motion of image pixels over 

the imaged duration. Through averaging, stochastic motion is removed and globally consistent 

trends are reinforced. Color map the computed mean optical flow according to the directionality 

of motion using an HSV color scheme to visualize the average global motion pattern of GFP+ 

neutrophil cells (Figure 18A). 

from MOSES.Visualisation_Tools.motion_field_visualisation import 

view_ang_flow 

import numpy as np 

 

mean_opt_flow = np.mean(optflow, axis=0) 

mean_colored_flow = view_ang_flow(mean_opt_flow) 

 

5. Compute the average velocity of individual superpixel tracks and the mean temporal (𝑥, 𝑦 ) 

coordinates of superpixel tracks as the MOSES superpixel track equivalent to Step 4 above 

(Figure 18B). 

from MOSES.Motion_Analysis.tracks_statistics_tools import 

average_displacement_tracks 

 

mean_disps_tracks = average_displacement_tracks(meantracks) 

# parse out the mean (u,v) velocities of tracks 

U_tra = mean_disps_tracks[:,1]  

# this is negative to convert image coordinates to proper (x,y) used 

in matplotlib quiverplot. 

V_tra = -mean_disps_tracks[:,0]  

Mag_tra = np.hypot(U_tra, V_tra) 

 

# compute the mean (x,y) position of tracks 
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X_mean = np.mean(meantracks[:,:,1], axis=-1) 

Y_mean = np.mean(meantracks[:,:,0], axis=-1) 

 

6. Compute the forward and backward motion saliency maps using the forward and backward 

superpixel tracks to reveal motion ‘sinks’ and ‘sources’ respectively (Figure 18B).  

from MOSES.Motion_Analysis.mesh_statistics_tools import 

compute_motion_saliency_map 

from skimage.exposure import equalize_hist 

from skimage.filters import Gaussian 

# specify a large threshold to capture long-distances. 

dist_thresh = 5 

spixel_size = meantracks[1,0,1]-meantracks[1,0,0] 

# compute the forward and backward motion saliency maps. 

motion_saliency_F, motion_saliency_spatial_time_F = 

compute_motion_saliency_map(meantracks, dist_thresh=dist_thresh, 

shape=movie.shape[1:-1], max_frame=None, filt=1, 

filt_size=spixel_size) 

motion_saliency_B, motion_saliency_spatial_time_B = 

compute_motion_saliency_map(meantracks_B, dist_thresh=dist_thresh,                                                                

shape=movie.shape[1:-1], max_frame=None, filt=1, 

filt_size=spixel_size) 

# smooth the discrete looking motion saliency maps. 

motion_saliency_F_smooth = gaussian(motion_saliency_F, 

spixel_size/2.) 

motion_saliency_B_smooth = gaussian(motion_saliency_B, 

spixel_size/2.) 

 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/


                 

50 
 

www.bio-protocol.org/e3365      
Bio-protocol 9(18): e3365. 

DOI:10.21769/BioProtoc.3365

xxxx55555111112000 

 

  Copyright Zhou et al., 2019 

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). 

 

Figure 18. MOSES analysis unbiasedly uncovers the migration of GFP+ neutrophil cells 

to site of laser injury. A. Mean motion field after averaging over all time points. Direction of 

motion is colored according to the inset color wheel. Colour intensity represents the magnitude 

of the velocity. B. Overlay of the mean superpixel track velocities represented as green arrows 

plotted on top of the first video frame. Additionally, the computed forward and backward motion 

saliency maps are shown as red and green heatmaps revealing local motion sinks and sources 

respectively. Square box in the middle indicates the induced laser injury site.  

 

Notes 

 

We highlight key common considerations that arise when conducting a MOSES analysis to extract 

superpixel tracks, computing the motion saliency map and constructing motion maps. In general, 

MOSES is reproducible, produces consistent and interpretable results for all types of imaging as 

long as its primary modeling assumptions are satisfied.  

