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a b s t r a c t 

Considering the great effect of vaccination and the unpredictability of environmental variations in na- 

ture, a stochastic Susceptible-Vaccinated-Infected-Susceptible (SVIS) epidemic model with standard inci- 

dence and vaccination strategies is the focus of the present study. By constructing a series of appropriate 

Lyapunov functions, the sufficient criterion R 

s 
0 > 1 is obtained for the existence and uniqueness of the 

ergodic stationary distribution of the model. In epidemiology, the existence of a stationary distribution 

indicates that the disease will be persistent in a long term. By taking the stochasticity into account, a 

quasi-endemic equilibrium related to the endemic equilibrium of the deterministic system is defined. By 

means of the method developed in solving the general three-dimensional Fokker-Planck equation, the ex- 

act expression of the probability density function of the stochastic model around the quasi-endemic equi- 

librium is derived, which is the key aim of the present paper. In statistical significance, the explicit den- 

sity function can reflect all dynamical properties of an epidemic system. Next, a simple result of disease 

extinction is obtained. In addition, several numerical simulations and parameter analyses are performed 

to illustrate the theoretical results. Finally, the corresponding results and conclusions are discussed at the 

end of the paper. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Research background 

It is well established that many infectious diseases have a crit- 

cal influence on global social economies and human health. More 

recisely, the detailed statistics reported by the World Health Or- 

anization (WHO) show that approximately one-third of all deaths 

orldwide are caused by various epidemics. Recently, the global 

utbreak of COVID-19 with high transmission has also increased 

wareness of the importance of preventing and controlling infec- 

ious diseases. In epidemiology, mathematical models have pro- 

ided several effective approaches to describe the characteristics 

nd spread of epidemics in the last hundred years. In 1927, by di- 

iding the population into two clusters, which includes people sus- 

eptible to the disease and infected individuals, Kermack and McK- 

ndrick [1] initially proposed the classical susceptible-infected- 
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usceptible (SIS) epidemic model and established the correspond- 

ng threshold theory. Since then, various realistic ordinary differen- 

ial equations (ODEs) have been extended to analyze and control 

he transmission of diseases [2–8] . For instance, Hove-Musekwa 

nd Nyabadza [4] developed a HIV/AIDS model with active screen- 

ng of disease carriers and obtained the corresponding basic repro- 

uction number. Considering the effect of vertical infection, Tuncer 

nd Martcheva [6] formulated a hepatitis B model with acute in- 

ection and carriers. 

With the accelerated development of science and technology, 

accination comprises a common precaution that reduces the in- 

ection rate and even immunizes against some contagious diseases, 

uch as measles, cholera, and tuberculosis [9] . According to a 2005 

HO report, the eradication of smallpox has been considered the 

ost spectacular success of routine vaccination. Thus, some basic 

pidemic models with vaccination strategies have been studied in 

he last several decades [9–13] . In [9] , Liu et al. obtained the global

tability of equilibria and analyzed the effect of pulse vaccination. 

ao et al. [11] proposed mixed vaccination strategies in the SIRS 

pidemic model with seasonal variability on infection. However, 

https://doi.org/10.1016/j.chaos.2020.110601
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110601&domain=pdf
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he vast majority of infection processes are caused by person-to- 

erson contact. As Ma and Wang [2] described, the classical bi- 

inear incidence rate is reasonably assumed by the simple mass- 

ction law. From Anderson and May [14] , Hethcote [15] , this law 

s a good approximation for some communicable diseases, such 

s dengue fever and avian influenza. However, studies (see, e.g., 

16,17] ) have shown that the underlying assumption of homoge- 

eous mixing and homogeneous environmental for several sexu- 

lly transmitted diseases, e.g., HIV/AIDS and syphilis, may be in- 

alid. In addition, owing to the psychological effect, susceptible in- 

ividuals may tend to reduce the number of contacts with the in- 

ected per unit time as the numbers of the infected individuals in- 

rease [18,19] . As a result, the corresponding adequate incidence 

ate should be modified as a nonlinear form. More importantly, An- 

erson and May [20,21] pointed out that various epidemic models 

ith standard incidence are suitable for human beings and some 

regarious animals. 

Given the above, a SVIS epidemic system with standard inci- 

ence and vaccination is the focus of the present study. 

.2. Deterministic SVIS model and dynamical properties 

The total population N(t) is divided into three compartments, 

amely susceptible people S(t) , infected individuals I(t) , and vac- 

inees V (t) that are in the vaccination process at time t . Then, 

he corresponding deterministic SVIS epidemic model with stan- 

ard incidence and vaccination strategies takes the form 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS(t) 

dt 
= Λ − (μ + ϑ) S − βSI 

N 

+ γV + δI, 

dV (t) 

dt 
= ϑS − (μ + γ ) V, 

dI(t) 

dt 
= 

βSI 

N 

− (μ + α + δ) I, 

(1.1) 

here Λ denotes the recruitment rate of the susceptible, β is the 

ffective contact rate, μ depicts the natural death rate of the pop- 

lation, α denotes the additional death rate due to the disease, ϑ
s the vaccination rate of the susceptible, γ denotes the immunity 

oss coefficient of the vaccinated, and δ reflects the recovery rate 

f the infected. In epidemiology, these biological parameters are 

ssumed to be positive. 

Following similar results described by Ma and Zhou [22] , the 

orresponding basic reproduction number of system (1.1) takes the 

orm 

 0 = 

β(μ + γ ) 

(μ + γ + ϑ)(μ + α + δ) 
. (1.2) 

y defining a positive invariant set D 0 = 

{
(S, V, I) | S ≥ 0 , V ≥ 0 , I ≥

 , S + V + I ≤ Λ
μ

}
, two possible equilibria and their dynamical

roperties are then given as follows. 

• Assuming that R 0 ≤ 1 , the disease-free, E 0 = (S 0 , V 0 , I 0 ) = 

Λ(μ+ γ ) 
μ(μ+ γ+ ϑ) 

, Λϑ 
μ(μ+ γ+ ϑ) 

, 0 
)
, are then globally asymptotically stable 

n D 0 . 

• If R 0 > 1 , there is a unique endemic equilib- 

ium E + = (S + , V + , I + ) , where I + = 

Λ(R 0 −1) 
μ+(μ+ α)(R 0 −1) 

, S + =
Λ(μ+ γ ) 

(μ+ γ+ ϑ)[ μ+(μ+ α)(R 0 −1)] 
, V + = 

Λϑ 
(μ+ γ+ ϑ)[ μ+(μ+ α)(R 0 −1)] 

. More- 

ver, E + is globally asymptotically stable in D 0 , but E 0 is unstable. 

.3. Stochastic SVIS epidemic model 

In fact, Truscott and Gilligan [23] pointed out that the spread 

f infection, travel of populations, and design of control strategies 

re critically perturbed by some environmental variations. There- 

ore, it is more reasonable to construct a corresponding stochas- 
2 
ic model to reveal the epidemiological characteristics of infec- 

ious diseases by comparison with the deterministic model. No- 

ably, there are various possible approaches to simulate the ran- 

om effects from biological significance and mathematical per- 

pective [24] . For instance, making use of the fatal properties and 

ultiplex networks, Zhu et al. [25] , Jia et al. [26] studied the 

IR epidemic spreading process and analyzed individual decision- 

aking behavior. In 2002, the most classical assumption that ran- 

om changes always fluctuate around some average values due 

o continuous disturbances in nature, adopted by Mao et al. [27] , 

ecame a common way of describing environmental variations. 

oreover, the above random fluctuations are all assumed to be 

ypes of white noise. Therefore, many authors have formulated the 

elevant stochastic differential equations (SDEs) with linear noises 

or the transmission of various epidemics [28–36] . As an example, 

i and Jiang [29] studied the impact of virus carrier screening and 

ctively seeking treatment on the dynamical behavior of a stochas- 

ic HIV/AIDS epidemic model with bilinear incidence. In [34] , Shi 

nd Zhang focused on the corresponding stochastic avian influenza 

ystem and investigated the existence of the unique ergodic sta- 

ionary distribution. In addition, several dynamical analyses of the 

tochastic SIS models or epidemic systems with vaccination have 

een conducted [37–40] . In [37] , Zhao and Jiang creatively pro- 

osed a general theory about extinction and persistence in mean 

ased on a stochastic SIS epidemic model with vaccination. Zhang 

nd Jiang [39] obtained sufficient conditions for a stochastic SIS 

ystem with saturated incidence and double epidemic diseases. By 

aking the periodicity effect into account, they still investigated a 

tochastic SVIR epidemic model with vaccination strategies, and 

erived the criteria for the existence of non-trivial positive peri- 

dic solution [40] . Given the above, in the present study it is as- 

umed that the environmental noises are separately proportional 

o the compartments S, V and I. Then, the corresponding system 

1.1) with the stochastic perturbations is described by 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS(t) = 

[ 
Λ −
(
μ + ϑ 

)
S − βSI 

N 

+ γV + δI 

] 
dt + σ1 SdB 1 (t) , 

dV (t) = 

[
ϑS − (μ + γ ) V 

]
dt + σ2 V dB 2 (t) , 

dI(t) = 

[ 
βSI 

N 

− (μ + α + δ) I 
] 

dt + σ3 IdB 3 (t) , 

(1.3) 

here B 1 (t) , B 2 (t) and B 3 (t) are three independent standard Brow- 

ian motions (or Wiener processes), with σ 2 
i 

> 0 (i = 1 , 2 , 3) de-

oting their intensities. 

From the perspective of biomathematics, the existence and er- 

odicity of stationary distribution indicates that an infectious dis- 

ase will prevail and persist in long-term development. More im- 

ortantly, the corresponding probability density function of the 

tationary distribution can reflect all statistical properties of the 

ndividuals S, V and I. It can be regarded as a great intersection of 

pidemiological dynamics and statistics. It should be pointed out 

hat there are relatively few studies devoted to the explicit expres- 

ion of probability density function due to the difficulty of solving 

he corresponding Fokker-Planck equation. To the best of our abil- 

ty, several general methods of solving the corresponding algebraic 

quations are developed herein that are equivalent to the Fokker- 

lanck equation, and the exact expression of density function is 

erived. 

The rest of this paper is organized follows. In Section 2 , several 

athematical notations and important lemmas for the dynamical 

nalyses of system (1.3) are presented. The sufficient conditions for 

he existence and uniqueness of the ergodic stationary distribution 

f system (1.3) are obtained in Section 3 . By means of the devel-

ped approaches in solving the general three-dimensional Fokker- 
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lanck equation, the exact expression of the probability density 

unction for the stationary distribution is derived in Section 4 . In 

ection 5 , several simple criteria for the disease extinction of sys- 

em (1.3) are given. In Section 6 , several numerical simulations are 

erformed, together with parameter analyses to validate the the- 

retical results. Finally, the corresponding result discussions and 

ain conclusions are shown, compared with existing articles, at 

he end of the paper. 

. Preliminaries and necessary lemmas 

Throughout the paper, let { 	, F , { F t } t≥0 , P } be a complete

robability space with a filtration { F t } t≥0 with a filtration { Γt } t≥0 

atisfying the usual conditions (i.e., it is increasing and right con- 

inuous, while Γ0 contains all P -null sets. Assuming that A m ×n is a 

eal matrix, let A 

τ be the transpose matrix of A . If m = n, A 

−1 de-

icts the inverse matrix of A . The reader is referred to Mao [41] for

etailed descriptions. For convenience, let R 

n be the n -dimensional 

uclidean space, and 

 

n 
+ = { (x 1 , ..., x n ) | x k > 0 , 1 ≤ k ≤ n } , 
n = 

(
1 

n 

, n 

)
×
(

1 

n 

, n 

)
×
(

1 

n 

, n 

)
. 

learly, the values S, V and I that satisfy system (1.3) are required 

o be positive for the corresponding dynamical behavior. To this 

nd, the existence of uniqueness of the global positive solution of 

ystem (1.3) is described by the following Lemma 2.1 . 

emma 2.1. For any initial value (S(0) , V (0) , I(0)) ∈ R 

3 + , there is

hen a unique solution (S(t) , V (t) , I(t)) of the system (1.3) on t ≥ 0 ,

nd the solution will remain in R 

3 + with probability 1 (a.s.). 

The detailed proof is almost the same as those in Zhou et al. 

