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ABSTRACT

Considering the great effect of vaccination and the unpredictability of environmental variations in na-
ture, a stochastic Susceptible-Vaccinated-Infected-Susceptible (SVIS) epidemic model with standard inci-
dence and vaccination strategies is the focus of the present study. By constructing a series of appropriate
Lyapunov functions, the sufficient criterion % > 1 is obtained for the existence and uniqueness of the
ergodic stationary distribution of the model. In epidemiology, the existence of a stationary distribution
indicates that the disease will be persistent in a long term. By taking the stochasticity into account, a
quasi-endemic equilibrium related to the endemic equilibrium of the deterministic system is defined. By
means of the method developed in solving the general three-dimensional Fokker-Planck equation, the ex-
act expression of the probability density function of the stochastic model around the quasi-endemic equi-
librium is derived, which is the key aim of the present paper. In statistical significance, the explicit den-
sity function can reflect all dynamical properties of an epidemic system. Next, a simple result of disease
extinction is obtained. In addition, several numerical simulations and parameter analyses are performed
to illustrate the theoretical results. Finally, the corresponding results and conclusions are discussed at the

end of the paper.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Research background

It is well established that many infectious diseases have a crit-
ical influence on global social economies and human health. More
precisely, the detailed statistics reported by the World Health Or-
ganization (WHO) show that approximately one-third of all deaths
worldwide are caused by various epidemics. Recently, the global
outbreak of COVID-19 with high transmission has also increased
awareness of the importance of preventing and controlling infec-
tious diseases. In epidemiology, mathematical models have pro-
vided several effective approaches to describe the characteristics
and spread of epidemics in the last hundred years. In 1927, by di-
viding the population into two clusters, which includes people sus-
ceptible to the disease and infected individuals, Kermack and McK-
endrick [1] initially proposed the classical susceptible-infected-
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susceptible (SIS) epidemic model and established the correspond-
ing threshold theory. Since then, various realistic ordinary differen-
tial equations (ODEs) have been extended to analyze and control
the transmission of diseases [2-8]. For instance, Hove-Musekwa
and Nyabadza [4] developed a HIV/AIDS model with active screen-
ing of disease carriers and obtained the corresponding basic repro-
duction number. Considering the effect of vertical infection, Tuncer
and Martcheva [6] formulated a hepatitis B model with acute in-
fection and carriers.

With the accelerated development of science and technology,
vaccination comprises a common precaution that reduces the in-
fection rate and even immunizes against some contagious diseases,
such as measles, cholera, and tuberculosis [9]. According to a 2005
WHO report, the eradication of smallpox has been considered the
most spectacular success of routine vaccination. Thus, some basic
epidemic models with vaccination strategies have been studied in
the last several decades [9-13]. In [9], Liu et al. obtained the global
stability of equilibria and analyzed the effect of pulse vaccination.
Gao et al. [11] proposed mixed vaccination strategies in the SIRS
epidemic model with seasonal variability on infection. However,
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the vast majority of infection processes are caused by person-to-
person contact. As Ma and Wang [2] described, the classical bi-
linear incidence rate is reasonably assumed by the simple mass-
action law. From Anderson and May [14], Hethcote [15], this law
is a good approximation for some communicable diseases, such
as dengue fever and avian influenza. However, studies (see, e.g.,
[16,17]) have shown that the underlying assumption of homoge-
neous mixing and homogeneous environmental for several sexu-
ally transmitted diseases, e.g., HIV/AIDS and syphilis, may be in-
valid. In addition, owing to the psychological effect, susceptible in-
dividuals may tend to reduce the number of contacts with the in-
fected per unit time as the numbers of the infected individuals in-
crease [18,19]. As a result, the corresponding adequate incidence
rate should be modified as a nonlinear form. More importantly, An-
derson and May [20,21] pointed out that various epidemic models
with standard incidence are suitable for human beings and some
gregarious animals.

Given the above, a SVIS epidemic system with standard inci-
dence and vaccination is the focus of the present study.

1.2. Deterministic SVIS model and dynamical properties

The total population N(t) is divided into three compartments,
namely susceptible people S(t), infected individuals I(t), and vac-
cinees V(t) that are in the vaccination process at time t. Then,
the corresponding deterministic SVIS epidemic model with stan-
dard incidence and vaccination strategies takes the form

ds) =A—(u+z9)5—%+yv+81,

dt
%:ﬁs—(wyw, (11)
dity _ BsI
T = W—(M+Ol+5)1’

where A denotes the recruitment rate of the susceptible, 8 is the
effective contact rate, i depicts the natural death rate of the pop-
ulation, o denotes the additional death rate due to the disease, ¥
is the vaccination rate of the susceptible, y denotes the immunity
loss coefficient of the vaccinated, and & reflects the recovery rate
of the infected. In epidemiology, these biological parameters are
assumed to be positive.

Following similar results described by Ma and Zhou [22], the
corresponding basic reproduction number of system (1.1) takes the
form

B +y)
(m+y+H)(n+a+d) (12)

Ry =

By defining a positive invariant set 2, = {(S, V.D|IS>0,V=>0,1>

0,S+V+I< /AL} two possible equilibria and their dynamical
properties are then given as follows.

e Assuming that %, <1, the disease-free, Ey = (S°,V0,I0) =

A(u+y) A9 :
.(u(wryw)’ u(u+y+z9)’0)’ are then globally asymptotically stable
n %.

o If %y>1, there is a unique endemic equilib-
rium Et= (ST, V*, 1Y), where It= #ﬁt@%—l) St =

A(pt+y) + A -
Gl @DV = Gyt Gean o). More

over, ET is globally asymptotically stable in 2, but Ej is unstable.
1.3. Stochastic SVIS epidemic model

In fact, Truscott and Gilligan [23] pointed out that the spread
of infection, travel of populations, and design of control strategies
are critically perturbed by some environmental variations. There-
fore, it is more reasonable to construct a corresponding stochas-
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tic model to reveal the epidemiological characteristics of infec-
tious diseases by comparison with the deterministic model. No-
tably, there are various possible approaches to simulate the ran-
dom effects from biological significance and mathematical per-
spective [24]. For instance, making use of the fatal properties and
multiplex networks, Zhu et al. [25], Jia et al. [26] studied the
SIR epidemic spreading process and analyzed individual decision-
making behavior. In 2002, the most classical assumption that ran-
dom changes always fluctuate around some average values due
to continuous disturbances in nature, adopted by Mao et al. [27],
became a common way of describing environmental variations.
Moreover, the above random fluctuations are all assumed to be
types of white noise. Therefore, many authors have formulated the
relevant stochastic differential equations (SDEs) with linear noises
for the transmission of various epidemics [28-36]. As an example,
Qi and Jiang [29] studied the impact of virus carrier screening and
actively seeking treatment on the dynamical behavior of a stochas-
tic HIV/AIDS epidemic model with bilinear incidence. In [34], Shi
and Zhang focused on the corresponding stochastic avian influenza
system and investigated the existence of the unique ergodic sta-
tionary distribution. In addition, several dynamical analyses of the
stochastic SIS models or epidemic systems with vaccination have
been conducted [37-40]. In [37], Zhao and Jiang creatively pro-
posed a general theory about extinction and persistence in mean
based on a stochastic SIS epidemic model with vaccination. Zhang
and Jiang [39] obtained sufficient conditions for a stochastic SIS
system with saturated incidence and double epidemic diseases. By
taking the periodicity effect into account, they still investigated a
stochastic SVIR epidemic model with vaccination strategies, and
derived the criteria for the existence of non-trivial positive peri-
odic solution [40]. Given the above, in the present study it is as-
sumed that the environmental noises are separately proportional
to the compartments S,V and I. Then, the corresponding system
(1.1) with the stochastic perturbations is described by

ds(t) = [A —(u+0)s- % +yV+ Sl]dt +015dB; (t),
dv(t) = [9S - (u+ y)V]dt + 02VdB, (1),

dI(t) = [% —(uta+ 8)I]dt + os1dB5 (¢).

(1.3)

where By (t), By(t) and B3 (t) are three independent standard Brow-
nian motions (or Wiener processes), with O‘iz >0 (i=1,2,3) de-
noting their intensities.

From the perspective of biomathematics, the existence and er-
godicity of stationary distribution indicates that an infectious dis-
ease will prevail and persist in long-term development. More im-
portantly, the corresponding probability density function of the
stationary distribution can reflect all statistical properties of the
individuals S,V and I. It can be regarded as a great intersection of
epidemiological dynamics and statistics. It should be pointed out
that there are relatively few studies devoted to the explicit expres-
sion of probability density function due to the difficulty of solving
the corresponding Fokker-Planck equation. To the best of our abil-
ity, several general methods of solving the corresponding algebraic
equations are developed herein that are equivalent to the Fokker-
Planck equation, and the exact expression of density function is
derived.