1. Key analysis assumptions of MOSES–two general key principles govern the behavior and 

accuracy of MOSES 

a. MOSES implicitly assumes that the motion of interest is the most dominant contributor of 

motion in the video. This is the most important assumption of MOSES. Given a video many 

factors may influence the motion of the image pixels for example camera movement and 

stage movement cause global shifts in the field of view and cell division induce local motion. 

MOSES does not explicitly disentangle the contribution to the global measured motion from 

different sources. If multiple sources of motion are present with similar magnitudes such as 

the deformation of the extra-cellular matrix and cellular migration in intra-vital images, non-

rigid image registration should be applied first to remove the extra-cellular deformations 

before running MOSES to analyze only the cellular motion component. 

b. MOSES superpixel tracks extract the movement trajectory that follows the most dominant 

local motion pattern. Individual superpixels are updated through time according to the 

average (mean or median) velocity of individual pixels within it. Should bimodality exist in 

the local directionality, MOSES would update the superpixel position according to the more 
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dominant direction. This may cause the superpixels to no longer follow the same moving 

entity. Thus single MOSES tracks are not guaranteed to follow any individual cell or cell 

group however the extraction of dominant global and local motion patterns and the analysis 

of motion source and sinks becomes very natural. Given no restriction on the movement of 

superpixels as they are updated over time, should dominant local motion patterns exist then 

they will naturally aggregate together surrounding superpixels and statistically upvote these 

image regions. By exploiting these phenomena, the salient motion patterns within a video 

can be efficiently and unbiasedly uncovered and encoded into ‘signatures’ for phenotyping. 

2. Setting the number of superpixels 

The number of superpixels directly determines the size of the region of interest (ROI) being 

tracked. Less superpixels or larger ROI capture coarse motion patterns that affect larger areas 

but lose resolution in the motion information due to computing the average over a larger spatial 

area. Conversely more superpixels or smaller ROI better capture finer motion patterns but 

velocities may be more subject to outliers. Finally, there is a speed consideration. More 

superpixels take longer to track. Typically the number of superpixels used should be the 

minimum necessary to capture the spatial scale of the desired motion pattern. As a guide start 

with 1,000 superpixels. If too fine try 100 superpixels, if too coarse try 10,000 superpixels. 

3. Setting the optical flow motion extraction parameters 

Optical flow algorithms aim to estimate the local motion field by finding the optimal set of 

displacements (Δ𝑥, Δ𝑦) that minimize the difference of the pixel intensities between two frames 

separated by a small time Δ𝑡. Mathematically this solves for the following equality 

 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑡 + Δ𝑡) 

 

where 𝐼(𝑥, 𝑦, 𝑡)  is the pixel intensity values of the video frame at time 𝑡 . The OpenCV 

Farnebäck optical flow algorithm used in MOSES solves this problem using local image patches 

of a fixed user-specified size similar to particle image velocimetry. To capture larger 

displacements than the fixed window size (given by the number of pixels), the original image is 

first downsampled and smoothed multiple times resulting in an image pyramid. The optimization 

problem is then solved progressively starting from the lowest level of the image pyramid with 

the most downsampled image and ending at the topmost level of the image pyramid, the original 

image to yield the final set of displacements. In this manner, the same fixed window size in lower 

pyramid levels corresponds to increasingly larger areas at the original image scale. The main 

consideration when setting the parameters for optical flow estimation is choosing a set of 

parameters that best captures any long, discontinuous displacements between successive 

video frames. This type of motion is very common for particle-like objects and cells undergoing 

single-cell motion. To better capture large, discontinuous displacements one can increase the 

window size (winsize), increase the number of levels in the pyramid (levels) or decrease 

the scaling factor (pyr_scale) to create smaller images per pyramid level. Note the number of 
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pyramid levels and pyramid scale is related as the upper limit of the number of pyramid levels 

is bounded by the original image size and the scaling factor. In practice changing the number of 

levels is easier to tune. The optimization process is iterative thus increasing the number of 

iterations leads to more accurate results. Adjustment of these parameters typically requires 

longer computation times per video frame. We recommended starting parameters of 

pyr_scale=0.5, levels=3, winsize=15, iterations=3 for confluent cell motion 

similar to those in epithelial sheets. 