28] , and thus it is omitted here. Next, let X(t) be a homogeneous

arkov process defined on R 

n that satisfies the following SDE, 

X (t) = φ(X (t)) dt + 

l ∑ 

k =1 

g k (X ) dB k (t) , 

here the diffusion matrix H(x ) = ( ̄a i j (x )) , and ā i j (x ) =
 l 
k =1 g 

(i ) 
k 
(x ) g ( j) 

k 
(x ) . Then, the corresponding ergodicity theory 

nd the existence of stationary distribution are described by the 

ollowing Lemma 2.2 . 

emma 2.2. (Has’miniskii [42] ) The Markov process X(t) has a 

nique ergodic stationary distribution � (·) , if there exists a bounded 

omain D 0 ⊂ R 

n with a regular boundary Γ and the following are 

rue. 

(A 1 ) . In the domain D 0 and some neighborhood thereof, the small- 

st eigenvalue of the diffusion matrix H(x ) is bounded away from 

ero. 

(A 2 ) . There is a non-negative C 2 -function U(X(t)) such that 

 V (X(t)) is negative for any R 

n \ D 0 . 

Then, for any x ∈ R 

n and integral function ϕ(·) with respect to the 

easure � (·) , it follows that 

 

{ 
lim 

t→∞ 

1 

t 

∫ t 

0 

ϕ(X (t)) dt = 

∫ 
R n 

ϕ(x ) � (dx ) 
} 

= 1 . 

By Zhou et al. [28] , two important lemmas of solving the special 

lgebraic equations are given as follows. 

emma 2.3. ( [28] ) Let ϒ1 be a symmetric matrix, for the three- 

imensional algebraic equation G 

2 
0 

+ A 0 ϒ1 + ϒ1 A 

τ
0 

= 0 , where G 0 =
iag(1 , 0 , 0) , 

 0 = 

( −p 1 −p 2 −p 3 
1 0 0 

0 1 0 

) 

. (2.1) 
3 
f p 1 > 0 , p 3 > 0 and p 1 p 2 − p 3 > 0 , then ϒ1 is positive definite,

hich follows 

1 = 

⎛ ⎝ 

p 2 
2(p 1 p 2 −p 3 ) 

0 − 1 
2(p 1 p 2 −p 3 ) 

0 

1 
2(p 1 p 2 −p 3 ) 

0 

− 1 
2(p 1 p 2 −p 3 ) 

0 

p 1 
2 p 3 (p 1 p 2 −p 3 ) 

⎞ ⎠ 

emma 2.4. ( [28] ) Consider the three-dimensional algebraic equa- 

ion G 

2 
0 + B 0 ϒ2 + ϒ2 B 

τ
0 

= 0 , where ϒ2 is a symmetric matrix, G 0 =
iag(1 , 0 , 0) , 

 0 = 

⎛ ⎝ 

−q 1 −q 2 −q 3 

1 0 0 

0 1 q 33 

⎞ ⎠ . (2.2) 

ssuming that q 1 > 0 and q 2 > 0 , then ϒ2 is positive semi-definite, 

hich takes the form 

2 = 

⎛ ⎝ 

1 
2 q 1 

0 0 

0 

1 
2 q 1 q 2 

0 

0 0 0 

⎞ ⎠ . 

Finally, combining Lemmas 2.3 –2.4 and the Routh-Hurwitz cri- 

erion [43] , two general theories are developed in solving the sim- 

lar algebraic equations, i.e., Lemmas 2.5 and 2.6 . 

emma 2.5. For the three-dimensional algebraic equation 

 

2 
1 

+ C 0 ϒ3 + ϒ3 C 
τ
0 

= 0 , where ϒ3 is a symmetric matrix, 

 1 = diag(a 0 , 0 , 0) (a 0 	 = 0) 

 0 = 

⎛ ⎝ 

c 11 c 12 c 13 

0 c 22 c 23 

0 c 32 c 33 

⎞ ⎠ . (2.3) 

f c 11 < 0 , then ϒ3 is a positive semi-definite matrix of the form 

3 = 

⎛ ⎝ 

− a 2 0 

2 c 11 
0 0 

0 0 0 

0 0 0 

⎞ ⎠ . 

emma 2.6. For any real matrices A = (a i j ) 3 ×3 , Π = 

iag(α2 
1 
, α2 

2 
, α2 

3 
) , where αi > 0 (i = 1 , 2 , 3) . Assume that �0 is

 symmetric matrix, for the three-dimensional algebraic equation 

+ A �0 + �0 A 

τ = 0 . (2.4) 

y defining the characteristic polynomials of A as ψ A (λ) = λ3 + 

 1 λ
2 + r 2 λ + r 3 , if A has all negative real part eigenvalues – that is,

 1 > 0 , r 3 > 0 , r 1 r 2 − r 3 > 0 – then �0 is positive definite. 

emark 1. From Zhou et al. [28] , A 0 and B 0 are called standard

 1 and R 2 matrices, respectively. Similarly, it is assumed that C 0 
s a standard R 3 matrix. In addition, subsection (I) of Appendix A 

ives the detailed proof of Lemma 2.5 . The corresponding proof of 

emma 2.6 and the special form of �0 are shown in subsection (II) 

f Appendix A. 

. Stationary distribution and ergodicity of system (1.3) 

In this section, the focus is on the sufficient conditions for the 

xistence and ergodicity of stationary distribution for system (1.3) . 

oreover, one must guarantee that the results have no difference 

rom those in the deterministic system (1.1) . Define 

 

s 
0 = 

μβ
(
μ + γ + 

σ 2 
2 

2 

)[(
μ + 

σ 2 
1 

2 

)(
μ + γ + 

σ 2 
2 

2 

)
+ ϑ 

(
μ + 

σ 2 
2 

2 

)](
μ + α + δ + 

σ 2 
3 

2 

) . 
(3.1) 
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T t)) of system (1.3) with any initial value (S(0) , V (0) , I(0)) ∈ R 

3 + is ergodic 

a

P ystem (1.3) has a unique global positive solution (S(t) , V (t) , I(t)) ∈ R 

3 + . 
T ps: (i) construct a pair of a C 2 -Lyapunov function U (S, V , I) and bounded 

d validate the condition (A 1 ) of Lemma 2.2 . Step 1. Consider a suitable 

C

W  V + (S + V + I) , 

w 4) , and M 0 = 

Λ+2 μ+ γ+ ϑ+ σ
2 
1 

+ σ2 
2 

2 
+2 

3 Λ( 3 
√ 

R 

s 
0 
−1) 

> 0 , which indicates 

− (3.2) 

D

W  3 = S + V + I. 

A Appendix B, obtains 

L

] 
σ 2 

3 

2 

)] 
 α + δ + 

σ 2 
2 

2 

)

 

(
μ + α + δ + 

σ 2 
2 

2 

)
+ a 1 a 2 

(
μ + γ + 

σ 2 
2 

2 

)
+ 

a 1 βI 

N 

. (3.3) 

C

a a 3 

(
μ + α + δ + 

σ 2 
3 

2 

)
= Λ, (3.4) 

w Λ

+ δ+ σ
2 
3 
2 

, one can obtain 

L
β

+ 

σ 2 
2 

2 

+ 

a 1 βI 

N 

(3.5) 

A

L γ + 

σ 2 
2 

2 

)
(3.6) 

L (3.7) 

A  

l

H e C 2 -function U(S, V, I) : R 

3 + → R 

1 + by 

U

a

L + γ + ϑ + 

σ 2 
1 + σ 2 

2 

2 

)
− μN 

(3.8) 
heorem 3.1. Assuming that R 

s 
0 
> 1 , then the solution (S(t) , V (t) , I(

nd has a unique stationary distribution � (·) . 
roof. By Lemma 2.1 , for any initial value (S(0) , V (0) , I(0)) ∈ R 

3 + , s
hen, the proof of Theorem 3.1 is divided into the following two ste

omain D ε such that L U ≤ −1 for any (S, V, I) ∈ R 

3 + \ D ε , and (ii) 

 

2 -function W (S, V, I) in the form 

 (S, V, I) = M 0 

(
S + V + I − a 1 ln S − a 1 a 2 ln V − a 3 ln I 

)
− ln S − ln

here a 1 , a 2 , a 3 are all positive constant and are determined in (3.

3 M 0 Λ
(

3 
√ 

R 

s 
0 

− 1 

)
+ Λ + 2 μ + γ + ϑ + 

σ 2 
1 + σ 2 

2 

2 

= −2 . 

efine, for simplicity, 

 1 = S + V + I − a 1 ln S − a 1 a 2 ln V − a 3 ln I, W 2 = − ln S − ln V, W

pplying It ̂ o ’s formula to W 1 , which is shown in subsection (III) of 

 W 1 = Λ − μN − αI − a 1 

[ 
Λ

S 
− βI 

N 

+ 

γV 

S 
+ 

δI 

S 
−
(
μ + ϑ + 

σ 2 
1 

2 

)
− a 1 a 2 

[ 
ϑS 

V 

−
(
μ + γ + 

σ 2 
2 

2 

)] 
− a 3 

[ 
βS 

N 

−
(
μ + α + δ + 

≤ Λ −
(
μN + 

a 1 �

S 
+ 

a 3 βS 

N 

)
+ a 1 

(
μ + ϑ + 

σ 2 
1 

2 

)
+ a 3 

(
μ +

−
(

a 1 γV 

S 
+ 

a 1 a 2 ϑS 

V 

)
+ a 1 a 2 

(
μ + γ + 

σ 2 
2 

2 

)
+ 

a 1 βI 

N 

≤ Λ − 3 

3 
√ 

a 1 a 3 Λμβ − 2 

√ 

a 2 
1 
a 2 ϑγ + a 1 

(
μ + ϑ + 

σ 2 
1 

2 

)
+ a 3

hoosing a 1 , a 2 and a 3 such that 

 2 

(
μ + γ + 

σ 2 
2 

2 

)2 

= γϑ, a 1 

[(
μ + ϑ + 

σ 2 
1 

2 

)
− γϑ 

μ + γ + 

σ 2 
2 

2 

]
= 

hich means a 1 = 

γϑ 

(μ+ γ+ σ
2 
2 
2 

) 2 
, a 2 = 

Λ

μ+ ϑ+ σ
2 
1 
2 

− γϑ 

μ+ γ+ 
σ2 

2 
2 

and a 3 = 

μ+ α

 W 1 ≤2 Λ + a 1 

[(
μ + ϑ + 

σ 2 
1 

2 

)
− γϑ 

μ + γ + 

σ 2 
2 

2 

]
− 3 

3 

√ 

a 1 Λ2 μ

μ + α + δ

= 3 Λ − 3 Λ 3 
√ 

R 

s 
0 

+ 

a 1 βI 

N 

= −3 Λ
(

3 
√ 

R 

s 
0 

− 1 

)
+ 

a 1 βI 

N 

. 

pplying It ̂ o ’s formula to W 2 , W 3 similarly obtains 

 W 2 = 

[ 
−Λ

S 
+ 

(
μ + ϑ + 

σ 2 
1 

2 

)
+ 

βI 

N 

− γV 

S 
− δI 

S 

] 
− ϑS 

V 

+ 

(
μ + 

≤ − Λ

S 
− ϑS 

V 

+ 

βI 

N 

+ 2 μ + γ + ϑ + 

σ 2 
1 + σ 2 

2 

2 

, 

 W 3 = Λ − μ(S + I) − (μ + α) I ≤ Λ − μN. 

dditionally, note that W (S, V, I) is a continuous function satisfying

lim inf 
→ + ∞ , (S,V,I) ∈ R 3 + \ �l 

W (S, V, I) = + ∞ . 

ence, W (S, V, I) has a minimum value W 0 . Defining a non-negativ

 (S, V , I) = W (S, V, I) − W 0 , 

nd combining (3.2) and (3.5) –(3.7) , it can be shown that 

 U ≤ − 3 M 0 Λ
(

3 
√ 

R 

s 
0 

− 1 

)
+ 

a 1 M 0 βI 

N 

− Λ

S 
− ϑS 

V 

+ 

βI 

N 

+ 

(
Λ + 2 μ

= − 2 + 

(a 1 M 0 + 1) βI 

S + V + I 
− Λ

S 
− ϑS 

V 

− μ(S + V + I) . 
4 
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N

D

w  inequalities hold: 

− (3.9) 

− (3.10) 

F

D ε
} 
, 

D  V + I > 

1 

ε

} 
. 

N

L

C

L
 μ) ≤ −1 . 

C

L
, μ) ≤ −1 . 

en that 

L

C

L
in (Λ, ϑ, μ) 

ε
≤ −1 . 

N

L

T ng diffusion matrix is given by 

H

C of Lemma 2.2 also holds. 

system (1.3) follows a unique ergodic stationary distribution � (·) . This 

c

R istribution for system (1.3) is derived. This reveals that the contagious 

d  the expressions of R 

s 
0 

and R 0 , it can be obtained that R 

s 
0 

≤ R 0 , and 

t nly does this reveal that random fluctuations have a critical effect on 

t reshold of the disease persistence of systems (1.1) and (1.3) . 