The rest of this paper is organized follows. In Section 2, several
mathematical notations and important lemmas for the dynamical
analyses of system (1.3) are presented. The sufficient conditions for
the existence and uniqueness of the ergodic stationary distribution
of system (1.3) are obtained in Section 3. By means of the devel-
oped approaches in solving the general three-dimensional Fokker-
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Planck equation, the exact expression of the probability density
function for the stationary distribution is derived in Section 4. In
Section 5, several simple criteria for the disease extinction of sys-
tem (1.3) are given. In Section 6, several numerical simulations are
performed, together with parameter analyses to validate the the-
oretical results. Finally, the corresponding result discussions and
main conclusions are shown, compared with existing articles, at
the end of the paper.

2. Preliminaries and necessary lemmas

Throughout the paper, let {Q,.7, {%};s0,P} be a complete
probability space with a filtration {#};-o with a filtration {It}:-0
satisfying the usual conditions (i.e., it is increasing and right con-
tinuous, while I'y contains all P-null sets. Assuming that Apx, is a
real matrix, let A” be the transpose matrix of A. If m=n, A~! de-
picts the inverse matrix of A. The reader is referred to Mao [41] for
detailed descriptions. For convenience, let R" be the n-dimensional
Euclidean space, and

R} = {(X1, ... xn)|x, > 0,1 < k < n},

= ()= (o) )

Clearly, the values S,V and I that satisfy system (1.3) are required
to be positive for the corresponding dynamical behavior. To this
end, the existence of uniqueness of the global positive solution of
system (1.3) is described by the following Lemma 2.1.

[1]

Lemma 2.1. For any initial value (5(0),V(0),1(0)) € R3, there is
then a unique solution (S(t),V(t),I(t)) of the system (1.3) on t > 0,
and the solution will remain in Ri with probability 1 (a.s.).

The detailed proof is almost the same as those in Zhou et al.
[28], and thus it is omitted here. Next, let X(t) be a homogeneous
Markov process defined on R" that satisfies the following SDE,

1
dX (£) = (X (£))dt + ) g (X)dBy (t),

k=1

where the diffusion matrix H(x) = (@;(x)), and d;(x) =
ZL] gl(:) (x)gf{”(x). Then, the corresponding ergodicity theory
and the existence of stationary distribution are described by the
following Lemma 2.2.

Lemma 2.2. (Has'miniskii [42]) The Markov process X(t) has a
unique ergodic stationary distribution @ (-), if there exists a bounded
domain Dy c R" with a regular boundary I" and the following are
true.

(). In the domain Dy and some neighborhood thereof, the small-
est eigenvalue of the diffusion matrix H(x) is bounded away from
zero.

(¢%). There is a non-negative C2-function U(X(t)) such that
LV (X(t)) is negative for any R" \ Dy.

Then, for any x € R" and integral function ¢ (-) with respect to the
measure w (-), it follows that

IP{[ILTO%/O[(p(X(t))dt:/Rn(p(x)w(dx)} _ 1.

By Zhou et al. [28], two important lemmas of solving the special
algebraic equations are given as follows.

Lemma 2.3. (/28]) Let Yy be a symmetric matrix, for the three-
dimensional algebraic equation Gg +Ag Y1 4+ T1A] =0, where Go =
diag(1,0,0),

—-Dp1 —P2 —P3
A= 1 0 0 J. (2.1)
0 1 0
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If py >0, p3 >0 and p;p, — p3 > 0, then Y is positive definite,
which follows

b2 0 _ 1
2(p1p2-p3) 2(p1p2—p3)
_ 1
T = 0 2(p1p2—p3) 0
-t 0 S i
2(p1p2—p3) 2p3(p1p2—p3)

Lemma 2.4. ([28]) Consider the three-dimensional algebraic equa-
tion Gﬁ + By Y, + T,Bf =0, where Y, is a symmetric matrix, Gg =
diag(1,0,0),

-1 —42 —q3
By = 1 0 0 (2.2)
0 1 q33

Assuming that qq > 0 and q, > 0, then Y5 is positive semi-definite,
which takes the form

1
0 ? 0
T2 = 0 24142
0 0 0

Finally, combining Lemmas 2.3-2.4 and the Routh-Hurwitz cri-
terion [43], two general theories are developed in solving the sim-
ilar algebraic equations, i.e., Lemmas 2.5 and 2.6.

Lemma 2.5. For the three-dimensional algebraic equation
Gf +C Y3+ Y3Cf =0, where Y3 is a symmetric matrix,
Gy = diag(ag, 0,0) (ap #0)

tn G2 Ci3
G=10 cn 3 (2.3)

0 ¢33 c33

If c;1 < 0, then Y3 is a positive semi-definite matrix of the form

_Z‘i 0 0

C

Ys=| 0 0 o
0 0 0

Lemma 26. For any real matrices A= (ajj)3x3, 1 =
diag(a?, o3, a2), where «; >0 (i=1,2,3). Assume that X, is
a symmetric matrix, for the three-dimensional algebraic equation

IT + AX) + TeAT = 0. (2.4)

By defining the characteristic polynomials of A asya(X) = A3+
r1A2 + 1A 413, if A has all negative real part eigenvalues — that is,
1 >0, r3>0, rir, —1r3 > 0 - then X, is positive definite.

Remark 1. From Zhou et al. [28], Ay and By are called standard
Ry and R, matrices, respectively. Similarly, it is assumed that G,
is a standard R; matrix. In addition, subsection (I) of Appendix A
gives the detailed proof of Lemma 2.5. The corresponding proof of
Lemma 2.6 and the special form of Xy are shown in subsection (II)
of Appendix A.

3. Stationary distribution and ergodicity of system (1.3)

In this section, the focus is on the sufficient conditions for the
existence and ergodicity of stationary distribution for system (1.3).
Moreover, one must guarantee that the results have no difference
from those in the deterministic system (1.1). Define

wB(u+v+%)
[(k+ ) (n+y+F)+0(n+%)]|(r+a+5+%)
(3.1)

S __
& =
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Theorem 3.1. Assuming that %} > 1, then the solution (S(t),V (t),I(t)) of system (1.3) with any initial value (S(0),V (0),1(0)) € Ri is ergodic
and has a unique stationary distribution @ (-).

Proof. By Lemma 2.1, for any initial value (S(0),V(0),1(0)) € R2, system (1.3) has a unique global positive solution (S(t),V(t),I(t)) e R3.
Then, the proof of Theorem 3.1 is divided into the following two steps: (i) construct a pair of a C2-Lyapunov function U(S, V, ) and bounded
domain D¢ such that 2U < —1 for any (S,V,I) e R3 \ D, and (ii) validate the condition (%) of Lemma 2.2. Step 1. Consider a suitable
C2-function W (S, V,I) in the form

WS V. =My(S+V +1-aInS—aaInV —azInl) —InS—InV + (S+V +1),

Uz+02
A+2u+y+0+ 15242

343/ %5-1)

where ay, a;, as are all positive constant and are determined in (3.4), and My = > 0, which indicates

Ny of +03
—B.MOA(,/%’O—1)+A+2;L+y+z9+T = 2. (3.2)

Define, for simplicity,
Wi=S+V+I-a;InS—aia;InV —asInl, Wo =—-InS—InV, W3 =S+V +1.
Applying Itd’s formula to Wy, which is shown in subsection (III) of Appendix B, obtains
A I v 4l o?
LW, :A7MN7a17a1[——’3—+y—+—f<u+0+—1)]

S N S S 2
2

_a1az[¥—<ﬂ+y+%)]—03[%—<M+a+5+"7§>]

2 2
5A—(MN+M+a”gs)+a1(u+0+a—1)+a3(u+a+8+0—2>

S N 2 2
_(@yV a1a21‘}5) ( zﬁ) a Bl
( S +7V + a1az M+V+2 +7
s 5 12 o? o3 a; 81
<A —3\/a1a3A,uﬂ — 2\/alazz9y +a; (M +0U+ 7) +a3(u +o+6+ 7) +a1a2<u +y+ 7) N (3.3)
Choosing aq, a, and as such that
0-2 2 2 9 02
az(u+y+72) =y, [(/Hﬁ 7‘) ygz]:a3<u+a+6+23)=A, (34)
n+y+ 4
which means a; = ’”902 Gy = A and a3 = —4 -7 one can obtain
(u+y+4)2 TN B L o+ 73 -
u+y+072
2 2
W <2A+“1|:(M+79 71> )/19(;2]_33 a A2up gz+all\/’31
w+y+ 3 w+o+6+
(11,31 (11/31
=3A - 3AY/ %5+ —— = -3A(J7#5 1) + N (3.5)

