
Nguyen et al. Appl Biol Chem           (2021) 64:19  
https://doi.org/10.1186/s13765-021-00592-8

ARTICLE

Impact of electron beam irradiation 
on the chlorophyll degradation and antioxidant 
capacity of mango fruit
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and Pongphen Jitareerat1,2* 

Abstract 

At the present, the mechanism of chlorophyll degradation in response to ionizing irradiation in harvested fruits have 
not been examined. To understand the effect of electron beam (E-beam) irradiation on the chlorophyll degrading 
pathway in relation to chlorophyll degrading enzymes activity, reactive oxygen species (ROS) and antioxidant capaci-
ties of harvested mangoes stored at 13 °C for 16 days were studied. E-beam-treated fruit significantly suppressed the 
activities of chlorophyll degrading enzymes especially pheophytinase (PPH) and chlorophyll degrading peroxidase 
(Chl-POX) in the late stage of storage. This resulted in the chlorophyll content being maintained. However, E-beam 
irradiation did not affect the activities of chlorophyllase (Chlase) and magnesium de-chelatase (MD). The respiration 
rate, ethylene production, ROS accumulation (hydrogen peroxide [H2O2] and superoxide radical [O−.

2]) immediately 
increased after E-beam treatment, following which they significantly decreased in comparison to the control. E-beam 
treatment enhanced the fruit’s antioxidant capacity by activating the activities of catalase (CAT) and ascorbate per-
oxidase (APX) and glutathione (GSH) content, and inactivated the activity of superoxide dismutase (SOD). Further, it 
did not affect the activity of glutathione reductase (GR) and glutathione disulfide (GSSG), vitamin C content, or total 
phenolic content. These results imply that E-beam treatment has the potential to delay chlorophyll degradation by 
suppressing the Chl-POX and PPH activities as well as reduce ROS production via CAT, APX, and SOD activities and 
GSH content.
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Introduction
Mango (Mangifera indica L.) is a popular tropical fruit for 
its dietary fiber, vitamin C, and pigments and is an excel-
lent source of antioxidants and phytochemicals [1–3]. 
After harvesting, it ripens within 4  days under ambient 
temperature [4]. One of the most visible changes during 
the postharvest ripening of mangoes is chlorophyll deg-
radation [5], which further leads to the yellowing of its 

skin quickly. The yellow appearance indicates that mango 
fruit cannot be stored long periods because it is conse-
quent senescence in shortly. Therefore, the delaying of 
the chlorophyll degradation is one criteria that help to 
extend the storage life of mango which it can be exported 
for long distance markets.

Chlorophyll is a naturally green pigment biosynthe-
sized in higher plants. Chlorophyll is a photochemically 
active compound that also plays a role in human health 
[6]. During storage, chlorophyll degradation takes place 
in two stages: in the early stage, dephytylation and mag-
nesium dechelation take place. Chlase is one of first 
enzymes in the chlorophyll degradation process and 
removes the phytol group in chlorophyll a structure to 
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obtain chlorophyllide a [7, 8]. Following this, chlorophyl-
lide a releases magnesium ion to form pheophorbide 
a, which is catalyzed by MD [9, 10]. Following this, the 
late stage consists of the oxygenolytic cleavage of pheo-
phorbide a, reduction of the red chlorophyll catabolite, 
and modification of the primary fluorescent chlorophyll 
catabolite. Pheophorbide a oxygenase (PAO) converts 
pheophorbide a to red chlorophyll catabolites, which is 
followed by a reduction in the red chlorophyll catabolite 
induced by red chlorophyll catabolite reductase (RCCR), 
resulting in a colorless fluorescent product known as the 
primary fluorescent chlorophyll catabolite. Then, the pri-
mary fluorescent chlorophyll catabolite is transformed 
to fluorescent chlorophyll catabolites via a demethyla-
tion and hydroxylation process [11, 12]. Additionally, 
previous researchers have reported that Chl-POX can 
convert chlorophyll a to 132-hydroxychlorohyll a, which 
is a fluorescent chlorophyll catabolite, in the presence of 
H2O2 and phenolic compounds such as p-coumaric acid, 
apigenin, and 2,4-dichlorophenol [13, 14]. Further, chlo-
rophyll is degraded by the oxidation of its phytyl chain, 
caused by reactive oxygen species (ROS) or oxy free radi-
cals in higher plants such as Petroselinum sativum [15] 
and Posidonia oceanica [16].