4

) , I(t)) of system (1.3) follows a unique ergodic stationary distribution 

� f the density function of the distribution � (·) while R 

s 
0 
> 1 . In fact, 

t  development of epidemiological dynamics. Before this, two necessary 

t

4

ln I) τ , Employing It ̂ o ’s formula, it follows from system (1.3) that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
 

u 3 −u 1 

] 
d t + σ1 d B 1 (t) , 

(4.1) 
ext, the corresponding compact subset D ε is contructed by 

 ε = 

{ 
(S, V, I) ∈ R 

3 
+ 

∣∣∣S ≥ ε, V ≥ ε2 , I ≥ ε3 , S + V + I ≤ 1 

ε

} 
, 

here ε > 0 is a sufficiently small constant such that the following

2 + (a 1 M 0 + 1) β − min (Λ, ϑ, μ) 

ε
≤ −1 , 

2 + (a 1 M 0 + 1) βε ≤ −1 . 

or convenience, consider the following four subsets of R 

3 + \ D ε : 

 

c 
1 ,ε = 

{ 
(S, V, I) ∈ R 

3 
+ 

∣∣∣S < ε
} 
, D 

c 
2 ,ε = 

{ 
(S, V, I) ∈ R 

3 
+ 

∣∣∣V < ε2 , S ≥

 

c 
3 ,ε = 

{ 
(S, V, I) ∈ R 

3 
+ 

∣∣∣I < ε3 , V ≥ ε2 

} 
, D 

c 
4 ,ε = 

{ 
(S, V, I) ∈ R 

3 
+ 

∣∣∣S +
ow, it must be shown that 

 U ≤ −1 , ∀ (S, V, I) ∈ D i,ε (i = 1 , 2 , 3 , 4) . 

ase 1. If (S, V, I) ∈ D 1 ,ε , by (3.8) –(3.9) , one can derive 

 U ≤ −2 + (a 1 M 0 + 1) β − Λ

S 
≤ −2 + (a 1 M 0 + 1) β − min (Λ, ϑ,

ε

ase 2. For any (S, V, I) ∈ D 2 ,ε , it follows from (3.8) –(3.9) that 

 U ≤ −2 + (a 1 M 0 + 1) β − ϑS 

V 

≤ −2 + (a 1 M 0 + 1) β − min (Λ, ϑ

ε

Case 3. Assuming that (S, V, I) ∈ D 3 ,ε , by (3.8) –(3.9) it can be se

 U ≤ −2 + 

(a 1 M 0 + 1) βI 

V 

≤ −2 + (a 1 M 0 + 1) βε ≤ −1 . 

ase 4. If (S, V, I) ∈ D 1 ,ε , from (3.8) and (3.10) , one has 

 U ≤ −2 + (a 1 M 0 + 1) β − μ(S + V + I) ≤ −2 + (a 1 M 0 + 1) β − m

otably, R 

3 + \ D ε = 

⋃ 4 
i =1 D i,ε . Hence, one equivalently obtains 

 U ≤ −1 , ∀ (S, V, I) ∈ R 

3 
+ \ D ε . 

herefore, the condition (A 2 ) of Lemma 2.2 holds. The correspondi

 = 

( 

σ 2 
1 S 

2 0 0 

0 σ 2 
2 V 

2 0 

0 0 σ 2 
3 I 

2 

) 

. 

learly, H is a positive-definite matrix. Then, the assumption (A 1 ) 

Given the above, the global positive solution (S(t) , V (t) , I(t)) of 

ompletes the proof of Theorem 3.1 . �

emark 2. Under R 

s 
0 
> 1 , the existence of the ergodic stationary d

isease will prevail and persist in a population. Furthermore, from

he sign holds if and only if σ1 = σ2 = σ3 = 0 . Consequently, not o

he spread of epidemic, but it also indicates that R 

s 
0 

is a unified th

. Probability density function analysis 

By Theorem 3.1 , one obtains that the global solution (S(t) , V (t

 (·) . This section is devoted to deriving the explicit expression o

he result will present a wide range of possibilities for the further

ransformations of system (1.3) should be first introduced. 

.1. Two important transformations of system (1.3) 

(I) (Logarithmic transformation): Let (u 1 , u 2 , u 3 ) 
τ = ( ln S, ln V, 

 

 

 

 

 

 

 

 

 

 

 

 

 

du 1 = 

[ 
Λe −u 1 −

(
μ + ϑ + 

σ 2 
1 

2 

)
− βe u 3 

e u 1 + e u 2 + e u 3 
+ γ e u 2 −u 1 + δe

du 2 = 

[ 
ϑe u 1 −u 2 −

(
μ + γ + 

σ 2 
2 

2 

)] 
dt + σ2 dB 2 (t) , 

du 3 = 

[ 
βe u 1 

e u 1 + e u 2 + e u 3 
−
(
μ + α + δ + 

σ 2 
3 

2 

)] 
dt + σ3 dB 3 (t) . 
5 
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B lue is defined: R 

c 
0 

= 

β(μ+ γ+ σ
2 
2 
2 

) 

(μ+ γ+ ε+ σ
2 
2 
2 

)(μ+ α+ δ+ σ
2 
3 
2 

) 

. Moreover, if R 

c 
0 
> 1 , then 

t is determined by the following Eq. (4.2) : ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
 0 , 

(4.2) 

F  can be derived by (4.2) that V ∗ = 

ϑS ∗
μ2 + γ , I ∗ = 

(μ2 + γ+ ϑ)(R 

c 
0 
−1) S ∗

μ2 + γ , N 

∗ = 

S
 

c 
0 
−1) 

. 

 that E ∗ ∈ R 

3 + if R 

s 
0 
> 1 . In addition, if there is no stochastic noise in 

s

 X = (x 1 , x 2 , x 3 ) 
τ = (u 1 − u ∗1 , u 2 − u ∗2 , u 3 − u ∗3 ) ; thus, the corresponding 

l{
(4.3) 

w

a
I ∗

 

∗ − β(S ∗ + V 

∗) I ∗

(N 

∗) 2 
, 

a

4

T 1 , then the stationary distribution � (·) around E ∗ follows a unique log- 

n

Φ (4.4) 

w en as follows. 

(

�  

2 
3 (H 3 J 4 ) 

−1 Θ0 [(M 3 J 3 ) 
−1 ] τ . 

(

� 1 
 

Θ4 (J −1 
4 ) 

τ . 

(

�  � 

2 
3 (H 3 J 4 ) 

−1 Θ0 [(M 3 J 3 ) 
−1 ] τ . 

(

�  J −1 
4 Θ4 (J −1 

4 ) 
τ . 

(

�  � 

2 
3 (H 3 J 4 ) 

−1 Θ0 [(M 3 J 3 ) 
−1 ] τ . 

(

�  J −1 
4 Θ4 (J −1 

4 ) 
τ . 

(

�  ] τ + � 

2 
3 (H 3 J 4 ) 

−1 Θ0 [(M 3 J 3 ) 
−1 ] τ . 

(

�  ] τ + J −1 
4 Θ4 (J −1 

4 ) 
τ , 

w

J

0 

0 

1 

) 

, J 4 = 

( 

0 0 1 

1 0 0 

0 1 0 

) 

, 
y taking the random effect into consideration, another critical va

he quasi-stable equilibrium E ∗ = (S ∗, V ∗, I ∗) := (e u 
∗
1 , e u 

∗
2 , e u 

∗
3 ) ∈ R 

3 + 
 

 

 

 

 

 

 

 

 

 

 

 

 

Λe −u ∗1 −
(
μ + ϑ + 

σ 2 
1 

2 

)
− βe u 

∗
3 

e u 
∗
1 + e u 

∗
2 + e u 

∗
3 

+ γ e u 
∗
2 −u ∗1 + δe u 

∗
3 −u ∗1 =

ϑe u 
∗
1 −u ∗2 −

(
μ + γ + 

σ 2 
2 

2 

)
= 0 , 

βe u 
∗
1 

e u 
∗
1 + e u 

∗
2 + e u 

∗
3 

−
(
μ + α + δ + 

σ 2 
3 

2 

)
= 0 . 

or convenience, let μi = μ + 

σ 2 
i 
2 for any i = 1 , 2 , 3 . As a result, it

 

∗ + V ∗ + I ∗ = 

βS ∗
μ3 + α+ δ , where S ∗ = 

Λ(μ2 + γ ) 
μ1 (μ2 + γ )+ ϑμ2 +(μ3 + α)(μ2 + γ+ ϑ)(R

Notably, it is easily obtained that R 

s 
0 
< R 

c 
0 
. This then indicates

ystem (1.3) , i.e., model (1.1) , then E ∗ = E + = (S + , V + , I + ) . 
(II) (Equilibrium offset transformation): Given the above, let

inearized system of (4.1) takes the form 

 

dx 1 = (−a 11 x 1 + a 12 x 2 + a 13 x 3 ) dt + σ1 dB 1 (t) , 
dx 2 = (a 21 x 1 − a 21 x 2 ) dt + σ2 dB 2 (t) , 
dx 3 = [(a 32 + a 33 ) x 1 − a 32 x 2 − a 33 x 3 ] dt + σ3 dB 3 (t) , 

here 

 11 = 

Λ + γV 

∗ + δI ∗

S ∗
− βS ∗I ∗

(N 

∗) 2 
, a 12 = 

γV 

∗

S ∗
+ 

βV 

∗I ∗

(N 

∗) 2 
> 0 , a 13 = 

δ

S

 21 = μ2 + γ > 0 , a 32 = 

βS ∗V 

∗

(N 

∗) 2 
> 0 , a 33 = 

βS ∗I ∗

(N 

∗) 2 
> 0 . 

.2. Density function of stationary distribution � (·) 

heorem 4.1. For any initial value (S(0) , V (0) , I(0)) ∈ R 

3 + , if R 

s 
0 
> 

ormal probability density function Φ(S, V, I) , which is given by 

(S, V, I) = (2 π) −
3 
2 | �| − 1 

2 e −
1 
2 ( ln 

S 
S ∗ , ln V 

V ∗ , ln I 
I ∗ )�−1 ( ln S 

S ∗ , ln V 
V ∗ , ln I 

I ∗ ) τ , 

here � is a positive definite matrix, and the special form of � is giv

1) . If m 1 	 = 0 , m 2 	 = 0 and a 13 	 = 0 , then 

= � 

2 
1 (H 1 J 1 ) 

−1 Θ0 [(H 1 J 1 ) 
−1 ] τ + � 

2 
2 (H 2 J 3 J 2 ) 

−1 Θ0 [(H 2 J 3 J 2 ) 
−1 ] τ + �

2) . If m 1 	 = 0 , m 2 	 = 0 and a 13 = 0 , then 

= � 

2 
1 (H 1 J 1 ) 

−1 Θ0 [(H 1 J 1 ) 
−1 ] τ + � 

2 
2 (H 2 J 3 J 2 ) 

−1 Θ0 [(H 2 J 3 J 2 ) 
−1 ] τ + J −4

3) . If m 1 	 = 0 , m 2 = 0 and a 13 	 = 0 , then 

= � 

2 
1 (H 1 J 1 ) 

−1 Θ0 [(H 1 J 1 ) 
−1 ] τ + a 2 32 σ

2 
2 ( ̃

 H 2 J 3 J 2 ) 
−1 Θ3 [( ̃  H 2 J 3 J 2 ) 

−1 ] τ +
4) . If m 1 	 = 0 and m 2 = a 13 = 0 , then 

= � 

2 
1 (H 1 J 1 ) 

−1 Θ0 [(H 1 J 1 ) 
−1 ] τ + a 2 32 σ

2 
2 ( ̃

 H 2 J 3 J 2 ) 
−1 Θ3 [( ̃  H 2 J 3 J 2 ) 

−1 ] τ +
5) . If m 1 = 0 , m 2 	 = 0 and a 13 	 = 0 , then 

= a 2 21 σ
2 
1 ( ̃

 H 1 J 1 ) 
−1 Θ1 [( ̃  H 1 J 1 ) 

−1 ] τ + � 

2 
2 (H 2 J 3 J 2 ) 

−1 Θ0 [(H 2 J 3 J 2 ) 
−1 ] τ +

6) . If m 1 = a 13 = 0 and m 2 	 = 0 , then 

= a 2 21 σ
2 
1 ( ̃

 H 1 J 1 ) 
−1 Θ1 [( ̃  H 1 J 1 ) 