Applying Itd’s formula to W2, W3 similarly obtains

2
.,%Wz:[—A+(u+0+—>+ﬁ—ﬂ—ﬂ]—§+<u+y+%)

S 2 N S S 1%
A 9S Bl o+ 0}

S R R e e et (3.6)
Wy =A—-puS+D—-(u+a)l< A—puN. (3.7)
Additionally, note that W (S, V,I) is a continuous function satisfying

liminf WS, V,I) = +oo.
- +00,(S.V.)eR3\ E
Hence, W (S, V. I) has a minimum value Wj. Defining a non-negative C2-function U(S,V,I) : R3 — R} by
us v, =wW(S v, I —W,
and combining (3.2) and (3.5)-(3.7), it can be shown that

- N aMoBl A S ,31 ( 2+022)_

2U < 3M0A(1/%’0 1)+ N S VTN A+2/L+)/+Z9+72 uN
aMy+1)BI A US
__p @M DAL A DS LS +V +1). (3.8)

S+V+I S 14
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Next, the corresponding compact subset D¢ is contructed by

Dez{(s,v,l)en@+

1
S>e, V=€ 1> S+V+I< E}’
where € > 0 is a sufficiently small constant such that the following inequalities hold:

-2+ (@ Mg+1)8 -

mm(Ae, D, 1) -1, (3.9)

-2+ (@ Mg+ 1)Be < 1. (3.10)

For convenience, consider the following four subsets of R}r \ De:

DS, = {(5, V,I) eR3

5<e}, DS, = {(S,V,I) cR}

V<62,526},

DS, = {(s, V.I) eR3

I<e3,V362}, DS, = {(s,v,l) ER}S+V 41> %}

Now, it must be shown that
2U<-1, YSV.Debi (i=1,2,3,4).
Case 1. If (S,V.,I) € Dy, by (3.8)-(3.9), one can derive

min(A, ¥, i) <1
— =1L

A
LU <2+ (@My+1)8 - 5= -2+ (@Mo+1)B -
Case 2. For any (S,V,I) € Dy, it follows from (3.8)-(3.9) that

U =2+ @M+ DB— 22 <24 @My 1)p - TRAT )

Case 3. Assuming that (5,V,I) € D3 ¢, by (3.8)-(3.9) it can be seen that

(@M + 1)1
%
Case 4. If (S,V,]I) € Dy, from (3.8) and (3.10), one has

1.

LU < -2+ < -2+ (a1Mp+1)Be < -1.

1.

in(A, 9,
$U5—2+(a1M0+1),3—M(S+V+1)5—2+(a1M0+1),3—M5—

Notably, R3 \ De = Uf=1 D; . Hence, one equivalently obtains
2U<-1, VSV, I)eR:\D..
Therefore, the condition (%) of Lemma 2.2 holds. The corresponding diffusion matrix is given by
01252 0 0
H= 0 o3V? 0 .
0 0 oZl?
Clearly, H is a positive-definite matrix. Then, the assumption (<) of Lemma 2.2 also holds.

Given the above, the global positive solution (S(t), V(t), I(t)) of system (1.3) follows a unique ergodic stationary distribution z (-). This
completes the proof of Theorem 3.1. O

Remark 2. Under % > 1, the existence of the ergodic stationary distribution for system (1.3) is derived. This reveals that the contagious
disease will prevail and persist in a population. Furthermore, from the expressions of % and Z,, it can be obtained that #j < %y, and
the sign holds if and only if 07 = 03 = 03 = 0. Consequently, not only does this reveal that random fluctuations have a critical effect on
the spread of epidemic, but it also indicates that % is a unified threshold of the disease persistence of systems (1.1) and (1.3).

4. Probability density function analysis

By Theorem 3.1, one obtains that the global solution (S(t),V (t),I(t)) of system (1.3) follows a unique ergodic stationary distribution
@ (-). This section is devoted to deriving the explicit expression of the density function of the distribution @ (-) while % > 1. In fact,
the result will present a wide range of possibilities for the further development of epidemiological dynamics. Before this, two necessary
transformations of system (1.3) should be first introduced.

4.1. Two important transformations of system (1.3)

(I) (Logarithmic transformation): Let (uq,uy,u3)® = (InS, InV,InI)?, Employing Itd’s formula, it follows from system (1.3) that

duy = [Ae’”‘ - (u + 0+ 0—12) P + yetTih 4 8e“3*“1]dt + 01dB; (t)
2 ) el fet et ’
2
duy = [ﬁe”l‘”z - (u +y+ %)]dt + 0By (t). (4.1)
_ e o3
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o2
Blu+y+—4)

By taking the random effect into consideration, another critical value is defined: % = — ——. Moreover, if g > 1, then
(t+y+e+—4) (U+a+8+-3)

the quasi-stable equilibrium E* = (5%, V*, [*) := ("1, e'2,e"3) € R3 is determined by the following Eq. (4.2):

2 Ui

L o Be's . -

Ae ul‘(’“‘*“%)‘m”euz 4 8ehTh =0,
2

Peti—u: — (u +y+ 072) =0, (4.2)

e o3

g (Hrerir) =0

2 " C_ 3
For convenience, let w; = u + UT’ for any i =1, 2,3. As a result, it can be derived by (4.2) that V* = /Ziy’ I = W#, N* =
* * * __ BS* * __ A(ua+y)

STHVEHl = HU3t+a+d’ where §* = w1 (o +y )+ ua+(s+o) (up+y +0) (Z2G5-1)

Notably, it is easily obtained that %j < #§. This then indicates that E* € ]R§r if Z§ > 1. In addition, if there is no stochastic noise in
system (1.3), i.e.,, model (1.1), then E¥* = E* = (§+,V+,[T).

(II) (Equilibrium offset transformation): Given the above, let X = (x1,Xp,x3)" = (uy — uj, up — ub, u3 — u}); thus, the corresponding
linearized system of (4.1) takes the form

dxy = (ax1X1 — Ax1X2)dt 4+ 02dB; (1), (43)

{dxl = (—anXq + apX; + a;3x3)dt 4+ o1dBy (1),
dxs = [(azy + as3)x1 — Xy — Aszxsdt + o3dBs (t),

where
a :A+yv*+81*_ﬁs*1* 4 :yV*+ﬂV*I*>O a :E_,B(SMLV*)I*
1 S (N2 127 "o (N*)2 » P13 T G Nz
N S
021=M2+V>0, (13221?1\]7*)2>0,a3321(31\17*)2>

4.2. Density function of stationary distribution @ (-)

Theorem 4.1. For any initial value (S(0),V(0),1(0)) € R3, if #} > 1, then the stationary distribution @ (-) around E* follows a unique log-
normal probability density function @ (S,V,I), which is given by

D(S.V.I) = (2m) 3 || temzngdngednp) = n dln g dn )7, (4.4)

where X is a positive definite matrix, and the special form of X is given as follows.
(1). If mqy #0, my # 0 and a3 # 0, then

T = 0f (Hih) ' Ool (Hi}) 7 ']" + 03 (HoJ)2) "' Oo[ (HaJl2) ' 1" + 03 (HaJa) ™' Op[ (Ma]3) ' ]".
(2). If my #£0, my # 0 and a3 =0, then

T = i (HiJ1) ' Oo[(Hi1) 1" + 035 (Hafa)2) ' Ol (HoJa)2) ' + 11 @4 )"

3). If my #0, my =0 and a3 # 0, then

2 = 0f (HJ) 'Ol () T + 03,03 (HoJal2) ™' Os[(HaJal) ' IF + 03 (Hafa) ™' Ool (Maf3) '™
(4). If mq # 0 and my = a;3 =0, then

£ = 0 (HJ) ' Ol () ' + 03,03 (Haal) ™ O3l (Haal) ' I +J3 ©a (U™

(5). If my =0, my # 0 and a3 # 0, then

% = @307 (H) ' O1[(HID T + 03 (Halaf2) ™ Ool (Hafal) ' I* + 03 (HaJa) ' Ool (Maf) T
(6). If my = ay3 = 0 and m, # 0, then