Ionizing irradiation is a form of non-thermal tech-
nology that is widely used to solve various agricultural 
problems, such as inactivating the food-borne patho-
gens, suppressing the sprouting of tuber crops, delaying 
the ripening of harvested produce, and controlling post-
harvest losses caused by insect and fungal infestations 
[17]. Ionizing gamma irradiation has been reported to 
maintain chlorophyll content in quince fruit [18], toma-
toes [19], plums [20], pears [21], fenugreek, and spinach 
[22] whereas ionizing E-beam treatment could reduce 
postharvest disease, maintain firmness and also delay 
the color change of mango fruit [23]. However, there is 
a lack of knowledge about the effect of ionizing E-beam 
irradiation on chlorophyll-degrading enzymes and the 
correlation between chlorophyll degradation and ROS 
production in mangoes. Therefore, the present study is 
the first report to show that ionizing E-beam irradiation 
delays chlorophyll degradation by suppressing chloro-
phyll-degrading enzyme activities and ROS production 
as well as enhances antioxidant capacity in harvested 
mangoes.

Materials and methods
Mango samples and electron beam treatment
Mature green mangoes cv. Nam Dok Mai Si Thong were 
harvested from a farm in the Ratchaburi province (90–
100 days after fruit set) and transported to a research lab-
oratory at the Division of Postharvest Technology within 
2 h. The fruits were checked for uniformity in size, weight 

(350–370 g), color, and shape, and they were free of any 
visible defects and infestations. They were surface disin-
fested with a solution of 0.1  g  L−1 sodium hypochlorite 
and airdried for 2  h before treatment. Our preliminary 
test showed that E-beam treatments of > 1.0  kGy causes 
physical injury to the mango peel after 24 h of treatment, 
whereas 0.5 kGy causes no injury. Thus, 0.5 kGy E-beam 
irradiation was chosen for this experiment.

One hundred twenty fruits were placed in a corru-
gated paper box (40 × 20 × 10 cm; 15 fruits per box) and 
treated with 0.5 kGy E-beam at an ambient temperature 
of 28 ± 2 °C. The irradiation was carried out at the Thai-
land Institute of Nuclear Technology (TINT), Nakhon 
Nayok province. An E-beam linear accelerator (AECL 
accelerators, Kanata On, Canada) of 10 meV with a pulse 
repetition frequency (PRF) of 60  Hz was used, and the 
under beam conveyor (UBC) speed was controlled at 
0.024  m  s−1 to treat the mangoes. Eight alanine dosim-
eters (TSS Quotation-SP, Thai Sterilization Services Co. 
Ltd.) per box were attached to the top and bottom of each 
fruit’s surface to measure the desired dose. The dosim-
eters were then read using an alanine dosimeter reader 
(Electron spin resonance spectroscopy) (Additional 
file  1). None of the fruits exposed to the E-beam (120 
fruits) were used as the control.

The dosage uniformity value of the treated fruits (Dmax/
Dmin) was satisfactory at 1.81; the accepted range for the 
uniformity ratio value of an electron beam is required to 
be between 1.5 and 2 or even higher [24]. After irradia-
tion, all the fruit samples were stored at 13 °C for 16 days. 
The samples were then randomly collected to evaluate 
the chlorophyll content, activity of chlorophyll-degrading 
enzymes, ROS, antioxidant capacity, respiration rate, and 
ethylene production during the initial days and then after 
4-day intervals.

Determination of the peel color
The color changes in the mango peel were measured 
using a colorimeter (Model CR-400, Konica Minolta, 
Japan) every 4 days. The colors were determined for three 
positions of the fruit’s surface (upper, middle, and lower 
parts) and averaged to obtain one value per fruit. The 
values for L*, a*, b*, and hue angle were recorded. The 
total difference in the color value (ΔE is the color change 
between two measurement times) was calculated using 
the following formula:

where L∗
0
 , a∗

0
 , and b∗

0
 indicate the color values of the sam-

ples on the initial day (day 0), and L∗t  , a∗t  , and b∗t  indicate 
the values of the samples every 4  days throughout the 
storage period.
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Determination of chlorophyll content
Chlorophyll was extracted with N,N-dimethylfor-
mamide at 4  °C in the dark for 24  h. The solution 
was filtered through Whatman No.1 filter paper. The 
absorption value of the chlorophyll content was meas-
ured at 664 and 647  nm using a spectrophotometer 
(UV-1800; Shimadzu Co., Kyoto, Japan) and expressed 
as mg kg−1 of fresh weight [25].