−1 ] τ + � 

2 
2 (H 2 J 3 J 2 ) 

−1 Θ0 [(H 2 J 3 J 2 ) 
−1 ] τ +

7) . If m 1 = m 2 = 0 and a 13 	 = 0 , then 

= a 2 21 σ
2 
1 ( ̃

 H 1 J 1 ) 
−1 Θ1 [( ̃  H 1 J 1 ) 

−1 ] τ + a 2 32 σ
2 
2 ( ̃

 H 2 J 3 J 2 ) 
−1 Θ3 [( ̃  H 2 J 3 J 2 ) 

−1

8) . If m 1 = m 2 = a 13 = 0 , then 

= a 2 21 σ
2 
1 ( ̃

 H 1 J 1 ) 
−1 Θ1 [( ̃  H 1 J 1 ) 

−1 ] τ + a 2 32 σ
2 
2 ( ̃

 H 2 J 3 J 2 ) 
−1 Θ3 [( ̃  H 2 J 3 J 2 ) 

−1

ith 

 1 = 

( 

1 0 0 

0 1 0 

0 − a 32 + a 33 

a 
1 

) 

, J 2 = 

( 

0 1 0 

0 0 1 

1 0 0 

) 

, J 3 = 

( 

1 0 

0 1 

0 

a 12 

a 
21 32 

6 
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Θ

 0 

 

w 2 
0 

 0 

⎞ ⎠ , Θ3 = 

⎛ ⎝ 

1 
2 w 3 

0 0 

0 

1 
2 w 3 w 4 

0 

0 0 0 

⎞ ⎠ , 

H
 

− a 12 − a 12 a 33 

a 32 
a 32 + a 33 

1 0 

0 1 

) 

, 

H
 

+ a 33 ) 
) 

, Θ4 = 

( 1 
2 a 33 

0 0 

0 0 0 

0 0 0 

) 

, 

H
1 (a 12 + a 21 ) 

−a 21 

1 

) 

, 

a

m
 a 33 ) 

 

, 

�

r
 

+ a 33 )] , r 3 = a 21 a 33 (a 11 − a 12 − a 13 ) , 

w + 

a 12 a 33 

a 32 

, w 4 = 

a 21 a 32 a 33 (a 11 − a 12 − a 13 ) 

a 32 (a 11 − a 12 ) − a 12 a 33 

. 

P )) τ and 

M

H he theory of Gardiner [44] , the unique density function Φ(X ) around 

t uck equation: 

− a 21 x 2 ) Φ
]

(4.5) 

S nted out that Φ(X ) can be described by a quasi-Gaussian distribution, 

i zed condition 

∫ 
R 3 + 

Φ(X ) dX = 1 and Q is a symmetric matrix. 

 the algebraic equation QM 

2 Q + A 

τ Q + QA = 0 . If Q is a inverse matrix, 

b

M (4.6) 

N s. The characteristic polynomial of A is defined as ψ(λ) = λ3 + p 1 λ
2 + 

r
 

+ a 33 )] , r 3 = a 21 a 33 (a 11 − a 12 − a 13 ) . 

B

I ∗
S ∗ − β(S ∗+ V ∗) I ∗

(N ∗) 2 

] 
= 

Λ
S ∗ > 0 , 

V ∗I ∗
> 0 , 

 γ ) + 

ϑ(R 

c 
0 −1) 

R 

c 
0 

] 
> 0 . 

C

(
(

0 = 

⎛ ⎝ 

r 2 
2(r 1 r 2 −r 3 ) 

0 − 1 
2(r 1 r 2 −r 3 ) 

0 

1 
2(r 1 r 2 −r 3 ) 

0 

− 1 
2(r 1 r 2 −r 3 ) 

0 

r 1 
2 r 3 (r 1 r 2 −r 3 ) 

⎞ ⎠ , Θ1 = 

⎛ ⎝ 

1 
2 w 1 

0

0 

1
2 w 1 

0 0

 1 = 

( 

a 21 m 1 −(a 21 + a 33 ) m 1 a 2 33 

0 m 1 −a 33 

0 0 1 

) 

, ˜ H 2 = 

( −a 32 −a 33

0 

0 

 2 = 

( −a 32 m 2 −(a 11 + a 33 ) m 2 (a 11 − a 12 − a 12 a 33 

a 32 
) 2 + m 2 (a 32

0 m 2 −a 11 + a 12 + 

a 12 a 33 

a 32 

0 0 1 

˜ 

 1 = 

( 

a 21 −a 21 0 

0 1 0 

0 0 1 

) 

, H 3 = 

( 

a 13 a 21 −a 21 (a 11 + a 21 ) a 2
0 a 21 

0 0 

nd 

 1 = 

a 33 (a 21 − a 32 − a 33 ) 

a 21 

, m 2 = a 13 + 

a 12 (a 11 − a 33 ) 

a 32 

− a 2 12 (a 32 +
a 2 

32

 1 = a 21 m 1 σ1 , � 2 = −a 32 m 2 σ2 , � 3 = a 13 a 21 σ3 , 

 1 = a 11 + a 21 + a 33 , r 2 = a 21 (a 11 − a 12 + a 33 ) + [ a 11 a 33 − a 13 (a 32

 1 = a 11 + a 21 , w 2 = a 21 (a 11 − a 12 − a 13 ) , w 3 = a 12 + a 21 + a 33 

roof. For convenience and simplicity, let B (t) = (B 1 (t) , B 2 (t) , B 3 (t

 = 

( 

σ 2 
1 0 0 

0 σ 2 
2 0 

0 0 σ 2 
3 

) 

, A = 

( −a 11 a 12 a 13 

a 21 −a 21 0 

a 32 + a 33 −a 32 −a 33 

) 

. 

ence, system (4.3) can be rewritten as d X = AXd t + Md B (t) . By t

he quasi-endemic equilibrium E ∗ satisfies the following Fokker-Pla

3 ∑ 

k =1 

σ 2 
k 

2 

∂ 2 Φ

∂x 2 
k 

+ 

∂ 

∂x 1 

[
(−a 11 x 1 + a 12 x 2 + a 13 x 3 ) Φ

]
+ 

∂ 

∂x 2 

[
(a 21 x 1 −

+ 

∂ 

∂x 3 

[
((a 32 + a 33 ) x 1 − a 32 x 2 − a 33 x 3 ) Φ

]
= 0 . 

ince the diffusion matrix M is a constant matrix, Roozen [45] poi

.e., Φ(X ) = c 0 e 
− 1 

2 
XQX τ , where c 0 > 0 is determined by the normali

Substituting these results into (4.5) , one can obtain that Q obeys

y letting � = Q 

−1 , an equivalent equation is given by 

 

2 + A � + �A 

τ = 0 . 

ext, it will be proved that A has all negative real-part eigenvalue

p 2 λ + p 3 , where 

 1 = a 11 + a 21 + a 33 , r 2 = a 21 (a 11 − a 12 + a 33 ) + [ a 11 a 33 − a 13 (a 32

y the expressions of S ∗, V ∗, I ∗ and N 

∗, it can be shown that 

(i) . a 11 = (μ1 + ϑ) + 

βI ∗

N ∗ − βS ∗I ∗

(N ∗) 2 = (μ1 + ϑ) + 

β(V ∗+ I ∗) I ∗
(N ∗) 2 > 0 , 

(ii) . a 11 − a 12 − a 13 = 

[ 
Λ+ γV ∗+ δI ∗

S ∗ − βS ∗I ∗

(N ∗) 2 

] 
−
[ 
γV ∗

S ∗ + 

βV ∗I ∗

(N ∗) 2 

] 
−
[ 
δ

(iii) . a 12 a 33 − a 13 a 32 = 

βS ∗

(N ∗) 2 

(
γV ∗I ∗

S ∗ + 

βV ∗I ∗

N ∗ − δV ∗I ∗
S ∗

)
= 

(μ3 + γ+ α) β
(N ∗) 2 

(iv) . a 11 − a 12 + a 33 > 

Λ
S ∗ + 

δI ∗
S ∗ − βV ∗I ∗

(N ∗) 2 > 

(μ3 + α+ δ)(R 

c 
0 −1) 

μ2 + γ

[ 
(μ2 +

onsequently, it follows from (i)–(iv) that 

1) . r 1 = a 11 + a 21 + a 33 > 0 , r 3 = a 21 a 33 (a 11 − a 12 − a 13 ) > 0 , 

2) . r 2 = a 21 (a 11 − a 12 + a 33 ) + [ a 11 a 33 − a 13 (a 32 + a 33 )] 
> (a 12 + a 13 ) a 33 − a 13 (a 32 + a 33 ) 
= a 12 a 33 − a 13 a 32 > 0 . 
7 
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( a 13 (a 32 + a 33 )] } − a 21 a 33 (a 11 − a 12 − a 13 ) 
− a 13 (a 32 + a 33 )] 
a 13 ) + (a 21 + a 33 )(a 12 a 33 − a 13 a 32 ) 

C positive definite can be derived. 

ich is shown in subsection (II) of Appendix A, the exact expression of 

� , (4.6) can be equivalently transformed into the sum of solution to the 

f

M

w  , and the symmetric matrices �k (k = 1 , 2 , 3) are their respective solu- 

t are derived by the following three steps. 

M (4.7) 

d ived by 

J
3 

 

 33 

) 

, 

w sion is divided into two subcases: 

(

C t al. [28] , it is assumed that B 1 = H 1 A 1 H 

−1 
1 

, where the standardized 

t

H (4.8) 

B

B

w uivalently transform Eq. (4.7) into 

( 0 . 

L  

G

N ndard R 1 matrix. By Lemma 2.3 , this means that �0 is positive definite, 

w

Θ (4.9) 

T

ed, where another standardized transformation matrix ˜ H 1 and 

˜ B 1 are 

o

H (4.10) 

w ation. Obviously, ˜ B 1 is a standard R 2 matrix. Additionally, (4.7) can be 

e

( 0 . 

B

G

I

Θ (4.11) 
3) . r 1 r 2 − r 3 = (a 11 + a 21 + a 33 ) { a 21 (a 11 − a 12 + a 33 ) + [ a 11 a 33 −
= a 11 r 2 + a 21 [(a 11 + a 33 ) a 33 − a 13 a 32 ] + a 33 [ a 11 a 33 

= a 11 r 2 + a 21 a 33 (a 11 − a 12 + a 33 ) + a 2 33 (a 11 − a 12 −
> a 11 r 2 > 0 . 

ombining the above (1)-(3) and Lemma 2.6 , that � of Eq. (4.6) is 

However, following the corresponding proof of Lemma 2.6 , wh

is given. First, by the finite independent superposition principle

ollowing algebraic sub-equations, 

 

2 
k + A �k + �k A 

τ = 0 , 

here M 1 = diag(σ1 , 0 , 0) , M 2 = diag(0 , σ2 , 0) , M 3 = diag(0 , 0 , σ3 )

ions. Clearly, � = �1 + �2 + �3 . Now, the special expression of �

Step 1. For the algebraic equation 

 

2 
1 + A �1 + �1 A 

τ = 0 , 

enote A 1 = J 1 AJ −1 
1 

, where the elimination matrix J 1 and A 1 are der

 1 = 

( 

1 0 0 

0 1 0 

0 − a 32 + a 33 

a 21 
1 

) 

, A 1 = 

( −a 11 a 12 + 

a 13 (a 32 + a 33 ) 
a 21 

a 1
a 21 −a 21 0
0 m 1 −a

here m 1 = 

a 33 (a 21 −a 32 −a 33 ) 
a 21 

. By the value of w 1 , the relevant discus

i) . m 1 	 = 0 , (ii) . m 1 = 0 . 

ase (i) . If m 1 	 = 0 , in view of the method introduced in Zhou e

ransformation matrix is 

 1 = 

( 

a 21 m 1 −(a 21 + a 33 ) m 1 a 2 33 

0 m 1 −a 33 

0 0 1 

) 

. 

y direct calculation, one obtains 

 1 = 

( −r 1 −r 2 −r 3 
1 0 0 

0 1 0 

) 

, 

here r 1 , r 2 and r 3 are the same as above. Furthermore, one can eq

H 1 J 1 ) M 

2 
1 (H 1 J 1 ) 

τ + B 1 [(H 1 J 1 )�1 (H 1 J 1 ) 
τ ] + [(H 1 J 1 )�1 (H 1 J 1 ) 

τ ] B 

τ
1 = 

etting Θ0 = � 

−2 
1 

(H 1 J 1 )�1 (H 1 J 1 ) 
τ , where � 1 = a 21 m 1 σ1 , we obtain

 

2 
0 + B 1 Θ0 + Θ0 B 

τ
1 = 0 . 

oting that A has all negative real-part eigenvalues, then B 1 is a sta

hich takes the form 

0 = 

⎛ ⎝ 

r 2 
2(r 1 r 2 −r 3 ) 

0 − 1 
2(r 1 r 2 −r 3 ) 

0 

1 
2(r 1 r 2 −r 3 ) 

0 

− 1 
2(r 1 r 2 −r 3 ) 

0 

r 1 
2 r 3 (r 1 r 2 −r 3 ) 

⎞ ⎠ . 

herefore, �1 = � 

2 
1 
(H 1 J 1 ) 

−1 Θ0 [(H 1 J 1 ) 
−1 ] τ . 