¥ = a3,02(HJ) " O1[(Hi) ' I° + 03 (HaJah) "' Ool (HaJa)) ' +J71040 1"

(7). If my =myp =0 and a3 # 0, then

£ = @07 (H) " O[(H) I + 3,03 (HaJal) ' O3 (Hafal2) ' 17 + 03 (HaJa) ™ Ool (Ma3) ' T"
(8). If my =my =ay;3 =0, then

% = @307 (H) ' O (HID T + 63,07 (HoJal) ™ Os[(Halal) ' +J3 €403 )",

with

1 0 0 01 0 1 0 0 0 0 1
A ) 1 0), p=(o o 1), p=(o 1 o}, u=(1 o o}
0 -zt 1 0 0 0 @& 1 01 0
21 32
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R 1 1 1
2(ryry—13) ? 2(rirp—13) 2w, (1) 0 2ws 0 0
o= O wwwm 0 )OS0 e OO0 g 0.
o 1
2(ryry—13) 0 2r3(r1r2—Tr3) 0 0 0 0 0 0
apm;  —(ay +as)my i _ —G3 a3 —dp— X2 a3y + as3
Hy = 0 my —a33 |, Ho=( 0
0 0 1 0 0
—apm;  —(an +az)my  (an — ap — “222)% 4 m,(as; + a33) s O
H; = 0 my —an + ap + a‘;fz“ , O4=10 0 0 s
0 0 0 0 O
~ ay —ay O a;3dy  —ay(an +adz)  ax(ap +dx)
H=|0 1 0 ). H3= 0 axn —ay ,
0 0 1 0 0 1
and
_ 033(axn — a3 — a33) My = aps + ap(an —a33)  aj;(as +a33)
ax ’ as, a3, '

01 =0a21M101, Q2 = —032M03, O3 = 41302103,

i =ay +ay + a3, Ty =ay(an —ap +as3) +[an1a33 — a3(asx + as3)], 13 = axas(an —ap —as),

a12033 103033 (A — A1 — G13)
Wi =dapn +ay, Wy =ay(ay —app —a13), W3 =dapp+0y +0as+ , Wq=
asp asy(ap — dp) — a1pdss

Proof. For convenience and simplicity, let B(t) = (B;(t), B>(t),B3(t))* and

g2 0 0 —an an as
M = 0 0'22 0], A= az —d 0
0 0 o3 (3 + 033 —0a3  —033

Hence, system (4.3) can be rewritten as dX = AXdt + MdB(t). By the theory of Gardiner [44], the unique density function @ (X) around
the quasi-endemic equilibrium E* satisfies the following Fokker-Plauck equation:
3
o7 82<1>

ad
5 3)(2 [( a11X1 + diXa + 013X3)q§] % [(021X1 - a21x2)¢>]

k=1
0
+T[((a32 +a33)X1 — A3pX; — A33%3) P | = 0. (4.5)
X3
Since the diffusion matrix M is a constant matrix, Roozen [45] pointed out that @ (X) can be described by a quasi-Gaussian distribution,

ie, ®(X) = coe’%XQXr, where ¢g > 0 is determined by the normalized condition fp; @ (X)dX =1 and Q is a symmetric matrix.
+

Substituting these results into (4.5), one can obtain that Q obeys the algebraic equation QM2Q + A*Q + QA = 0. If Q is a inverse matrix,
by letting ¥ = Q~!, an equivalent equation is given by

M? + AY + ZAT = 0. (4.6)

Next, it will be proved that A has all negative real-part eigenvalues. The characteristic polynomial of A is defined as ¥ (A1) = A3 + p1A2 +
P2 + p3, where

T =0y +ay + a3, Ty =ay(an —ap +as3) +[an1033 — az(asy + as3)], 13 = axnas(an —dpp —ags).

By the expressions of $*, V* I* and N*, it can be shown that

(D). an = (w1 + ) + 5 — 5 =  + ) + 2G50 > 0,

is A+yV* 481" S I* Vv VI* SI* S +VH)I* A

) an ooy = [ ger] [ der] [ ssa] g o
S* VeI Ve SV u3+y+a) BV*

(lll). (12033 — A1303 = (167*)2 (yS* + ﬁN* S ) WZNi)ﬂ 0,

. X Vel 8 (% 4 %
(iv). ann —app +ass > + & ?N*)Z . %[(“ )+ : )] >0

Consequently, it follows from (i)-(iv) that

(1). rm=an+ay+as >0, r3=ayas(an —ap —ap) >0,
(2). 1 =ay(an —app +asz) + [anass — az(as + ass)]

(a2 + as3)ass — a3 (asz + ass)

aypa33 — agzasz > 0.

\Y
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(3). riry—r3 = (ann + A + a33){ax (a1 — a2 + as3) + [a11033 — a3 (a2 + a33) ]} — ax1a33 (A — a2 — A13)
= anry + ax[(ay + as3)ass — a;zas] + ass[anass — agz(as; + asz)]

= Ty + axnas3(ayy — A2 + A33) + a4 (an — aiz — ag3) + (21 + A33) (A12033 — A13032)

> anry > 0.

Combining the above (1)-(3) and Lemma 2.6, that ¥ of Eq. (4.6) is positive definite can be derived.

However, following the corresponding proof of Lemma 2.6, which is shown in subsection (II) of Appendix A, the exact expression of
¥ is given. First, by the finite independent superposition principle, (4.6) can be equivalently transformed into the sum of solution to the
following algebraic sub-equations,

M2 + A%y + Z,AT =0,
where My = diag(o4,0,0), M, = diag(0, 0,,0), M3 =diag(0, 0, 03), and the symmetric matrices ¥, (k= 1,2, 3) are their respective solu-

tions. Clearly, ¥ = X7 + ¥, + X3. Now, the special expression of X are derived by the following three steps.
Step 1. For the algebraic equation

M} +A% + $4AT =0, (4.7)

denote A; :]1A]1*1, where the elimination matrix J; and A; are derived by

1 0 0 —ap  4p+ Ulz(agjraas) i3
]l =(0 1 0 s A] = an —an 0 s
0 __ G3p+033 1 0 m

ay —das3

—a

where m; = 3@ 02132—(:33). By the value of wy, the relevant discussion is divided into two subcases:

Case (i). If mq #0, in view of the method introduced in Zhou et al. [28], it is assumed that B, :HlAlH;l, where the standardized
transformation matrix is

2
<a21m1 —(az1 + as3)my asz; )

Hy = 0 my —as3

0 0 1

By direct calculation, one obtains

- -rn -I3
Bi=1| 1 0 0 ,
0 1 0

where r1, 15 and r3 are the same as above. Furthermore, one can equivalently transform Eq. (4.7) into
(Hi)M3(HiJ1)™ + Bi[(Hy) Z1 (HiJ)" ]+ [(H1J1) =1 (Hi 1) 7B = 0.

Letting ©p = 072 (H1J1) =1 (H1J1)?, where o1 = ay;m;07, we obtain

G2+ B1Og + OB} = 0.

Noting that A has all negative real-part eigenvalues, then B; is a standard R; matrix. By Lemma 2.3, this means that X is positive definite,
which takes the form

(4.8)

. 0 -1
2(rrp—13) ] 2(rrp—13)
1 ——n
2(ryrp—13) 0 2r3(riry—r3)

Therefore, 31 = 02 (H1J;) ™' Og[ (HJ1)'1".

Case (ii). If m; =0, i.e, ay =asy +as3, By = 1711A1ITI;1 is defined, where another standardized transformation matrix ﬁ1 and §1 are
obtained by

~ Gy —ay O ~ -wi -w, =&
=0 1 o) B=(o0o 1 o ). (410)
0 0 1 0 0 —das33

where wy = aq +ay, Wy = ay;(ay —app —asz), and &; is abbreviation. Obviously, §1 is a standard R, matrix. Additionally, (4.7) can be
equivalently transformed into

(DM (H)™ + Byl (HUn) Zn (H)™ 1+ [(HD 4 (HU2)TIBT = 0.
By letting ®; = (ay;07) 2 (ﬁlj1)21 (ﬁ1jl)f, it can be simplified as
G2+ B1©; + O8] = 0.