Substrate preparation of chlorophyll degrading enzymes
Acetone powder
A 5  g sample of mango peel was homogenized in 
100  mL cold acetone (− 20  °C). The homogenate was 
filtered through filter paper (Whatman No. 1). The resi-
due was washed with cold acetone and ethyl acetate to 
elute pigments and then completely dried under a vac-
uum pump at room temperature (25 ± 2 °C) for 20 min. 
It was then transferred to a desiccator jar containing 
silica gel for 1 day and stored at − 20 °C [26].

Chlorophyll a
Chlorophyll a was prepared from spinach leaves by fol-
lowing method of Aiamla-Or et al. [27]. Spinach leaves 
(5  g) were homogenized for 3  min in 20  mL cold ace-
tone (− 20  °C). The homogenate was filtered through 
a filter paper (Whatman No. 1), and the filtrate was 
treated with 1,4-dioxane and distilled water in the ratio 
4:2:3 (v/v), followed by incubation at 4  °C in the dark 
for 1  h. The filtrate was centrifuged at 10,000×g for 
15  min at 4  °C, after which the pellets were dissolved 
again in the mixture of acetone, 1,4-dioxane, and dis-
tilled water (15:2:5 v/v) and kept at 4 °C in the dark for 
1 h. Subsequently, the soluble pellets were centrifuged 
at 10,000×g for 15  min at 4  °C. Afterward, the pel-
lets were dissolved in petroleum ether and stored at 
− 20  °C until the individual pigments were separated 
using sugar powder column chromatography. Finally, 
0.5 g L−1 of chlorophyll a was prepared in acetone.

Chlorophyllin a
The solution of chlorophyll a in acetone (0.5  g  L−1) 
was deposited into petroleum ether. The chlorophyll a 
in the petroleum ether phase was washed three times 
with distilled water to obtain concentrated chlorophyll 
a. Afterward, chlorophyllin a was precipitated with 30% 
potassium hydroxide (KOH) in methanol. Further, the 
solution was centrifuged at 16,000×g for 15 min at 4 °C 
and dissolved in distilled water. Subsequently, chloro-
phyllin a was adjusted to pH 9.0 using 1 M Tricine [28].

Pheophytin a
Pheophytin a was prepared from chlorophyll a in 
acetone (0.5  g  L−1) by adding one drop of 0.1  N 

hydrochloric acid (HCl). After treatment for 2  min, 
the pheophytin a solution was neutralized by 0.1  N 
sodium hydroxide (NaOH) until a pH of 7.0 was 
reached [29].

Chlorophyll degrading enzyme activity assay
An extraction of crude enzymes was conducted using 
0.5 g of mango peel acetone powder mixed with 15 mL 
of 10  mM phosphate buffer (pH 7.0), containing 0.6% 
CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-
1-propanesulfonate) for Chlase. For Chl-POX, a mango 
peel acetone powder (0.5 g) was suspended in 15 mL of 
50 mM phosphate buffer (pH 7.0). In the case of PPH, a 
50  mM Tris–HCl (Tris (hydroxymethyl) aminometh-
ane-hydrochloric acid) buffer (pH 8.0) was used instead 
of 50 mM phosphate buffer (pH 7.0). For MD, a mango 
peel acetone powder (0.5  g) was assorted with 15  mL 
of 10 mM phosphate buffer (pH 7.0) containing 50 mM 
potassium chloride (KCl) and 0.24% Triton-X 100. The 
mixture solutions were stirred at 4 °C for 1 h and filtered 
with two layers of Miracloth. The filtrate was then cen-
trifuged at 16,000×g at 4 °C for 15 min. The supernatant 
was used as the crude enzyme extract. The protein con-
tent of the crude extract was determined following Brad-
ford’s method [30].

Chlase activity
Chlase activity was analyzed following the Aiamla-
Or et  al.’s method [26]. The reaction mixture contained 
0.5 mL of 0.1 mM phosphate buffer (pH 7.5), 0.2 mL of 
0.5  g  L−1 chlorophyll a in acetone solution, and 0.5  mL 
of crude enzyme solution. The reaction mixture was 
incubated at room temperature (25 ± 2  °C) for 60  min, 
and the enzyme reaction was inhibited by adding 4  mL 
of acetone. Chlorophyllide a was separated by adding 
4 mL of hexane. The upper phase contained the remain-
ing chlorophyll a, while the lower phase contained chlo-
rophyllide a. The activity was spectrophotometrically 
detected by the formation of chlorophyllide a at 667 nm 
(76.79 mM−1 cm−1) per min per mg of protein.