Case (ii) . If m 1 = 0 , i.e., a 21 = a 32 + a 33 , 
˜ B 1 = ̃

 H 1 A 1 ̃
 H 

−1 
1 

is defin

btained by 

˜ 

 1 = 

( 

a 21 −a 21 0 

0 1 0 

0 0 1 

) 

, ˜ B 1 = 

( −w 1 −w 2 −ξ1 

0 1 0 

0 0 −a 33 

) 

, 

here w 1 = a 11 + a 21 , w 2 = a 21 (a 11 − a 12 − a 13 ) , and ξ1 is abbrevi

quivalently transformed into 

 ̃

 H 1 J 1 ) M 

2 
1 ( ̃

 H 1 J 1 ) 
τ + ̃

 B 1 [( ̃  H 1 J 1 )�1 ( ̃  H 1 J 1 ) 
τ ] + [( ̃  H 1 J 1 )�1 ( ̃  H 1 J 1 ) 

τ ] ̃  B 

τ
1 = 

y letting Θ1 = (a 21 σ1 ) 
−2 ( ̃  H 1 J 1 )�1 ( ̃  H 1 J 1 ) 

τ , it can be simplified as 

 

2 
0 + ̃

 B 1 Θ1 + Θ1 ̃
 B 

τ
1 = 0 . 

n view of Lemma 2.4 , Θ1 is described by 

1 = 

⎛ ⎝ 

1 
2 w 1 

0 0 

0 

1 
2 w 1 w 2 

0 

0 0 0 

⎞ ⎠ . 
8 
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H ebraic equation 

M (4.12) 

F ed, where J 2 , J 3 and A 2 are obtained by 

J

− a 12 a 21 

a 32 
a 21 

3 − a 12 − a 12 a 33 

a 32 
a 32 + a 33 

m 2 −a 11 + a 12 + 

a 12 a 33 

a 32 

⎞ ⎠ , 

w two sub-conditions are considered: 

(

C ized transformation matrix 

H
 

+ a 33 ) 
) 

. (4.13) 

I

B

w  � 

−2 
2 

(H 2 J 2 )�2 (H 2 J 2 ) 
τ , where � 2 = −a 32 m 2 σ2 , (4.12) is then equivalent 

t

G

B nvalues again, it can be shown that 

Θ

I

 standardized transformation matrix ˜ H 2 and 

˜ B 2 are given by 

H

−w 4 −ξ2 

1 0 

0 −a 11 + a 12 + 

a 12 a 33 

a 32 

) 

, 

w  ξ2 is also shorthand. Similarly, ˜ B 2 is a standard R 2 matrix. By defining 

Θ

G

A

Θ (4.14) 

T

M (4.15) 

a J 4 and A 3 are given by 

J

H

J (4.16) 

w es by the value of a 13 . Case (I). If a 13 	 = 0 , consider the corresponding 

s

H

ence, �1 = a 2 21 σ
2 
1 ( ̃

 H 1 J 1 ) 
−1 Θ1 [( ̃  H 1 J 1 ) 

−1 ] τ . Step 2. Consider the alg

 

2 
2 + A �2 + �2 A 

τ = 0 . 

or the corresponding elimination matrix J 2 , J 3 , A 2 = J 2 AJ −1 
2 

is defin

 2 = 

( 

0 1 0 

0 0 1 

1 0 0 

) 

, J 3 = 

( 

1 0 0 

0 1 0 

0 

a 12 

a 32 
1 

) 

, A 2 = 

⎛ ⎝ 

−a 21 

−a 32 −a 3
0 

here m 2 = a 13 + 

a 12 (a 11 −a 33 ) 
a 32 

− a 2 
12 

(a 32 + a 33 ) 

a 2 
32 

. Similarly, the following 

1) . m 2 	 = 0 , (2) . m 2 = 0 . 

ase (1) . If m 2 	 = 0 , let B 2 = H 2 A 2 H 

−1 
2 

, where the relevant standard

 2 = 

( −a 32 m 2 −(a 11 + a 33 ) m 2 (a 11 − a 12 − a 12 a 33 

a 32 
) 2 + m 2 (a 32

0 m 2 −a 11 + a 12 + 

a 12 a 33 

a 32 

0 0 1 

n fact, one still derives 

 2 = B 1 = 

( −r 1 −r 2 −r 3 
1 0 0 

0 1 0 

) 

, 

hich means that B 2 is also a standard R 1 matrix. By letting Θ2 =
o the following equation: 

 

2 
0 + B 2 Θ2 + Θ2 B 

τ
2 = 0 . 

y Lemma 2.3 and the result of A having all negative real-part eige

2 = Θ0 = 

⎛ ⎝ 

r 2 
2(r 1 r 2 −r 3 ) 

0 − 1 
2(r 1 r 2 −r 3 ) 

0 

1 
2(r 1 r 2 −r 3 ) 

0 

− 1 
2(r 1 r 2 −r 3 ) 

0 

r 1 
2 r 3 (r 1 r 2 −r 3 ) 

⎞ ⎠ . 

n other words, �2 = � 

2 
2 
(H 2 J 3 J 2 ) 

−1 Θ0 [(H 2 J 3 J 2 ) 
−1 ] τ . 

Case (2) . If m 2 = 0 , let ˜ B 2 = ̃

 H 2 A 2 ̃
 H 

−1 
2 

, where the corresponding

˜ 

 2 = 

( −a 32 −a 33 − a 12 − a 12 a 33 

a 32 
a 32 + a 33 

0 1 0 

0 0 1 

) 

, ˜ B 2 = 

( −w 3 

0 

0 

here w 3 = a 12 + a 21 + a 33 + 

a 12 a 33 
a 32 

, w 4 = 

a 21 a 32 a 33 (a 11 −a 12 −a 13 ) 
a 32 (a 11 −a 12 ) −a 12 a 33 

, and

3 = (a 32 σ2 ) 
−2 ( ̃  H 2 J 2 )�2 ( ̃  H 2 J 2 ) 

τ , (4.12) is then equivalent to 

 

2 
0 + ̃

 B 2 Θ3 + Θ3 ̃
 B 

τ
2 = 0 . 

ccording to Lemma 2.4 , Θ1 takes the form 

3 = 

⎛ ⎝ 

1 
2 w 3 

0 0 

0 

1 
2 w 3 w 4 

0 

0 0 0 

⎞ ⎠ . 

hen, �2 = a 2 
32 
σ 2 

2 
( ̃  H 2 J 3 J 2 ) 

−1 Θ3 [( ̃  H 2 J 3 J 2 ) 
−1 ] τ . 

Step 3. For the following algebraic equation, 

 

2 
3 + A �3 + �3 A 

τ = 0 , 

nd for the following elimination matrix J 3 , let A 3 = J 4 AJ −1 
4 

, where 

 4 = 

( 

0 0 1 

1 0 0 

0 1 0 

) 

, A 3 = 

( −a 33 a 32 + a 33 −a 32 

a 13 a 12 −a 11 

0 a 21 −a 21 

) 

. 

ence, (4.15) can be equivalently transformed into 

 4 M 

2 
3 J 

τ
4 + B 3 Θ4 + Θ4 B 

τ
3 = 0 , 

here Θ4 = J 4 �3 J 
τ
4 

. Similarly, the proof is divided into two subcas

tandardized transformation matrix 

 3 = 

( 

a 13 a 21 −a 21 (a 11 + a 21 ) a 21 (a 12 + a 21 ) 
0 a 21 −a 21 

0 0 1 

) 

. 
9 
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L alent algebraic equation of (4.16) is described as follows: 

( 0 . 

D  equation can be also simplified as 

G

S

Θ

C

t J 4 M 

2 
3 J 

τ
4 

= σ 2 
3 G 

2 
0 = diag (σ 2 

3 , 0 , 0) , by Lemma 2.5 , one can obtain 

Θ

B  means that �3 = J −1 
4 

Θ4 (J −1 
4 

) τ . 

 the different values of m 1 , m 2 and a 13 , which is shown in Theorem 4.1 . 

F nary distribution � (·) around E ∗ then has a unique log-normal proba- 

b

Φ

T

R ribution � (·) around E ∗ has the unique log-normal density function 

Φ from one side. In addition, that R 

s 
0 

= R 

c 
0 

= R 0 if σi = 0 (i = 1 , 2 , 3) is 

o

5

tem (1.3) are reflected by Theorems 3.1 and 4.1 . For a comprehensive 

s  following Theorem 5.1 . 

T β

μ+ α+ δ+ σ
2 
3 
2 

< 1 , then the solution (S(t) , V (t) , I(t)) of system (1.3) follows: 

l (5.1) 

w ith probability 1 (a.s.). 

P

d (5.2) 

I an be seen that 

 

dB 3 (u ) 

t 

u ) 

(5.3) 

N

t
(5.4) 

T ertion (5.1) can then be obtained by (5.4) . Moreover, from the expres- 

s

etting B 3 = H 3 A 3 H 

−1 
3 

, that B 3 = B 1 is still derived. Hence, an equiv

H 3 J 4 ) M 

2 
3 (H 3 J 4 ) 

τ + B 3 [(H 3 J 4 )�3 (H 3 J 4 ) 
τ ] + [(H 3 J 4 )�3 (H 3 J 4 ) 

τ ] B 

τ
3 = 

enoting Θ5 = � 

−2 
3 

(H 3 J 4 )�3 (H 3 J 4 ) 
τ , where � 3 = a 13 a 21 σ3 , the last

 

2 
0 + B 1 Θ5 + Θ5 B 

τ
1 = 0 . 

imilarly, one obtains 

5 = Θ0 = 

⎛ ⎝ 

r 2 
2(r 1 r 2 −r 3 ) 

0 − 1 
2(r 1 r 2 −r 3 ) 

0 

1 
2(r 1 r 2 −r 3 ) 

0 

− 1 
2(r 1 r 2 −r 3 ) 

0 

r 1 
2 r 3 (r 1 r 2 −r 3 ) 

⎞ ⎠ . 

onsequently, �3 = � 

2 
3 
(H 3 J 4 ) 

−1 Θ0 [(H 3 J 4 ) 
−1 ] τ . 

Case (II). If a 21 = 0 , then A 3 is a standard R 3 matrix. Noting tha

4 = J 4 �
2 
3 J 

τ
4 = 

⎛ ⎝ 

σ 2 
3 

2 a 33 
0 0 

0 0 0 

0 0 0 

⎞ ⎠ . 

ased on a 33 > 0 , then Θ4 is a positive semi-definite matrix, which

In summary, the special form of � is divided into eight cases by

inally, in view of the relation of systems (4.1) and (4.3) , the statio

ility density function 

(S, V, I) = (2 π) −
3 
2 | �| − 1 

2 e −
1 
2 ( ln 

S 
S ∗ , ln V 

V ∗ , ln I 
I ∗ )�−1 ( ln S 

S ∗ , ln V 
V ∗ , ln I 

I ∗ ) τ . 

herefore, this completes the proof. �

emark 3. If R 

s 
0 
> 1 , Theorem 4.1 shows that the stationary dist

(S, V, I) . This reflects the stochastic permanence of system (1.3) 

btained. 