In view of Lemma 2.4, ®; is described by

b 0 0
Or=|0 5 0 | (4.11)
0 0 0
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Hence, ¥y = a2 02 (HyJ)1©4[(HyJ;)~1]7. Step 2. Consider the algebraic equation

M2 +AX, + 3,AT = 0. (4.12)
2
For the corresponding elimination matrix J5, J3, A, :]2A]2*1 is defined, where J,,J; and A, are obtained by
0 1 0 1 0 0 —0 — az1
L=[0 0 1) J=(0 1 0] A=|-03 -a3—ap- 2> a3z + as3 ,
.00 0 & 1 0 my —Q11 +ap + L2

asz

app(ay—as3) _
as

2
alz(a;22+a33). Similarly, the following two sub-conditions are considered:
32

where m; = a3 +

(1) my # 0, (2) my = 0.
Case (1). If my # 0, let B, = HA;H; !, where the relevant standardized transformation matrix

<—a32m2 —(an +a3)my  (an —ap - %)2 +my(as; + as3) )

H; = 0 my —an +ap + G128 (4.13)

asz

0 0

In fact, one still derives

- - -I3
B,b=Bi=| 1 0 0 ,
0 1 0

which means that B, is also a standard R; matrix. By letting ®, = Q;Z (HaJ2) 25 (HoJ2)®, where o, = —a3;my0,, (4.12) is then equivalent
to the following equation:

G5 + B0, + ©,B5 = 0.

By Lemma 2.3 and the result of A having all negative real-part eigenvalues again, it can be shown that

JR T 0 1
2(ryry—13) . 2(ryrp—13)
@ = 0o = porea)
R 0 _n
2(riry—r3) 2r3(riry—r3)

In other words, X, = 02(HaJ3)2) 1O (HoJa)2) 717
Case (2). If my =0, let By = HyAyH,, 1. where the corresponding standardized transformation matrix H, and B, are given by

B —G3p —G33—dip— “22 43 +d33 N —w3  —wy —&
H=| 0 1 0 , Bp=( 0 1 0 ,

0 0 1 0 0 —an+ap+ 2

where w3 = aqy + Gy +a33 + % Wy = % and &, is also shorthand. Similarly, B, is a standard R, matrix. By defining
O3 = (a3202) 2 (Ho5) 5 (HoJ5) 7, (4.12) is then equivalent to
G2+ B,03 + @3B} = 0.

According to Lemma 2.4, ®; takes the form

i 0 0
O3=| 0 5w O (4.14)
o 0 o0

Then, %5 = a%,02 (HyJa)2) ™' Os[ (HoJa)) ']
Step 3. For the following algebraic equation,

M2 + AT;3 4+ T3AT =0, (4.15)

and for the following elimination matrix J5, let A; = ]4A];1, where J; and A3 are given by

0 0 1 —ads3 asy + ds3 —asy
Ja=|1 0 0 |, As=|{ a3 a2 —an .
0 1 O 0 ax —az

Hence, (4.15) can be equivalently transformed into
JaM2JE + B3O, + O4B% =0, (4.16)

where @4 = J;X3J;. Similarly, the proof is divided into two subcases by the value of aj3. Case (I). If a3 # 0, consider the corresponding
standardized transformation matrix

a;3ay1  —ay (apn +ax) 4y (ap +ax)
H; = 0 an —ay;

0 0 1
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Letting B3 = H3A3H§1, that B3 = By is still derived. Hence, an equivalent algebraic equation of (4.16) is described as follows:

(HaJa)M3(HsJs)" + B3[(HaJs) Z3(H3Ja) "] + [ (HaJs) X3 (H3/4) " 1BS = 0.

Denoting @5 = Q;z (H3J4)X3(H3J4)", where o3 = ay3a,103, the last equation can be also simplified as
G2+ B1Os + OsB] = 0.

Similarly, one obtains

0

T _ 1
2(rry—r3) 2(riry—r3)

2(ryry—13)
1 o
2(ryry—T3) 2r3(riry—r3)
Consequently, X3 = 03 (HaJs) "' @[ (H3Js)~']".
Case (II). If a5; = 0, then As is a standard Ry matrix. Noting that ;M2]% = 02G3=diag(cZ, 0,0), by Lemma 2.5, one can obtain
o}

2a33

0 O
Oy =J4T3)5 = 0 0
0 0 0
Based on as3 > 0, then @), is a positive semi-definite matrix, which means that X5 =];1(~)4 (lgl)f.
In summary, the special form of ¥ is divided into eight cases by the different values of m;, m, and a;3, which is shown in Theorem 4.1.
Finally, in view of the relation of systems (4.1) and (4.3), the stationary distribution z (-) around E* then has a unique log-normal proba-
bility density function

@(5, v, I) _ (27.[)—% |E|—%e—%(ln SIn%.InH='(n & In v%,ln,i,,)'.
Therefore, this completes the proof. O

Remark 3. If % > 1, Theorem 4.1 shows that the stationary distribution zo (-) around E* has the unique log-normal density function
@ (S, V,I). This reflects the stochastic permanence of system (1.3) from one side. In addition, that %} = Z{ =%, if 0; =0 (i=1,2,3) is
obtained.

5. Extinction of system (1.3)

As is known, all of the properties of disease persistence of system (1.3) are reflected by Theorems 3.1 and 4.1. For a comprehensive
study, a simple extinction result of system (1.3) is described by the following Theorem 5.1.

Theorem 5.1. For any initial value (S(0),V(0),1(0)) € R3, if %’g = % < 1, then the solution (S(t),V (t),I(t)) of system (1.3) follows:
uAa+8+ 3
2
lim sup lnIt(t) < (u +a+68+ 073) (9?3 - l) <0, as., (5.1)
t—+o0

which means that the epidemic of system (1.3) will go to extinction with probability 1 (a.s.).

Proof. Employing It6’s formula to InI(t), one obtains

2
dini(t) = [%— <M+a+8+%)]dt+a3d83(t). (52)

Integrating from O to t and dividing by t on both sides of (5.1), it can be seen that

lnIt(t) 3 lnIt(O) %/Of[/?vs((;l)) B (,u+oe Loy %g)]dH fotaati&(u)

< lnlt(o) +%/O[[ﬁ— <M+a+5+%§)]du+w

:w+<u+a+8+%§)<ﬁg—l>+w. (5.3)
Next, by the strong law of large numbers [1], one derives
tEToo w =0, as. (5.4)

Taking the superior limit of t — +oco on both sides of (5.3), the assertion (5.1) can then be obtained by (5.4). Moreover, from the expres-
sions of ;5 and %5, one can obtain that %4 < 7.
Consequently, the proof of Theorem 5.1 is confirmed. O

10
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Table 1
List of biological parameters of system (1.3).
Parameters  Description Unit Value Source
A Recruitment rate of population perday >0.5 [38,39]
B Transmission rate of susceptible individuals  per day = [0.390,0.432] [13]
n Natural death rate of population per day  [2.74,6.85] x 10—° [47],CSZ data
o Disease mortality of infected people per day oelw [13]
8 Recovery rate None [0.01,0.2] Estimated
Yy Immune loss rate of vaccinated individuals None 0.2 [37]
9 Vaccination rate of susceptible individuals None [0.371,0.436] [13]

6. Simulations and parameter analyses

In this section, by means of the well-known higher-order method developed by Milstein [46], the corresponding discretization equation
of system (1.3) is obtained in the form

k 1k 2
k+1 _ ch I BSI k k O1 k(g2 k
g+ _s<+[A—(,u+19)s<_m+yv + 61 ]At+75 (ék —1)At+<715 v AtE,
2
VI Z VR4 [95F - (u + y VK] AL+ %vk(nf —1) At + 0,V VAT, (6.1)
[+ =k Lklk—( +a+ 8K At+0—321k(§2—1)At+01"«/At§
= Skyveex M 2+ Sk 3 ke

where the time increment At > 0, and &, 7, and{, are three independent Gaussian random variables that follow the distribution N(0, 1)
for k =1,2, ..., n. Furthermore, (S, V¥, I¥) is the corresponding value of the kth iteration of the discretization equation. From Al-Darabsah
[13], Zhao and Jiang [37], Liu et al. [38], Zhang and Jiang [39], Arino et al. [47], and the detailed data of the Central Statistical Office of
Zimbabwe (CSZ), the corresponding realistic statistics of system (1.3) are shown in Table 1. Next, several empirical examples are provided
to focus on the following five aspects.

(i) The existence of the ergodic stationary distribution of system (1.3) while % > 1.

(i) The exact expression and verification of the unique log-normal density function for the stationary distribution under #§ > 1.

(iii) The influence of random fluctuations on the disease persistence of system (1.3).

(iv) The effects of the main parameters of system (1.3) on the disease dynamics.