4. Rescaling image intensity before optical flow extraction 

It is important to rescale image intensities prior to motion extraction with optical flow. Ideally all 

video frames should be of the same brightness and well contrasted. If this is not the case it is 

recommended to rescale the image intensities of each video frame to their respective minimum 

and maximum values. Alternatively one can correct for the brightness variation using a known 

mathematical model for example an exponential decay model for fluorescence microscopy. 

5. Setting the distance threshold in the mesh construction and motion saliency map computation 

Similar to the number of superpixels, the distance threshold should be set according to the 

spatial range of the phenomena to be captured. Larger distance thresholds capture more 

neighboring superpixel tracks and give more information regarding events that act on longer 

spatial scales such as boundary formation. Conversely smaller distance thresholds are more 

useful when considering phenomena that occur over a very localized region such as neutrophil 

migration to local wound sites. We recommend experimenting with different values for the 

distance threshold. It should be noted that results are generally stable over a wide range of 

distance thresholds.   

6. Feature construction for use in motion map construction 

The interested reader should refer to the supplementary information of the original MOSES 

paper (Zhou et al., 2019) where we discussed in detail how to construct informative features for 

more general datasets. In brief, there is no one method fits all approach. Users should construct 

a set of features that best capture the appearance and movement variation exhibited by moving 

entities in the video. For epithelial sheets where individual cell morphology is not readily visible, 

the use of only motion-based features like the proposed mesh strain curve should be sufficient. 

For sparsely plated single cells that exhibit morphological changes over time, the incorporation 

of appearance features is also important. For large datasets, one might consider training deep 

learning feature extractors. The more informative the features used, the less sophisticated the 

algorithm required for projecting the features when constructing a 2D or 3D motion map. 

 

Acknowledgments 

 

This work is an accompaniment to our original methods paper published in eLife (Zhou et al., 2019) 

and extends the original work to showcase more the practical use of MOSES on a wide variety of 

imaging datasets. We thank Prof. Hiroshi Nakagawa for the generous donation of EPC2 cells 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/


                 

53 
 

www.bio-protocol.org/e3365      
Bio-protocol 9(18): e3365. 

DOI:10.21769/BioProtoc.3365

xxxx55555111112000 

 

  Copyright Zhou et al., 2019 

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). 

originally used in the study of Harada et al. 2013. We thank Mark Shipman for technical assistance 

with timelapse microscopy in the collection of the two cell population dataset. This work was mainly 

funded by the Ludwig Institute for Cancer Research (LICR) with additional support from a CRUK 

grant to XL (C9720/A18513). FYZ is funded through the EPSRC Life Sciences Interface Doctoral 

Training Centre EP/F500394/1 and LICR, CRP and XL are funded by LICR, RPO is supported by 

LICR, the Oxford Health Services Research Committee and Oxford University Clinical Academic 

Graduate School supported by the National Institute for Health Research (NIHR) Biomedical 

Research Centre based at the Oxford University Hospitals Trust, Oxford, MJW is supported by 

CRUK (C5255/A19498, through an Oxford Cancer Research Centre Clinical Research Training 

Fellowship), and JR is funded by LICR and the EPSRC SeeBiByte Programme Grant 

(EP/M013774/1). The views expressed herein are those of the authors and not necessarily those of 

the NHS, the NIHR or the Department of Health. 

 

Competing interests 

 

A patent is pending for MOSES (UK application no. GB1716893.1, International application no. 

PCT/GB2018/052935). MOSES is available open-source and free for all academic and non-profit 

users under a Ludwig academic and non-profit license. 