. Extinction of system (1.3) 

As is known, all of the properties of disease persistence of sys

tudy, a simple extinction result of system (1.3) is described by the

heorem 5.1. For any initial value (S(0) , V (0) , I(0)) ∈ R 

3 + , if R 

d 
0 

= 

im sup 

t→ + ∞ 

ln I(t) 

t 
≤
(
μ + α + δ + 

σ 2 
3 

2 

)(
R 

d 
0 − 1 

)
< 0 , a.s., 

hich means that the epidemic of system (1.3) will go to extinction w

roof. Employing It ̂ o ’s formula to ln I(t) , one obtains 

 ln I(t) = 

[ 
βS(t) 

N(t) 
−
(
μ + α + δ + 

σ 2 
3 

2 

)] 
dt + σ3 dB 3 (t) . 

ntegrating from 0 to t and dividing by t on both sides of (5.1) , it c

ln I(t) 

t 
≤ ln I(0) 

t 
+ 

1 

t 

∫ t 

0 

[ 
βS(u ) 

N(u ) 
−
(
μ + α + δ + 

σ 2 
3 

2 

)] 
du + 

∫ t 
0 σ3

≤ ln I(0) 

t 
+ 

1 

t 

∫ t 

0 

[ 
β −
(
μ + α + δ + 

σ 2 
3 

2 

)] 
du + 

∫ t 
0 σ3 dB 3 (

t 

= 

ln I(0) 

t 
+ 

(
μ + α + δ + 

σ 2 
3 

2 

)(
R 

d 
0 − 1 

)
+ 

∫ t 
0 σ3 dB 3 (u ) 

t 
. 

ext, by the strong law of large numbers [1] , one derives 

lim 

→ + ∞ 

∫ t 
0 σ3 dB 3 (u ) 

t 
= 0 , a.s. 

aking the superior limit of t → + ∞ on both sides of (5.3) , the ass

ions of R 

s 
0 

and R 

s 
0 
, one can obtain that R 

d 
0 

≤ R 

s 
0 
. 
Consequently, the proof of Theorem 5.1 is confirmed. �

10 
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Table 1 

List of biological parameters of system (1.3) . 

Parameters Description Unit Value Source 

Λ Recruitment rate of population per day ≥ 0 . 5 [38,39] 

β Transmission rate of susceptible individuals per day [0.390,0.432] [13] 

μ Natural death rate of population per day [2 . 74 , 6 . 85] × 10 −5 [47] ,CSZ data 

α Disease mortality of infected people per day 1 
0 . 6 ×365 

[13] 

δ Recovery rate None [0.01,0.2] Estimated 

γ Immune loss rate of vaccinated individuals None 0.2 [37] 

ϑ Vaccination rate of susceptible individuals None [0.371,0.436] [13] 

6

d developed by Milstein [46] , the corresponding discretization equation 

o⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 
1 

2 

S k 
(
ξ 2 

k − 1 

)
�t + σ1 S 

k 
√ 

�t ξk 

 

�t ηk 

 + σ3 I 
k 
√ 

�t ζk , 

(6.1) 

w pendent Gaussian random variables that follow the distribution N(0 , 1) 

f e of the k th iteration of the discretization equation. From AI-Darabsah 

[ no et al. [47] , and the detailed data of the Central Statistical Office of 

Z 3) are shown in Table 1 . Next, several empirical examples are provided 

t

 (1.3) while R 

s 
0 
> 1 . 

al density function for the stationary distribution under R 

s 
0 
> 1 . 

ence of system (1.3) . 

isease dynamics. 

< 1 . 

6

E nsities (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) and main parameters 

( e then obtains 

R
μβ
(
μ + γ + 

σ 2 
2 

2 

)
 γ + 

σ 2 
2 

2 

)
+ ϑ 

(
μ + 

σ 2 
2 

2 

)](
μ + α + δ + 

σ 2 
3 

2 

) = 2 . 43 > 1 . 

I dic stationary distribution � (·) . The left-hand column of Fig. 1 can be 

s (·) around the quasi-endemic equilibrium E ∗ has a unique log-normal 

d

m

w

�  

2 
3 (H 3 J 4 ) 

−1 Θ0 [(M 3 J 3 ) 
−1 ] τ

B 28 , 173 . 2562 , 80 . 0736) . Then, the corresponding marginal density func- 

t

(  67 . 07 e −14132 . 2( ln V −5 . 15) , 

(

T  . Obviously, this greatly illustrates Theorem 4.1 from the side. 

at all random perturbations σ1 , σ2 , and σ3 have a critical influence on 

t ing parameter analyses of the above three white noises are shown by 

E

. Simulations and parameter analyses 

In this section, by means of the well-known higher-order metho

f system (1.3) is obtained in the form 

 

 

 

 

 

 

 

 

 

 

 

 

 

S k +1 = S k + 

[ 
Λ − (μ + ϑ) S k − βS k I k 

S k + V 

k + I k 
+ γV 

k + δI k 
] 
�t + 

σ

V 

k +1 = V 

k + 

[
ϑS k − (μ + γ ) V 

k 
]
�t + 

σ 2 
2 

2 

V 

k 
(
η2 

k − 1 

)
�t + σ2 V 

k 
√

I k +1 = I k + 

[ 
βS k I k 

S k + V 

k + I k 
− (μ + α + δ) I k 

] 
�t + 

σ 2 
3 

2 

I k 
(
ζ 2 

k − 1 

)
�t

here the time increment �t > 0 , and ξk , ηk , andζk are three inde

or k = 1 , 2 , ..., n . Furthermore, (S k , V k , I k ) is the corresponding valu

13] , Zhao and Jiang [37] , Liu et al. [38] , Zhang and Jiang [39] , Ari

imbabwe (CSZ), the corresponding realistic statistics of system (1.

o focus on the following five aspects. 

(i) The existence of the ergodic stationary distribution of system

(ii) The exact expression and verification of the unique log-norm

(iii) The influence of random fluctuations on the disease persist

(iv) The effects of the main parameters of system (1.3) on the d

(v) The corresponding dynamical behavior of system (1.3) if R 

d 
0 

.1. Dynamical behavior of system (1.3) if R 

s 
0 
> 1 

xample 6.1. By Table 1 , letting the environmental noise inte

Λ, β, μ, α, δ, γ , ϑ) = (0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 05 , 0 . 2 , 0 . 4) , on

 0 = 

β(μ + γ ) 

(μ + γ + ϑ)(μ + α + δ) 
= 2 . 44 > 1 , R 

s 
0 = [(

μ + 

σ 2 
1 

2 

)(
μ +

t follows from Theorem 3.1 that system (1.3) admits a unique ergo

een to validate it. By Theorem 4.1 , the stationary distribution � 

ensity function Φ(S, V, I) . Moreover, it is calculated that 

 1 = 0 . 0246 	 = 0 , m 2 = −27 . 8515 	 = 0 , a 13 = 0 . 1196 	 = 0 , 

hich means 

= � 

2 
1 (H 1 J 1 ) 

−1 Θ0 [(H 1 J 1 ) 
−1 ] τ + � 

2 
2 (H 2 J 3 J 2 ) 

−1 Θ0 [(H 2 J 3 J 2 ) 
−1 ] τ + �

= 10 

−4 ×
( 

0 . 3524 0 . 3498 0 . 3947 

0 . 3498 0 . 3538 0 . 3882 

0 . 3947 0 . 3882 0 . 4970 

) 

. 

y direct calculation, one can obtain that E ∗ = (S ∗, V ∗, I ∗) = (40 . 04

ions of S(t) , V (t) and I(t) are separately given as follows. 

1) . P 1 (S) = 

∂Φ

∂S 
= 67 . 204 e −14188 . 4( ln S−3 . 69) , (ii) . P 2 (V ) = 

∂Φ

∂V 

=

iii) . P 3 (I) = 

∂Φ

∂ I 
= 56 . 59 e −10060 . 4( ln I−4 . 38) . 

he curves of (i)-(iii) are shown in the right-hand column of Fig. 1

Combining Remarks 3.1 –4.1 and Theorem 5.1 , one can derive th

he dynamical behavior of system (1.3) . Therefore, the correspond

xample 6.2 . 
11 
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Fig. 1. Left-hand column shows simulation of compartments S(t) , V (t) , and I(t) in deterministic system (1.1) and stochastic system (1.3) with noise intensities (σ1 , σ2 , σ3 ) = 

(0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) and main parameters (Λ, β, μ, α, δ, γ , ϑ) = (0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 05 , 0 . 2 , 0 . 4) , respectively. Right-hand column shows frequency histogram 

and corresponding marginal density function curves of individuals S, V, and I. 

Fig. 2. Corresponding simulation of partial compartments S(t) and I(t) of stochastic system (1.3) under noise intensities (σ1 , σ2 , σ3 ) = 

(0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) , (0 . 0 08 , 0 . 0 0 04 , 0 . 0 0 08) , (0 . 0 0 08 , 0 . 0 04 , 0 . 0 0 08) and (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 08) , respectively. Other fixed parameters: (Λ, β, μ, α, δ, γ , ϑ) = 

(0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 05 , 0 . 2 , 0 . 4) . 

6  the existence of stationary distribution 

E , α, δ, γ , ϑ) = (0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 05 , 0 . 2 , 0.4) and considers 

t

(  (0 . 0 08 , 0 . 0 0 04 , 0 . 0 0 08) , 

( = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 08) . 

F ) all guarantee the existence of a stationary distribution, which has an 

e ation intensities of susceptible and infected individuals are focused on, 

w tively. By only increasing the perturbation intensities of the vaccinated 

i  the disease infection will be effectively inhibited. In contrast, by only 

i , a great destabilizing influence on the population numbers of S and I

m

.2. Impact of random noises σi (i = 1 , 2 , 3) on disease extinction and

xample 6.2. One chooses the epidemiological parameters (Λ, β, μ
he following four subcases of stochastic perturbations: 

i) . (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) , (ii) . (σ1 , σ2 , σ3 ) =

iii) . (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 04 , 0 . 0 0 08) , (iv) . (σ1 , σ2 , σ3 ) 

irst, it should be pointed out that the above four subcases (i) –(iv

rgodicity property. For convenience and simplicity, only the popul

hich are presented in subfigures (2-1) and (2-2) of Fig. 2 , respec

ndividuals (or infected individuals), i.e., the larger σ2 (or σ3 ), then

ncreasing the perturbation intensity of the susceptible individuals

anifests. 
12 
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Fig. 3. Corresponding population numbers of solution (S(t) , V (t) , I(t)) to system (1.3) with transmission rates of β = 0 . 39 , 0 . 40 , 0 . 41 , and 0.42, respectively. Other given 

parameters: (Λ, μ, α, δ, γ , ϑ) = (0 . 8 , 3 × 10 −5 , 0 . 00457 , 0 . 128 , 0 . 2 , 0 . 4) and (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) . 

Fig. 4. Corresponding simulation of solution (S(t) , V (t) , I(t)) to system (1.3) with vaccination rate ϑ = 0 . 371 , 0 . 386 , 0 . 401 , and 0.416, respectively. Other fixed parameters: 

(Λ, β, μ, α, δ, γ ) = (0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 128 , 0 . 2) and (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) . 

rameters of system (1.3) on the individual decision-making behavior is 

s e and extinction of system (1.3) are critically affected by the transmis- 

s .3 and 6.4 will reveal the impact. In addition, the corresponding effect 

o 3) is also shown in Example 6.5 . 

6

E , δ, γ , ϑ) = (0 . 8 , 3 × 10 −5 , 0 . 00457 , 0 . 128 , 0 . 2 , 0 . 4) and random noises 

( es of transmission rate β = 0 . 39 , 0 . 40 , 0 . 41 and 0.42, the correspond- 

i cribed in Fig. 3 . Clearly, a small transmission rate can lead to reduction 

o . 

6

E  (0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 128 , 0 . 2) and stochastic perturbations 

( cases of vaccination rate ϑ = 0 . 371 , 0 . 386 , 0 . 401 , and 0.416, the cor- 

r n in Fig. 4 . Similarly, a small vaccination rate can control the disease 

i

Next, by Zhu et al. [25] , Jia et al. [26] , the impact of the main pa

tudied. From the expressions of R 

s 
0 

and R 

d 
0 
, the disease persistenc

ion rate β and vaccination rate ϑ . Thus, the following Examples 6

f the recruitment rate Λ on the dynamical behavior of system (1.

.3. Impact of transmission rate β on dynamics of system (1.3) 

xample 6.3. Choosing the epidemiological parameters (Λ, μ, α
σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) and considering the subcas

ng numbers of the solution (S(t ) , V (t ) , I(t )) to system (1.3) are des

f disease infection and even elimination, such as β ≤ 0 . 39 per day

.4. Impact of vaccination rate ϑ on dynamics of system (1.3) 

xample 6.4. Assuming that the parameters (Λ, β, μ, α, δ, γ ) =
σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) , for the corresponding sub

esponding solutions (S(t) , V (t) , andI(t)) to system (1.3) are show
nfection more effectively than a large one. 

13 
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Fig. 5. Corresponding population intensities of individuals S, V, and I of system (1.3) with recruitment rate Λ = 0 . 7 , 0 . 8 , 0 . 9 , and 1.0, respectively. Other given parameters: 

(β, μ, α, δ, γ , ϑ) = (0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 128 , 0 . 2 , 0 . 4) and (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) . 