(v) The corresponding dynamical behavior of system (1.3) if fy?g <1

6.1. Dynamical behavior of system (1.3) if %§ > 1

Example 6.1. By Table 1, letting the environmental noise intensities (o7, 07,03) = (0.0008,0.0004,0.0008) and main parameters
(A, B, i, a,8,y,9) =(0.8,04,3 x 107>,0.00457,0.05, 0.2, 0.4), one then obtains
2
mB(+vy+%)
2 2 2 2
[(w+F)(w+y+F)+0(n+%F)]|(n+a+8+F)

It follows from Theorem 3.1 that system (1.3) admits a unique ergodic stationary distribution z (-). The left-hand column of Fig. 1 can be
seen to validate it. By Theorem 4.1, the stationary distribution zo (-) around the quasi-endemic equilibrium E* has a unique log-normal
density function @ (S, V,I). Moreover, it is calculated that

m; =0.0246 #£0, my =-27.8515#0, a3 =0.1196 # 0,

T — Bn+vy)
T Ty ) ta+to)

=244>1, %= =243~ 1.

which means
X = 02(HiJ1) ' Oo[(HiJ1)'" + 03 (HoJ3)2) 7' Oo[ (HoJa2) ' |* + 0% (HaJa) "' O (Ma]3)~']*

0.3524 0.3498 0.3947
=10"*x | 0.3498 0.3538 0.3882]).
0.3947 0.3882 0.4970

By direct calculation, one can obtain that E* = (§*,V*, I*) = (40.0428, 173.2562, 80.0736). Then, the corresponding marginal density func-
tions of S(t), V(t) and I(t) are separately given as follows.

(1) P] (S) — 88% — 67_2046—14188.4(ln573.69)’ (11) P2 (V) — aa;‘dj — 67.076714]32‘2(1[1‘/75']5),

(iii). Py(1) = % — 56.59¢ 10060 4(In1-4.38),

The curves of (i)-(iii) are shown in the right-hand column of Fig. 1. Obviously, this greatly illustrates Theorem 4.1 from the side.

Combining Remarks 3.1-4.1 and Theorem 5.1, one can derive that all random perturbations o7, 03, and o3 have a critical influence on
the dynamical behavior of system (1.3). Therefore, the corresponding parameter analyses of the above three white noises are shown by
Example 6.2.

1



B. Zhou, D. Jiang, Y. Dai et al. Chaos, Solitons and Fractals 143 (2021) 110601
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Fig. 1. Left-hand column shows simulation of compartments S(t),V(t), and I(t) in deterministic system (1.1) and stochastic system (1.3) with noise intensities (o, 03, 03) =
(0.0008, 0.0004, 0.0008) and main parameters (A, 8, i, «,8,y,9%) = (0.8,0.4,3 x 10->,0.00457, 0.05, 0.2, 0.4), respectively. Right-hand column shows frequency histogram
and corresponding marginal density function curves of individuals S, V, and I.

The impact of o, on S(t) The impact of o, on I(t)
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36 160
o} 1 2 3 4 5 6 & 8 9 10 o] 4 2 3 4 5 6 7 8 9 10
Time t =104 Time t =10%
The Impac( of o5 0N S(l) The impact of o, on I(t)
42 T +.=0.0008 r : v : v : : . v :
40! =0.008
- A 71 - 170 et~ T e
1 =2
= =8 L 160 [
36 150
34 . 140
o | 2 3 4 5 6 T 4 8 9 10 o 1 2 3 4 5 6 4 8 9 10
Time t <104 Time t =10%
Subfigure (2-1) Subfigure (2-2)

Fig. 2. Corresponding simulation of partial compartments S(t) and I(t) of stochastic system (1.3) wunder noise intensities (oy,03,03) =
(0.0008, 0.0004, 0.0008), (0.008,0.0004,0.0008), (0.0008,0.004,0.0008) and (0.0008,0.0004,0.008), respectively. Other fixed parameters: (A,B,u,,8,y,9) =
(0.8,0.4,3 x 10>, 0.00457,0.05, 0.2, 0.4).

6.2. Impact of random noises o; (i=1,2,3) on disease extinction and the existence of stationary distribution

Example 6.2. One chooses the epidemiological parameters (A, B, u, .8, y,9) = (0.8,0.4,3 x 107>, 0.00457, 0.05,0.2, 0.4) and considers
the following four subcases of stochastic perturbations:

(i). (01,02, 03) = (0.0008,0.0004,0.0008), (ii). (01,02,03) = (0.008,0.0004, 0.0008),

(iii). (01,02, 03) = (0.0008,0.004,0.0008), (iv). (01,02, 03) = (0.0008,0.0004, 0.008).

First, it should be pointed out that the above four subcases (i)-(iv) all guarantee the existence of a stationary distribution, which has an
ergodicity property. For convenience and simplicity, only the population intensities of susceptible and infected individuals are focused on,
which are presented in subfigures (2-1) and (2-2) of Fig. 2, respectively. By only increasing the perturbation intensities of the vaccinated
individuals (or infected individuals), i.e., the larger o, (or o3), then the disease infection will be effectively inhibited. In contrast, by only
increasing the perturbation intensity of the susceptible individuals, a great destabilizing influence on the population numbers of S and I
manifests.

12
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Fig. 3. Corresponding population numbers of solution (S(t),V(t),I(t)) to system (1.3) with transmission rates of 8 =0.39, 0.40, 0.41, and 0.42, respectively. Other given
parameters: (A, i, a,8,y,9) = (0.8,3 x 10-5,0.00457, 0.128,0.2,0.4) and (07, 03, 03) = (0.0008, 0.0004, 0.0008).
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Fig. 4. Corresponding simulation of solution (S(t),V (t),I(t)) to system (1.3) with vaccination rate ¥ = 0.371, 0.386, 0.401, and 0.416, respectively. Other fixed parameters:
(A, B, 1, a,8,y) =(0.8,04,3 x 107°,0.00457,0.128,0.2) and (o7, 02, 03) = (0.0008, 0.0004, 0.0008).

Next, by Zhu et al. [25], Jia et al. [26], the impact of the main parameters of system (1.3) on the individual decision-making behavior is
studied. From the expressions of %} and %g , the disease persistence and extinction of system (1.3) are critically affected by the transmis-
sion rate B and vaccination rate . Thus, the following Examples 6.3 and 6.4 will reveal the impact. In addition, the corresponding effect
of the recruitment rate A on the dynamical behavior of system (1.3) is also shown in Example 6.5.

6.3. Impact of transmission rate B on dynamics of system (1.3)

Example 6.3. Choosing the epidemiological parameters (A, u,,d,y, ) = (0.8,3 x 107>,0.00457,0.128,0.2,0.4) and random noises
(01,09,03) = (0.0008, 0.0004, 0.0008) and considering the subcases of transmission rate § = 0.39, 0.40, 0.41 and 0.42, the correspond-
ing numbers of the solution (S(t),V (t),I(t)) to system (1.3) are described in Fig. 3. Clearly, a small transmission rate can lead to reduction
of disease infection and even elimination, such as 8 < 0.39 per day.

6.4. Impact of vaccination rate ¥ on dynamics of system (1.3)

Example 6.4. Assuming that the parameters (A, 8., a,8,y) = (0.8,0.4,3 x 107>,0.00457,0.128,0.2) and stochastic perturbations
(01,09,03) = (0.0008,0.0004, 0.0008), for the corresponding subcases of vaccination rate ¥ = 0.371, 0.386, 0.401, and 0.416, the cor-
responding solutions (S(t),V (t),andI(t)) to system (1.3) are shown in Fig. 4. Similarly, a small vaccination rate can control the disease
infection more effectively than a large one.

13



B. Zhou, D. Jiang, Y. Dai et al. Chaos, Solitons and Fractals 143 (2021) 110601

The population intensity of t The population intensity of V(t The population intensity of I(t]
1000 2RO X nsity of S() 2000 2 RoRLE nsity of V() 220 e RopUE nsity of I()
o A A ~ P WA o
o Wi N A s A WA N .
WY A F L] M Uk g )
= 3 L = s \ Ui, J
9200 F 1800 A 200 M I “xc),ﬂ“l ""WM’%”#’M"‘"’N‘ﬁ/‘p’v"’v\h M‘;‘ v
/ \ y \
/ f /
800 |- g 1600 - g 180 [ | B
A oo M 2N " AL i
" " A g A, S Y PN M b N,
/ g | o aiAe, B
700 -/ / s 1400 -/ / g 160 - ! 0.-",;'*‘»;:“*“’" WA e oA i1
/ I a JMN\"’“""‘VVMMJW [ oW VR
/ AN
600 |- A=0.7] 1200 A=07] |
/ A=0.8 | A=0.8
- A=0.9 @ il A=0.9
= soo A=1.0] = 1000 R A=1.0| o
= | = |
| i
¢ b
400 g 800 i E
{
i {
300 s 600 e
200 400
100 F e 200 - -
o . L . . ° L . . . 20 . L . L
o 2 a 6 8 10 o 2 a 6 8 10 o 2 a 6 8 10
Time t ~<10% Time t ~10% Time t =<10%

Fig. 5. Corresponding population intensities of individuals S, V, and I of system (1.3) with recruitment rate A = 0.7, 0.8, 0.9, and 1.0, respectively. Other given parameters:

(B. 1.8, y,9) = (0.4,3 x 10-5,0.00457, 0.128, 0.2,0.4) and (o7, 03, 3) = (0.0008, 0.0004, 0.0008).