 

References 

 

1. Amat, F., Lemon, W., Mossing, D. P., McDole, K., Wan, Y., Branson, K., Myers, E. W. and Keller, 

P. J. (2014). Fast, accurate reconstruction of cell lineages from large-scale fluorescence 

microscopy data. Nat Methods 11(9): 951-958.  

2. Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In: Bigun, 

J. and Gustavsson, T. (Eds.). Image Analysis. SCIA 2003. Lecture Notes in Computer Science, 

vol 2749. Springer, Berlin, Heidelberg. 

3. Harada, H., Nakagawa, H., Oyama, K., Takaoka, M., Andl, C.D., Jacobmeier, B., von Werder, 

A., Enders, G.H., Opitz, O.G. and Rustgi, A.K. (2003). Telomerase induces immortalization of 

human esophageal keratinocytes without p16INK4a inactivation. Molecular Cancer 

Research, 1(10): 729-738. 

4. Li, J. L., Goh, C. C., Keeble, J. L., Qin, J. S., Roediger, B., Jain, R., Wang, Y., Chew, W. K., 

Weninger, W. and Ng, L. G. (2012). Intravital multiphoton imaging of immune responses in the 

mouse ear skin. Nat Protoc 7(2): 221-234. 

5. Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Urbiola, A., Espana, T., 

Venkatesan, S., Balak, D. M., Karas, P., Bolckova, T., Streitova, M., Carthel, C., Coraluppi, S., 

Harder, N., Rohr, K., Magnusson, K. E., Jalden, J., Blau, H. M., Dzyubachyk, O., Krizek, P., 

Hagen, G. M., Pastor-Escuredo, D., Jimenez-Carretero, D., Ledesma-Carbayo, M. J., Munoz-

Barrutia, A., Meijering, E., Kozubek, M. and Ortiz-de-Solorzano, C. (2014). A benchmark for 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/pubmed/25042785
http://www.ncbi.nlm.nih.gov/pubmed/25042785
https://link.springer.com/chapter/10.1007%2F3-540-45103-X_50
http://www.ncbi.nlm.nih.gov/pubmed/12939398
http://www.ncbi.nlm.nih.gov/pubmed/12939398
http://www.ncbi.nlm.nih.gov/pubmed/22240584
http://www.ncbi.nlm.nih.gov/pubmed/22240584
http://www.ncbi.nlm.nih.gov/pubmed/24526711


                 

54 
 

www.bio-protocol.org/e3365      
Bio-protocol 9(18): e3365. 

DOI:10.21769/BioProtoc.3365

xxxx55555111112000 

 

  Copyright Zhou et al., 2019 

This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0). 

comparison of cell tracking algorithms. Bioinformatics 30(11): 1609-1617. 

6. Meijering, E., Dzyubachyk, O. and Smal, I. (2012). Methods for cell and particle tracking. 

Methods Enzymol 504: 183-200. 

7. Milde, F., Franco, D., Ferrari, A., Kurtcuoglu, V., Poulikakos, D. and Koumoutsakos, P. (2012). 

Cell Image Velocimetry (CIV): boosting the automated quantification of cell migration in wound 

healing assays. Integr Biol (Camb) 4(11): 1437-1447. 

8. Neumann, B., Held, M., Liebel, U., Erfle, H., Rogers, P., Pepperkok, R. and Ellenberg, J. (2006). 

High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3(5): 

385-390. 

9. Nketia, T. A., Sailem, H., Rohde, G., Machiraju, R. and Rittscher, J. (2017). Analysis of live cell 

images: Methods, tools and opportunities. Methods 115: 65-79. 

10. Padfield, D., Rittscher, J. and Roysam, B. (2011). Coupled minimum-cost flow cell tracking for 

high-throughput quantitative analysis. Med Image Anal 15(4): 650-668. 