Fig. 6. Corresponding population numbers of solution (S(t ) , V (t ) , I(t )) to system (1.3) with random perturbations (σ1 , σ2 , σ3 ) = (0 . 01 , 0 . 01 , 0 . 78) and main parameters 

(Λ, β, μ, α, δ, γ , ϑ) = (0 . 8 , 0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 13 , 0 . 2 , 0 . 38) . 

6

E ϑ) = (0 . 4 , 3 × 10 −5 , 0 . 00457 , 0 . 128 , 0 . 2 , 0 . 4) and stochastic fluctuations 

b b-conditions of recruitment rate Λ = 0 . 7 , 0 . 408 , 0 . 9 , and 1.0, the cor- 

r (1.3) are reflected in Fig. 5 . Obviously, as the parameter Λ increases to 

1 ely controlled by the small recruitment rate. 

6

E 1 , 0 . 01 , 0 . 78) and main parameters (Λ, β, μ, α, δ, γ , ϑ) = (0 . 8 , 0 . 4 , 3 ×
1

R
 

σ 2 
3 

2 

= 0 . 9116 < 1 , R 

s 
0 = 0 . 1179 < 1 . 

B  stationary distribution of system (1.3) . In contrast, it follows from 

T tinct in a long term. In addition, the deterministic model (1.1) has a 

g hand, these results validate the fact that large white noises lead to dis- 

e m fluctuation σ3 (i.e., 
σ3 
σ1 

= 

σ3 
σ2 

= 78 >> 1) indicates that it is necessary 

t of an epidemic. These results are verified by Fig. 6 . 

lations and parameter analyses, several reasonable and effective mea- 

s  even eliminate the epidemic, are provided. The special approaches are 

t

re implemented to reduce the population mobility in differential risk 

e e elimination of disease (see Fig. 5 ). 
.5. Impact of recruitment rate Λ on dynamics of system (1.3) 

xample 6.5. Letting the dynamical parameters be (β, μ, α, δ, γ , 

e (σ1 , σ2 , σ3 ) = (0 . 0 0 08 , 0 . 0 0 04 , 0 . 0 0 08) , and considering the su

esponding intensities of the compartments S, V, and I of system 

 from 0.7, the spread and infection of an epidemic can be effectiv

.6. Dynamical behaviors of system (1.3) under R 

d 
0 
< 1 

xample 6.6. Considering the stochastic noises (σ1 , σ2 , σ3 ) = (0 . 0

0 −5 , 0 . 00457 , 0 . 13 , 0 . 2 , 0 . 38) , one can then obtain 

 0 = 

β(μ + γ ) 

(μ + γ + ϑ)(μ + α + δ) 
= 1 . 0249 > 1 , R 

d 
0 = 

β

μ + α + δ +
y Theorem 3.1 , one cannot derive the existence of the ergodic

heorem 5.1 that the disease of stochastic system (1.3) will be ex

lobally asymptotically stable endemic equilibrium E + . On the one 

ase elimination from the side. On the other hand, the large rando

o isolate and control the infected individuals during the outbreak 

For epidemiological study, combining the above numerical simu

ures to reduce the threat of infectious diseases to human life, and

he following. 

(i) Several reasonable policies of joint prevention and control a

pidemic areas. Then, the small recruitment rate Λ may lead to th
14 
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hly pathogenic areas to decrease the contact rate of population. Hence, 

β Fig. 3 ). 

er prophylactic measures to improve the immune rate of disease (see 

F

7

7

ing. 

ary distribution � (·) under 

R

(  quasi-endemic equilibrium E ∗ related to E + is defined while R 

c 
0 

= 

 R 

s 
0 
, it is further proved that the stationary distribution � (·) around 

E

Φ

w isease of system (1.3) will go to extinction with probability 1 if R 

d 
0 

= 

ersistence and ergodicity of the epidemic. Moreover, the corresponding 

d

7

he unpredictability of environmental fluctuations in the real world, a 

s dard incidence is the object of concern. Adopting the descriptions in 

[ n of a random effect, is similarly taken into consideration in this pa- 

p  (1.3) are analyzed, such as the existence and uniqueness of a global 

p tion, and disease elimination. By comparison with the existing results 

( tailed in the following two points. 

n number, two important results of a deterministic epidemic, reflect 

d ing stochastic model, the existence of stationary distribution indicates 

t roved that stochastic system (1.3) admits a unique ergodic stationary 

d  out that R 

s 
0 
> 1 is a unified threshold for the disease persistence of 

s s obtained for the disease extinction of system (1.3) . Both R 

s 
0 
> 1 and 

R lly affected by the random fluctuations, i.e., σ1 , σ2 , and σ3 . In view of 

t  means that a large white noise leads to the disease eradication, while 

a main parameter analyses, several effective measures to stop the spread 

o

ary distribution incurs difficulty in studying more exact statistical prop- 

e g probability density function for further dynamical investigation. The 

r  theories of algebraic equations with respect to the three-dimensional 

F as 2.5 and 2.6 . By taking the effect of stochasticity into account again, 

t uilibrium E + is defined. For practical application, the exact expression 

o f system (1.3) is given. Furthermore, it is worth mentioning that the 

m se of the diffusion matrix M being positive semi-definite, such as delay 

s

by virtue of the limitation of the present mathematical approaches for 

e  

 

, and it is unfortunate that difficulty is encountered in obtaining the 

m nd, the impact of telegraph noises and periodicity on the dynamics of 

s 4,45,49,50] . These problems are expected to be studied and solved as 

p

D

 interest that represents a conflict of interest in connection with the 

w

C

original draft, Writing - review & editing. Daqing Jiang: Conceptualiza- 

t g Dai: Methodology, Formal analysis, Writing - original draft, Writing 
(ii) Controlling the activities of the susceptible individuals in hig

→ 0 + can be guaranteed, which means R 

s 
0 
< 1 and R 

d 
0 
< 1 (see 

(iii) Developing several effective vaccines and carrying out oth

ig. 4 ). 

. Conclusions and result discussions 

.1. Conclusions 

The corresponding theoretical results of this paper are the follow

(i) By Theorem 3.1 , system (1.3) admits a unique ergodic station

 

s 
0 = 

μβ
(
μ + γ + 

σ 2 
2 

2 

)[(
μ + 

σ 2 
1 

2 

)(
μ + γ + 

σ 2 
2 

2 

)
+ ϑ 

(
μ + 

σ 2 
2 

2 

)](
μ + α + δ + 

σ 2 
3 

2 

) . 
ii) By taking the effect of random perturbations into account, a

β(μ+ γ+ σ
2 
2 
2 

) 

(μ+ γ+ ε+ σ
2 
2 
2 

)(μ+ α+ δ+ σ
2 
3 
2 

) 

> 1 . In view of the expressions of R 

c 
0 

and

 

∗ has a log-normal density function in the following form: 

(S, V, I) = (2 π) −
3 
2 | �| − 1 

2 e −
1 
2 ( ln 

S 
S ∗ , ln V 

V ∗ , ln I 
I ∗ )�−1 ( ln S 

S ∗ , ln V 
V ∗ , ln I 

I ∗ ) τ , 

here the special form of � is shown in Theorem 4.1 . (iii) The d
β

μ+ α+ δ+ σ
2 
3 
2 

< 1 . The above results (i) and (ii) reflect the stochastic p

isease extinction of system (1.3) is described by result (iii) . 

.2. Result discussions 

In this paper, combining the great effect of vaccination and t

tochastic SVIS infectious disease model with vaccination and stan

28–40] , linear perturbation, which is the most intuitive assumptio

er. Subsequently, several dynamical properties of stochastic system

ositive solution, existence and ergodicity of a stationary distribu

 [28–40] ), several highlights developed in the present study are de

• As is known, the endemic equilibrium and basic reproductio

isease permanence and elimination. Similarly, for the correspond

he stochastic positive equilibrium state. In this paper, it is first p

istribution under the critical value R 

s 
0 
> 1 . It should be pointed

ystems (1.1) and (1.3) . Moreover, the sufficient condition R 

d 
0 
< 1 i

 

d 
0 
< 1 reveal that the dynamical behavior of system (1.3) is critica

he method of controlling variables and numerical simulations, this

 small one guarantees stochastic permanence. In addition, by the 

f an epidemic are provided. 

• It is generally accepted that the existence of an ergodic station

rties. Hence, this paper is devoted to obtaining the correspondin

esults of Zhou et al. [28] are further perfected and general solving

okker-Planck equation are developed, which are described in Lemm

he quasi-endemic equilibrium E ∗ corresponding to the endemic eq

f the log-normal three-dimensional density function Φ(S, V, I) o

ethods and theories developed herein are still suitable for the ca

tochastic differential equations [32,48] . 

Several remaining issues are now proposed and analyzed. First, 

pidemiological dynamics, a value gap exists between R 

s 
0 

and R 

d
0

ost precise threshold for disease extinction and persistence. Seco

ystem (1.3) should also be studied; the reader is referred to [30,3

lanned future work. 
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+ C 0 ϒ3 + ϒ3 C 
τ
0 

= 0 , where ϒ3 is a symmetric matrix. Letting ϒ3 := 

(

ϒ (A.1) 

w emi-definite matrix. The proof is then completed. 

Π

L tions, respectively: 

Π

O

�

B heories of matrix algebra should be described first. 

he inverse congruence transformation. 

lues of the matrix. 

duced as follows. For the same dimensional square matrix A and B, 

d

A

G if B is a positive definite matrix. 

Π (A.2) 

a o conditions: 

(

N he equivalent status in A . Let ˜ A = F 1 AF −1 
1 

:= ( ̃  a i j ) 3 ×3 , where ˜ A and the 

i

F

r

F (A.3) 

B

( eness . 

I ted. Namely, one must only discuss the following two cases, which are 

e

(

C s 

�

S riance of ψ A (λ) , it indicates that 

λ 2 a 33 − a 23 a 32 )] . 
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ppendix A. 

(I) (Proof of Lemma 2.5 ): Consider the algebraic equation G 

2 
1 

κi j ) 3 ×3 , by direct calculation one has 

3 = 

( 

κ11 0 0 

0 0 0 

0 0 0 

) 

, 

here κ11 = − a 2 
0 

2 c 11 
. If c 11 < 0 , then it means that ϒ3 is a positive s

(II) (Proof of Lemma 2.6 ): Denote 

1 = 

( 

1 0 0 

0 0 0 

0 0 0 

) 

, Π2 = 

( 

0 0 0 

0 1 0 

0 0 0 

) 

, Π3 = 

( 

0 0 0 

0 0 0 

0 0 1 

) 

. 

et �i (i = 1 , 2 , 3) be the solutions of the following algebraic equa

i + A �i + �i A 

τ = 0 . 

bviously, one can obtain 

0 = α2 
1 �1 + α2 

2 �2 + α2 
3 �3 . 

efore proving the positive definiteness of �0 , the following two t

(T 1 ) . The positive definiteness of the matrix is not affected by t

(T 2 ) . The similarity transformation does not change the eigenva

For convenience and simplicity, an important notation is intro

efine 

 � B : A − B is at least a positive semi-definite matrix . 

iven the above, it is easily derived that A is also positive definite 

First, consider the following algebraic equation, 

1 + A �1 + �1 A 

τ = 0 , 

fter which the relevant proof can be divided into the following tw

B 1 ) . a 21 = a 31 = 0 , (B 2 ) . a 21 	 = 0 or a 31 	 = 0 . 

ext, one must demonstrate that the elements a 21 and a 31 have t

nvertible matrix F 1 are given by 

 1 = 

( 

1 0 0 

0 0 1 

0 1 0 

) 

, ˜ A = 

( 

a 11 a 13 a 12 

a 31 a 33 a 32 

a 21 a 23 a 22 

) 

, 

espectively. Hence, (A.2) can be equivalently transformed as 

 1 Π1 F 
τ

1 + ̃

 A (F 1 �1 F 
τ

1 ) + (F 1 �1 F 
τ

1 ) ̃
 A 

τ = 0 . 

y defining ˜ Π1 = F 1 Π1 F 
τ

1 
, ˜ �1 = F 1 �1 F 

τ
1 
, it can be noticed that 

i) . ˜ Π1 = Π1 , (ii) . ˜ �1 and �1 have the same positive definit

n addition, ̃  a 21 = a 31 , ˜ a 31 = a 21 . Therefore, the validation is comple

quivalent to conditions (B 1 ) and (B 2 ) , respectively: 

C 1 ) . a 21 = a 31 = 0 , (C 2 ) . a 21 	 = 0 . 

ase (C 1 ) . If a 21 = a 31 = 0 , by directly solving Eq. (A.2) , one obtain

1 = 

( − 1 
2 a 11 

0 0 

0 0 0 

0 0 0 

) 

:= Δ11 . 

ince A has all negative real part eigenvalues, by the similarity inva

3 + r 1 λ
2 + r 2 λ + r 3 = ψ A (λ) = (λ − a 11 )[ λ

2 − (a 22 + a 33 ) λ + (a 2
16 
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C tive real part. By a 11 ∈ R , then a 11 < 0 . In other words, Δ11 is positive 

s

� (A.4) 

C

 

a 33 ) = 0 , let ̂ A = (F 3 F 2 ) A (F 3 F 2 ) 
−1 , where 

T

( (A.5) 

D putes 

Π

 

 

a 2 21 

2 ξ1 
0 0 

0 

a 2 21 

2 ξ1 ξ2 
0 

0 0 0 

⎞ ⎠ , 

w cause their sign is the only object of concern, they are omitted here. 