Stochastic system

Deteministic system
T v v 14000

s
vt
sm| L | ,(f,) 4

12000
vty

10}

3000 [~
10000 [~
2500 [~ -
8000 |-

4000

3500 |-

Value
Value
-
——
-
-
=
— —
= _
-
=

2000 - /
/ 6000
oo/
/
/ 2000 |-
1000 |- | E
/
/ /
s00 1 B 2000 |- H
|/
. A . 5 . ,
o 2 a 5 s 10 o 2 a 6 s 10
Time t =<10°% Time t <10°%

Fig. 6. Corresponding population numbers of solution (S(t),V(t),I(t)) to system (1.3) with random perturbations (o1, 02, 03) = (0.01,0.01,0.78) and main parameters
(A, B, 1, a,8,y,9) =(0.8,04,3 x 10->,0.00457,0.13,0.2, 0.38).

6.5. Impact of recruitment rate A on dynamics of system (1.3)

Example 6.5. Letting the dynamical parameters be (8, . «,8,y, ) = (0.4,3 x 10->,0.00457,0.128,0.2,0.4) and stochastic fluctuations
be (01,07, 03) = (0.0008,0.0004, 0.0008), and considering the sub-conditions of recruitment rate A = 0.7, 0.408, 0.9, and 1.0, the cor-
responding intensities of the compartments S, V, and I of system (1.3) are reflected in Fig. 5. Obviously, as the parameter A increases to
1 from 0.7, the spread and infection of an epidemic can be effectively controlled by the small recruitment rate.

6.6. Dynamical behaviors of system (1.3) under %’g <1

Example 6.6. Considering the stochastic noises (o4, 0y, 03) = (0.01,0.01,0.78) and main parameters (A, 8, u,®,6,y,9) = (0.8,0.4,3 x
10>, 0.00457,0.13,0.2,0.38), one can then obtain

Ry = ﬁ(gﬂf) <~ =1.0249 > 1, %’3:%:0.9116<1, #5 =01179 < 1.
(M+V+ )([L+()l+ ) /L+O{+(S+073

By Theorem 3.1, one cannot derive the existence of the ergodic stationary distribution of system (1.3). In contrast, it follows from
Theorem 5.1 that the disease of stochastic system (1.3) will be extinct in a long term. In addition, the deterministic model (1.1) has a
globally asymptotically stable endemic equilibrium E*. On the one hand, these results validate the fact that large white noises lead to dis-
ease elimination from the side. On the other hand, the large random fluctuation o3 (i.e., g—? = g—; =78 >> 1) indicates that it is necessary

to isolate and control the infected individuals during the outbreak of an epidemic. These results are verified by Fig. 6.

For epidemiological study, combining the above numerical simulations and parameter analyses, several reasonable and effective mea-
sures to reduce the threat of infectious diseases to human life, and even eliminate the epidemic, are provided. The special approaches are

the following.
(i) Several reasonable policies of joint prevention and control are implemented to reduce the population mobility in differential risk

epidemic areas. Then, the small recruitment rate A may lead to the elimination of disease (see Fig. 5).
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(ii) Controlling the activities of the susceptible individuals in highly pathogenic areas to decrease the contact rate of population. Hence,
B — 0% can be guaranteed, which means #} < 1 and %g <1 (see Fig. 3).

(iii) Developing several effective vaccines and carrying out other prophylactic measures to improve the immune rate of disease (see
Fig. 4).

7. Conclusions and result discussions
7.1. Conclusions

The corresponding theoretical results of this paper are the following.
(i) By Theorem 3.1, system (1.3) admits a unique ergodic stationary distribution zo (-) under

2
wB(n+y + %)
[(b+F) (+y+%)+0(n+ %) (n+a+5+%)
(ii) By taking the effect of random perturbations into account, a quasi-endemic equilibrium E* related to E* is defined while Z§ =

S _
Ky =

o2
Bluty+4)

= —>11In view of the expressions of #{ and Zj, it is further proved that the stationary distribution @ (-) around

(ty+e+—4) (uta+s+-5)

E* has a log-normal density function in the following form:

DSV, 1) = (27.[)—% |E|—%e—%(ln Sn Y. In =" (n & In % In ,é)f’

where the special form of ¥ is shown in Theorem 4.1. (iii) The disease of system (1.3) will go to extinction with probability 1 if %24 =

— B~ 1. The above results (i) and (ii) reflect the stochastic persistence and ergodicity of the epidemic. Moreover, the corresponding
o2

uta+d+ 3

disease extinction of system (1.3) is described by result (iii).

7.2. Result discussions

In this paper, combining the great effect of vaccination and the unpredictability of environmental fluctuations in the real world, a
stochastic SVIS infectious disease model with vaccination and standard incidence is the object of concern. Adopting the descriptions in
[28-40], linear perturbation, which is the most intuitive assumption of a random effect, is similarly taken into consideration in this pa-
per. Subsequently, several dynamical properties of stochastic system (1.3) are analyzed, such as the existence and uniqueness of a global
positive solution, existence and ergodicity of a stationary distribution, and disease elimination. By comparison with the existing results
([28-40]), several highlights developed in the present study are detailed in the following two points.

e As is known, the endemic equilibrium and basic reproduction number, two important results of a deterministic epidemic, reflect
disease permanence and elimination. Similarly, for the corresponding stochastic model, the existence of stationary distribution indicates
the stochastic positive equilibrium state. In this paper, it is first proved that stochastic system (1.3) admits a unique ergodic stationary
distribution under the critical value % > 1. It should be pointed out that %§ > 1 is a unified threshold for the disease persistence of
systems (1.1) and (1.3). Moreover, the sufficient condition 9?3 < 1 is obtained for the disease extinction of system (1.3). Both #§ > 1 and
923 < 1 reveal that the dynamical behavior of system (1.3) is critically affected by the random fluctuations, i.e., o1, 03, and o3. In view of
the method of controlling variables and numerical simulations, this means that a large white noise leads to the disease eradication, while
a small one guarantees stochastic permanence. In addition, by the main parameter analyses, several effective measures to stop the spread
of an epidemic are provided.

o It is generally accepted that the existence of an ergodic stationary distribution incurs difficulty in studying more exact statistical prop-
erties. Hence, this paper is devoted to obtaining the corresponding probability density function for further dynamical investigation. The
results of Zhou et al. [28] are further perfected and general solving theories of algebraic equations with respect to the three-dimensional
Fokker-Planck equation are developed, which are described in Lemmas 2.5 and 2.6. By taking the effect of stochasticity into account again,
the quasi-endemic equilibrium E* corresponding to the endemic equilibrium E* is defined. For practical application, the exact expression
of the log-normal three-dimensional density function @ (S,V,I) of system (1.3) is given. Furthermore, it is worth mentioning that the
methods and theories developed herein are still suitable for the case of the diffusion matrix M being positive semi-definite, such as delay
stochastic differential equations [32,48].

Several remaining issues are now proposed and analyzed. First, by virtue of the limitation of the present mathematical approaches for
epidemiological dynamics, a value gap exists between %} and ,%?g, and it is unfortunate that difficulty is encountered in obtaining the
most precise threshold for disease extinction and persistence. Second, the impact of telegraph noises and periodicity on the dynamics of
system (1.3) should also be studied; the reader is referred to [30,34,45,49,50]. These problems are expected to be studied and solved as
planned future work.
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Appendix A.

(I) (Proof of Lemma 2.5): Consider the algebraic equation G% +Co Y3+ T3C; =0, where Y3 is a symmetric matrix. Letting Y3 :=
(kij)3x3, by direct calculation one has

K1 0 0
Ys=({0 0 0], (A1)
0o 0 O
2
where xq; = —2‘%. If c11 < 0, then it means that Y5 is a positive semi-definite matrix. The proof is then completed.