11. Petitjean, L., Reffay, M., Grasland-Mongrain, E., Poujade, M., Ladoux, B., Buguin, A. and 

Silberzan, P. (2010). Velocity fields in a collectively migrating epithelium. Biophys J 98(9): 1790-

1800. 

12. Schiegg, M., Hanslovsky, P., Haubold, C., Koethe, U., Hufnagel, L. and Hamprecht, F. A. (2015). 

Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics 

31(6): 948-956. 

13. Szabó, B., Szöllösi, G. J., Gönci, B., Jurányi, Z., Selmeczi, D. and Vicsek, T. (2006). Phase 

transition in the collective migration of tissue cells: experiment and model. Phys Rev E Stat 

Nonlin Soft Matter Phys 74(6 Pt 1): 061908. 

14. Zaritsky, A., Natan, S., Ben-Jacob, E. and Tsarfaty, I. (2012). Emergence of HGF/SF-induced 

coordinated cellular motility. PLoS One 7(9): e44671. 

15. Zaritsky, A., Kaplan, D., Hecht, I., Natan, S., Wolf, L., Gov, N. S., Ben-Jacob, E. and Tsarfaty, 

I. (2014). Propagating waves of directionality and coordination orchestrate collective cell 

migration. PLoS Comput Biol 10(7): e1003747. 

16. Zaritsky, A., Welf, E. S., Tseng, Y. Y., Angeles Rabadan, M., Serra-Picamal, X., Trepat, X. and 

Danuser, G. (2015). Seeds of locally aligned motion and stress coordinate a collective cell 

migration. Biophys J 109(12): 2492-2500. 

17. Zaritsky, A., Tseng, Y. Y., Rabadan, M. A., Krishna, S., Overholtzer, M., Danuser, G. and Hall, 

A. (2017). Diverse roles of guanine nucleotide exchange factors in regulating collective cell 

migration. J Cell Biol 216(6): 1543-1556. 

18. Zhou, F. Y., Ruiz-Puig, C., Owen, R. P., White, M. J., Rittscher, J. and Lu, X. (2019). Motion 

sensing superpixels (MOSES) is a systematic computational framework to quantify and discover 

cellular motion phenotypes. Elife 8: pii: e40162. 

 

http://www.bio-protocol.org/e3365
https://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/pubmed/24526711
http://www.ncbi.nlm.nih.gov/pubmed/22264535
http://www.ncbi.nlm.nih.gov/pubmed/23047374
http://www.ncbi.nlm.nih.gov/pubmed/23047374
http://www.ncbi.nlm.nih.gov/pubmed/16628209
http://www.ncbi.nlm.nih.gov/pubmed/28242295
http://www.ncbi.nlm.nih.gov/pubmed/28242295
http://www.ncbi.nlm.nih.gov/pubmed/20864383
http://www.ncbi.nlm.nih.gov/pubmed/20864383
http://www.ncbi.nlm.nih.gov/pubmed/20441742
http://www.ncbi.nlm.nih.gov/pubmed/25406328
http://www.ncbi.nlm.nih.gov/pubmed/17280097
http://www.ncbi.nlm.nih.gov/pubmed/17280097
http://www.ncbi.nlm.nih.gov/pubmed/22970283
http://www.ncbi.nlm.nih.gov/pubmed/22970283
http://www.ncbi.nlm.nih.gov/pubmed/25058592
http://www.ncbi.nlm.nih.gov/pubmed/25058592
http://www.ncbi.nlm.nih.gov/pubmed/26682808
http://www.ncbi.nlm.nih.gov/pubmed/26682808
http://www.ncbi.nlm.nih.gov/pubmed/28512143
http://www.ncbi.nlm.nih.gov/pubmed/28512143
http://www.ncbi.nlm.nih.gov/pubmed/30803483
http://www.ncbi.nlm.nih.gov/pubmed/30803483
http://www.ncbi.nlm.nih.gov/pubmed/30803483