F at 

ψ

B s means that the equation λ2 + ξ1 λ + ξ2 = 0 has two negative real part 

r n that 

ξ (A.6) 

I

� = L 1 + L 2 , 

o

�

(A.7) 

B
 

) −1 L 2 [(F 3 F 2 ) 
−1 ] τ are all positive semi-definite. It is then implied that 

� (A.8) 

• is given by 

F

D en be equivalently transformed into the following equation: 

Π (A.9) 

S  

2 , 0 , 0) , and 

Â

− 1 
2(r 1 r 2 −r 3 ) 

 

0 

r 1 
2 r 3 (r 1 r 2 −r 3 ) 

⎞ ⎠ , 

w

Σ

− 1 
2(r 1 r 2 −r 3 ) 

0 

r 1 
2 r (r r −r ) 

⎞ ⎠ := L 3 + L 4 , 
onsequently, ϕ A (λ) has an eigenvalue λ1 = a 11 , which has a nega

emi-definite. Moreover, 

1 � Δ11 . 

ase (C 2 ) . If a 21 	 = 0 , let ω 0 = a 32 + 

a 31 (a 33 −a 22 ) 
a 21 

− a 23 a 
2 
31 

a 2 
21 

. 

• If ω 0 = 0 , which means a 21 (a 21 a 32 − a 22 a 31 ) − a 31 (a 31 a 23 − a 21

F 2 = 

( 

1 0 0 

0 1 0 

0 − a 31 

a 21 
1 

) 

, F 3 = 

( 

a 21 a 22 + 

a 23 a 31 

a 21 
a 23 

0 1 0 

0 0 1 

) 

. 

hus, (A.2) can be equivalently rewritten as 

F 3 F 2 ) Λ1 (F 3 F 2 ) 
τ + ̂

 A [(F 3 F 2 )�1 (F 3 F 2 ) 
τ ] + [(F 3 F 2 )�1 (F 3 F 2 ) 

τ ] ̂  A 

τ = 0 . 

enoting ̂ Π1 = (F 3 F 2 ) Π1 (F 3 F 2 ) 
τ and 

̂ �1 = (F 3 F 2 )�1 (F 3 F 2 ) 
τ , one com

̂ 

1 = 

( 

a 2 21 0 0 

0 0 0 

0 0 0 

) 

, ̂ A = 

( −ξ1 −ξ2 −ξ3 

1 0 0 

0 0 a 33 − a 23 a 31 

a 21 

) 

, ̂ �1 = 

⎛⎝
here the parameters ξk (k = 1 , 2 , 3) can be obtained by (A.5) . Be

urthermore, the characteristic polynomial ψ A (λ) follows from 

̂ A th

 A (λ) = 

(
λ − a 33 + 

a 23 a 31 

a 21 

)
(λ2 + ξ1 λ + ξ2 ) . 

y the condition that A has all negative real part eigenvalues, it thu

oots. By the Routh-Hurwitz stability criterion [43] , it can be show

1 > 0 , ξ2 > 0 . 

n view of 

̂ 

1 = 

⎛ ⎝ 

a 2 21 

2 ξ1 
0 0 

0 

a 2 21 

2 ξ1 ξ2 
0 

0 0 0 

⎞ ⎠ = 

⎛ ⎝ 

a 2 21 

2 ξ1 
0 0 

0 0 0 

0 0 0 

⎞ ⎠ + 

⎛ ⎝ 

0 0 0 

0 

a 2 21 

2 ξ1 ξ2 
0 

0 0 0 

⎞ ⎠ :

ne hence obtains 

1 = (F 3 F 2 ) 
−1 ̂ �1 [(F 3 F 2 ) 

−1 ] τ = (F 3 F 2 ) 
−1 (L 1 + L 2 )[(F 3 F 2 ) 

−1 ] τ

= (F 3 F 2 ) 
−1 L 1 [(F 3 F 2 ) 

−1 ] τ + (F 3 F 2 ) 
−1 L 2 [(F 3 F 2 ) 

−1 ] τ

= 

( 1 
2 ξ1 

0 0 

0 0 0 

0 0 0 

) 

+ (F 3 F 2 ) 
−1 L 2 [(F 3 F 2 ) 

−1 ] τ

:= Δ12 + (F 3 F 2 ) 
−1 L 2 [(F 3 F 2 ) 

−1 ] τ . 

y means of ξ1 > 0 and ξ2 > 0 , it is derived that Δ12 , L 2 and (F 3 F 2

1 � Δ12 . 

If ω 0 	 = 0 , let Ā = (F 4 F 2 ) A (F 4 F 2 ) 
−1 , where the invertible matrix F 4 

 4 = 

⎛ ⎝ 

a 21 ω 0 (a 22 + a 33 ) ω 0 

(
a 33 − a 23 a 31 

a 21 

)2 + a 23 ω 0 

0 ω 0 a 33 − a 23 a 31 

a 21 

0 0 1 

⎞ ⎠ . 

enoting Π̄1 = (F 4 F 2 ) Λ1 (F 4 F 2 ) 
τ , �̄1 = (F 4 F 2 )�1 (F 4 F 2 ) 

τ , (A.2) can th

¯
1 + Ā ̄�1 + �̄1 ̄A 

τ = 0 . 

imilarly, by direct calculation, one obtains that ̂ Π1 = diag((a 21 ω 0 )

 

 = 

( −r 1 −r 2 −r 3 
1 0 0 

0 1 0 

) 

, ̂ �1 = (a 21 ω 0 ) 
2 

⎛ ⎝ 

r 2 
2(r 1 r 2 −r 3 ) 

0 

0 

1 
2(r 1 r 2 −r 3 )

− 1 
2(r 1 r 2 −r 3 ) 

0 

here r 1 , r 2 , r 3 are the same as those in Lemma 2.6 . Considering 

¯
1 = (a 21 ω 0 ) 

2 

( 1 
2 r 1 

0 0 

0 0 0 

0 0 0 

) 

+ (a 21 ω 0 ) 
2 

⎛ ⎝ 

r 1 
2 r 3 (r 1 r 2 −r 3 ) 

0 

0 

1 
2(r 1 r 2 −r 3 ) 

− 1 
2(r r −r ) 

0 
1 2 3 3 1 2 3 
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o (A.7) , 

�

N -definite, one then has 

� (A.10) 

C xists such that 

� (A.11) 

I

(

a
 

F τ
6 
, andA 2 = F 5 AF −1 

5 
, A 3 = F 6 AF −1 

6 
, where 

F

N (A.2) , one can see that 

�

w

�
0 

0 

η3 

) 

. (A.12) 

I

�

G te matrix. This completes the proof. 

space { 	, F , { F t } t≥0 , P } , it is assumed that B (t) is an n -dimensional 

s dimensional SDE, 

d

, ator L is given by 

L

L  

 

) , one has 

L  ) , t ) V xx (X (t ) , t ) g(X (t ) , t ) 
]
, 

w  , one has 

d

R

epidemics. Proc R Soc Lond A 1927;115:700–21 . 
n and transmission. J Biol Dynam 2010;4:296–314 . 

el with time delay. Math Methods Appl Sci 2007;30:733–49 . 
ened disease carriers. Comput Math Method M 2015;10(4):287–305 . 

f avian influenza a (H5N6) in the philippines. Infect Dis Model 2018;3:35–59 . 

yst 2013;21(4):1–30 . 
ce. Chaos Solitons Fractals 2009;41(1):175–82 . 

te. Chaos Solitons Fractals 20 05;23:997–10 04 . 
J Theore Bio 2008;253:1–11 . 

rying total population size. Math Comput Model 2002;35:1235–43 . 
ne can therefore derive, by a similar method as that described in 

1 = (F 4 F 2 ) 
−1 �̄1 [(F 4 F 2 ) 

−1 ] τ = (F 4 F 2 ) 
−1 (L 3 + L 4 )[(F 4 F 2 ) 

−1 ] τ

= (F 4 F 2 ) 
−1 L 3 [(F 4 F 2 ) 

−1 ] τ + (F 4 F 2 ) 
−1 L 4 [(F 4 F 2 ) 

−1 ] τ

= 

( 1 
2 r 1 

0 0 

0 0 0 

0 0 0 

) 

+ (F 4 F 2 ) 
−1 L 4 [(F 4 F 2 ) 

−1 ] τ

:= Δ13 + (F 4 F 2 ) 
−1 L 4 [(F 4 F 2 ) 

−1 ] τ . 

oting that Δ13 , L 4 and (F 4 F 2 ) 
−1 L 4 [(F 4 F 2 ) 

−1 ] τ are all positive semi

1 � Δ13 . 

onsequently, by (A.4), (A.8) and (A.10) , a constant η1 > 0 always e

1 �
( 

η1 0 0 

0 0 0 

0 0 0 

) 

. 

n addition, for the following two algebraic equations, 

i) . Π2 + A �2 + �2 A 

τ = 0 , (ii) . Π3 + A �3 + �3 A 

τ = 0 , 

nd letting ˜ Π2 = F 5 Π2 F 
τ

5 
, ˜ Π3 = F 6 Π3 F 

τ
6 
, ˜ �2 = F 5 �2 F 

τ
5 
, ˜ �3 = F 6 �3

 5 = 

( 

0 1 0 

0 0 1 

1 0 0 

) 

, F 6 = 

( 

0 0 1 

1 0 0 

0 1 0 

) 

. 

oting that ˜ Π2 = ̃

 Π3 = Π1 , by a method similar to that shown in 

˜ 

2 �
( 

η2 0 0 

0 0 0 

0 0 0 

) 

, ˜ �3 �
( 

η3 0 0 

0 0 0 

0 0 0 

) 

, 

here the constants η2 > 0 and η3 > 0 ; that is to say, 

2 = F −1 
5 
˜ �2 F 

−1 
5 �

( 

0 0 0 

0 η2 0 

0 0 0 

) 

, �3 = F −1 
6 
˜ �3 F 

−1 
6 �

( 

0 0 

0 0 

0 0 

n summary, it can be derived that 

0 = α2 
1 �1 + α2 

2 �2 + α2 
3 �3 �

( 

α2 
1 η1 0 0 

0 α2 
2 η2 0 

0 0 α2 
3 η3 

) 

. 

iven the above definitions and discussions, �0 is a positive-defini

(III). (SED Preliminaries) : For the above complete probability 

tandard Brownian motion defined on it. Consider the following n -

X (t) = f (X (t ) , t ) dt + g(X (t ) , t ) dB (t ) , for t ≥ t 0 

 with the initial value X(t 0 ) = X 0 ∈ R 

n . A common differential oper

 = 

∂ 

∂t 
+ 

n ∑ 

k =1 

f k (X, t) 
∂ 

∂X k 

+ 

1 

2 

n ∑ 

i, j=1 

[
g τ (X, t) g(X, t) 

]
i j 

∂ 2 

∂ X i ∂ X j 

. 

etting the operator L act on a function V ∈ C 2 , 1 (R 

n × [ t 0 , + ∞ ] ; R 

1+

 V (X (t ) , t ) = V t (X (t ) , t ) + V x (X (t ) , t ) f (X (t ) , t ) + 

1 

2 

t race 
[
g τ (X (t

here V t = 

∂V 
∂t 

, V x = ( ∂V 
∂x 1 

, ..., ∂V 
∂x n 

) and V xx = ( ∂ 2 V 
∂ x i ∂ x j 

) n ×n . If X(t) ∈ R 

n

V (X (t ) , t ) = L V (X (t ) , t ) dt + V x (X (t ) , t ) g(X (t ) , t ) dB (t ) . 
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