(1) (Proof of Lemma 2.6): Denote

1 0 O 0 0 O 0 0 O
IL={0 0 O0),IL,={({0 1 0}, II5=|0 0 O0].
0 0 O 0 0 O 0 0 1

Let X; (i=1,2,3) be the solutions of the following algebraic equations, respectively:
I + AZ; + ZAT = 0.

Obviously, one can obtain

To=a?% + a2, + ol

Before proving the positive definiteness of ¥y, the following two theories of matrix algebra should be described first.

(Ty). The positive definiteness of the matrix is not affected by the inverse congruence transformation.

(T;). The similarity transformation does not change the eigenvalues of the matrix.

For convenience and simplicity, an important notation is introduced as follows. For the same dimensional square matrix A and B,
define

A >B: A—Bis at least a positive semi-definite matrix.

Given the above, it is easily derived that A is also positive definite if B is a positive definite matrix.
First, consider the following algebraic equation,

IT; + A%, + $1A7 =0, (A.2)
after which the relevant proof can be divided into the following two conditions:
(#1). a1 =a31 =0, (%2). axn #0 or az #0.

Next, one must demonstrate that the elements ay; and as; have the equivalent status in A. Let A= FlAFl*1 := (@jj)3x3. where A and the
invertible matrix F; are given by

1 0 O - an  a;3 ap
F=(0 0 1), A={a3x a3z as],
0 1 0 ay; Gz  4x

respectively. Hence, (A.2) can be equivalently transformed as

FIT,EF +A(F S1F)) + (F Z4.FF)AT = 0. (A3)
By defining ﬁ1 =FKILFF, fh = F; X{FF, it can be noticed that

(i). ﬁ1 =11, (ii). fh and X; have the same positive definiteness.

In addition, dy; = az;, d3; = dy;. Therefore, the validation is completed. Namely, one must only discuss the following two cases, which are
equivalent to conditions (%;) and (%,), respectively:

(61). a1 =a31 =0, (€). axn#0.
Case (¢1). If ay; = az; = 0, by directly solving Eq. (A.2), one obtains

-7 0 0
21 = 0 0 0) = A]].
0 0 O

Since A has all negative real part eigenvalues, by the similarity invariance of ¥4 (}), it indicates that

A +rA2+ A+ = Yad) = (A —an)[A? — (az + as3)d + (a2033 — a23032)].
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Consequently, @4(A) has an eigenvalue A; = ay;, which has a negative real part. By a;; € R, then a;; < 0. In other words, Aq; is positive

semi-definite. Moreover,

21 > An. (A4)
2

Case (%). If ay; # 0, let wq = a5, + B1@B-%2) _ 237

1 a3,
o If wy =0, which means ans (021 asy — 022031) —dasq ((13] a3 — dyq 033) =0, letA= (F3F2)A(F3Fz)7] , where

1 0 0 az; Ay + 02(13;31 (15%)
E=(0 1 o0}, E=|o0 1 0 ).
0 -4 1 0 0 1

az

Thus, (A.2) can be equivalently rewritten as

(BR) A (BR)T +A[(BER)E1(BR)T] + [(BR)Z1 (ER)TIAT = 0. (A.5)
Denoting ﬁl = (BE)I1(BFE)® and §1 = (BE)XZ(BE)T, one computes
. a, 0 0\ /& -& —&3 R % 0 o0
II,=10 0 0], A= 1 0 Oa . , X = 0 22%15 0
0 0 0 0 0 assz — % 0 (1)2 0

where the parameters &, (k=1,2,3) can be obtained by (A.5). Because their sign is the only object of concern, they are omitted here.
Furthermore, the characteristic polynomial 4 (A) follows from A that

Va0 = (h—an+ 2202+ fih+ ).

By the condition that A has all negative real part eigenvalues, it thus means that the equation A2 + &; A + & = 0 has two negative real part
roots. By the Routh-Hurwitz stability criterion [43], it can be shown that

51 > O, gz > 0. (A6)
In view of
az 2
R A (2) 0 S0 0 0 a(zl 0
i=lo s o)=(0 0 0ofF|0 FE O0f:=L+h
0 0 0 0 0 0 0 0

one hence obtains
21 = (BR)TE[ER) T = (BR) (L + L)[(BR)T
= (BR) 'LIBR) ' + (BR) 'LIEBR)

2% 0 O
={0 0 0])+BRLIEBE)T
0 0 O
=An+ (BR) 'LIBR)'. (A7)
By means of & > 0 and &, > 0, it is derived that Ay, L, and (BE)~1L,[(F;F)~ 1|7 are all positive semi-definite. It is then implied that
X1 = Ap. (A.8)

o If wy #£0, let A= (F,F)A(EF)~!, where the invertible matrix F; is given by

2
axs3a
anwy (A +as)wo  (as3 — B2)" + aywo
— axs3a
F4 = 0 wo assz — 72;2131

0 0 1

Denoting IT; = () A1 (FE)T, £1 = (BF) T (F4F)T, (A.2) can then be equivalently transformed into the following equation:

1_7] +Ai1 + E]AI =0. (Ag)
Similarly, by direct calculation, one obtains that ﬁl = diag((ay;wp)?,0,0), and
1
> —n —r; I3 > 2(T1Trzz—rs) (1) T 2(rr-13)
A= 1 0 0 y 21 = ((12161)0)2 0 Ira—13) 0 5
T
o 1 0 G PRI

where 11, 15, 3 are the same as those in Lemma 2.6. Considering

1 —_n 1

_ ) 2 0 0 ) 2r3(ny ;2*7’3) ? 2(riry—r3)
Yi=(anqwo)*{ 0 0 0]+ (axwo) 0  IGED) 0 =13+ Ly,

0 0 0 1 —n

2(rrp—13) 2r3(riry—r3)
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one can therefore derive, by a similar method as that described in (A.7),

T = (BR)'SIER) T = (BR) (s + L)[(EBR)
= (BE)'L(ER)" + (BE) 'L ER)

£ 0 0
=[0 0 0)+ERLERTT
0 0 O

= A+ (BE) 'L(BR) .
Noting that Aq3, Ly and (FF)1L4[(EsF) 1|7 are all positive semi-definite, one then has

21 > A13. (A10)
Consequently, by (A.4), (A.8) and (A.10), a constant 17 > 0 always exists such that
m 0 0
>0 0 0]). (A11)
0 0 O

In addition, for the following two algebraic equations,
(l) H2 +AX, + EzAT =0, (11) H3 +AX3 + 23AT =0,
and letting ﬁz = F5H2F5r, ﬁ?, = F6H3F6r, iz =F E2F5T, §3 = F;23FF, andA; = FSAFS_l, Az = FGAF6_1’ where

01 0 0 0 1
E=(0 o 1). k=[1 0 o
1.0 0 01 0

Noting that ﬁz = ﬁ3 = [Ty, by a method similar to that shown in (A.2), one can see that

- n2 0 0\ ns 0 0
2,10 0 0), 50 0 0],
0 0 O 0 0 O
where the constants 1, > Oand 13 > 0; that is to say,
_ 0O 0 O _ 0o 0 O
T, =FE'S:E'=(0 n 0], Z3=F'SF'=(0 0 0] (A12)
0O 0 O 0 0 ns
In summary, it can be derived that
am 0 0
202011221-1—(3(%224-0[%235 0 Ol%ﬂz 0
0 0 o?n;

Given the above definitions and discussions, X is a positive-definite matrix. This completes the proof.
(I). (SED Preliminaries): For the above complete probability space {2, .7, {Z};s0, P}, it is assumed that B(t) is an n-dimensional
standard Brownian motion defined on it. Consider the following n-dimensional SDE,

dX(t) = f(X(t), t)dt + g(X(t),t)dB(t), fort >ty
, with the initial value X(ty) = Xy € R". A common differential operator .# is given by

g—3+if(xr)i+li[f(xo (Xt)]i
~ ot T &IERURX, 2”:1g DDy axax;

Letting the operator .# act on a function V e C21(R" x [to, +oo]; RL), one has
1
LV X (), t) =Ve(X(t), 1) + Va(X(t), ) f(X (), t) + Etrace[g’ X(6), Vi (X (t), £)g(X (), f)],

. - A 2
where V; = %—‘t/, Ve = (é’T"], gT‘:.) and Vix = (%)nxn. If X(t) € R", one has

dV(X(t),t) =LV X(t), t)dt + Vi (X(t), t)g(X(t),t)dB(t).
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