Chl‑POX activity
Chl-POX activity was measured in accordance with 
Yamauchi et  al. [31] but with some modifications. The 
reaction mixture contained 0.5  mL of crude enzyme 
extract, 0.1  mL of 1.0% Triton-X 100, 0.1  mL of 5  mM 
p-coumaric acid, 0.2  mL of 0.5  g  L−1 chlorophyll a in 
acetone solution, 1.5 mL of 0.1 mM phosphate buffer (pH 
5.5), and 0.1 mL of 0.3% hydrogen peroxide. The reaction 
mixture was incubated at 25 ± 2  °C for 40 min. Enzyme 
activity was spectrophotometrically determined by meas-
uring the decrease in chlorophyll a at 668 nm per min per 
mg of protein at 25 ± 2 °C.
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PPH activity
PPH activity was determined by using the method given 
by Kaewsuksaeng et  al. [29]. The reaction mixture con-
tained 0.5  mL of 50  mM Tris–HCl buffer (pH 8.0), 
0.25  mL of pheophytin a (0.043  g  L−1) in acetone solu-
tion, and 0.25 mL of crude enzyme extract. The mixture 
was incubated at 25 ± 2 °C for 40 min and then inhibited 
by adding 2  mL of acetone. The PPH activity was spec-
trophotometrically detected based on the pheophorbide 
a formation at 665 nm (44 mM−1 cm−1) per min per mg 
of protein.

MD activity
MD activity was spectrophotometrically determined 
using chlorophyllin a by measuring the absorbance of 
pheophorbin a formation at 686  nm [32]. The reaction 
mixture, which contained 0.5 mL of 50 mM Tris-tricine 
buffer (pH 8.8), 0.1 mL of chlorophyllin a (OD687 = 0.4), 
and 0.2  mL of crude enzyme extract, was incubated at 
37 °C for 3 min. MD activity was expressed as the incre-
ment of OD at 686 nm per min per mg of protein under 
the test conditions.

Ethylene production and respiration rate
One fruit was incubated in plastic box (1.4 L in volume) 
for 3  h at 13  °C. One milliliter of gas sample from the 
headspace of the plastic box was drawn using a syringe 
and injected into a gas chromatograph (Shimadzu GC-
14B, Bara scientific, Japan) with a thermo-conductivity 
detector for carbon dioxide analysis and a flame ioniza-
tion detector for ethylene analysis. Each treatment con-
sisted four replicates (boxes).

Hydrogen peroxide and superoxide radical
The hydrogen peroxide (H2O2) content was measured 
using Wu et  al.’s method [33], albeit with some modifi-
cations. Peel fruit tissue (0.5 g) was mixed with 8 mL of 
5% cold trichloroacetic acid (w/v) and was subsequently 
homogenized and centrifuged at 10,000×g at 4  °C for 
10 min. The reaction mixture was prepared using 0.5 mL 
of the supernatant, 4 mL of 5% trichloroacetic, and 0.5 mL 
of assay reagent containing 500  µM ferrous ammonium 
sulfate, 50  mM sulfuric acid (H2SO4), 200  µM xylenol 
orange, and 200  mM sorbitol. The reaction mixture was 
incubated at 25 ± 2 °C for 45 min. During the incubation 
period, the hydrogen peroxide molecule oxidized Fe2+ to 
Fe3+ ion, which was determined by measuring the absorb-
ance of the ferric-xylenol orange complex at 560 nm. The 
absorbance values were calibrated to a standard curve, 
generated using the known concentrations of H2O2.

The production rate of superoxide radical (O−.
2) was 

analyzed using the method given by Elstner and Heupel 
[34]. Peel tissue samples (1  g) were homogenized with 

8  mL of 65  mM phosphate buffer (pH 7.8) containing 
1 mM ethylenediaminetetraacetic acid (EDTA), 1% poly-
vinylpolypyrrolidone (PVPP w/v), and 0.3% Triton X-100. 
The extraction mixture was centrifuged at 5000×g for 
15 min at 4 °C. After centrifugation, 0.5 mL of the super-
natant was mixed with 1 mL of 50 mM phosphate buffer 
(pH 7.8) and 0.5 mL of 10 mM hydroxylamine hydrochlo-
ride and subsequently incubated at 25 ± 2  °C for 20 min 
in dark conditions. A 1 mL sample of the above reaction 
mixture was added to 1 mL of 19 mM p-aminobenzene 
sulfonic acid and 1  mL of 7  mM α-naphthylamine to 
formulate a new mixture, which was then incubated at 
25 ± 2 °C for 20 min in dark conditions. The O−.

2 content 
was calculated based on a comparison of absorbance with 
a standard curve (using sodium nitrite as the standard) at 
530 nm. The O−.

2 production rate was expressed as µmol 
NO2 kg−1 s−1 of fresh weight.

Antioxidant compounds and enzymatic antioxidant 
activities
GSH and GSSG assay
Crude extracts for the analysis of total glutathione were 
prepared by homogenizing 2 g of mango peel in 10 mL of 
cold 0.9% NaCl (w/v) containing 5 mM EDTA, which was 
then centrifuged at 17,000×g at 4 °C for 10 min. For GSH, 
5  mL of the above crude extract was precipitated with 
5  mL of cold 30% trichloroacetic acid (w/v) for 5  min. 
Further, it was centrifuged at 17,000×g at 4 °C for 10 min 
to remove protein [35]. The total and GSH contents were 
measured using the method stated by Griffth [36] but 
with some modifications. The reaction to determine the 
total glutathione content was facilitated by mixing 1.4 mL 
of 0.3 mM nicotinamide adenine dinucleotide phosphate 
(NADPH) and 200 µL of 6 mM DTNB (Ellman’s reagent; 
5,5′-dithiobis-(2-nitrobenzoic acid)) in 100  mM phos-
phate buffer with 5  mM EDTA disodium salt (pH 7.5), 
0.02  mL of glutathione reductase (50  U  mg−1 protein 
from yeast), and 0.4 mL of crude extract. The GSH con-
tent was measured using 0.2 mL of 6 mM DTNB, 1.4 mL 
of 100 mM phosphate buffer with 5 mM EDTA disodium 
salt (pH 7.5), and 0.4  mL of crude extract. The solu-
tion of total glutathione and GSH assay was incubated 
at 25 ± 2  °C for 1  h and subsequently measured using a 
spectrophotometer at 412  nm. The GSSG content was 
calculated using total glutathione subtract to the content 
of GSH in a similar sample. The GSH and GSSG contents 
were calculated using a standard graph and expressed in 
terms of milligrams of glutathione equivalents per kilo-
gram of fresh weight.

Total phenolic content
The crude extract was prepared following the 
method given by Ribeiro et  al. [37] but with some 
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modifications. 2.5 g of mango peel was mixed with 10 mL 
of methanol:water (60:40  v/v). The sample was homog-
enized and then centrifuged at 15,000×g for 20  min at 
4  °C. The supernatant was used to determine the total 
phenolic content using the Folin–Ciocalteu method, 
as described by Singleton et  al. [38]. For the reaction 
mixture, aliquot of 0.05  mL of the extract was added 
to 0.25  mL of Folin–Ciocalteu reagent, followed by an 
addition of 0.75  mL of 7.5% sodium carbonate solution 
and 2  mL of distilled water. The mixture was vortexed 
and incubated in a water bath at 40  °C for 30  min. The 
absorbance was measured at a wavelength of 750  nm 
using a spectrophotometer (UV 1800, Shimadzu, Kyoto, 
Japan). A blank sample consisting of distilled water and 
the Folin–Ciocalteu reagent was used for comparison 
purposes. The results were expressed in terms of grams 
of gallic acid equivalents (GAE) per kilogram of fresh 
weight.

Vitamin C content
Vitamin C content was measured following Roe et  al.’s 
method [39]. Five grams of mango peel were homog-
enized with 20 mL of cold 5% metaphosphoric acid and 
then filtered through Whatman No. 1 filter paper. Aliquot 
of the filtrate was centrifuged at 17,000×g for 20 min at 
4  °C. The reaction mixture was prepared using 0.4  mL 
of filtrated solution and 0.2 mL of 0.02% di-indophenol. 
This was added to 0.4 mL of 2% thiourea and 0.2 mL of 
2% dinitrophenol hydrazine and then incubated at 50 °C 
for 1 h. After incubation, 1 mL of 85% sulfuric acid was 
added, and the reaction mixture was incubated at an 
ambient temperature for 30 min. The absorbacne of vita-
min C was measured at 540 nm using a spectrophotome-
ter (UV-1800; Shimadzu Co., Kyoto, Japan) and expressed 
as g kg−1 of fresh weight.

SOD activity
The crude enzymes were extracted using 2 g of peel tis-
sue in 10 mL of 65 mM phosphate buffer (pH 7.8) con-
taining 1% polyvinyl pyrrolidine and 1 mM EDTA. They 
were then homogenized and centrifuged at 15,000×g 
at 4  °C for 20 min. The enzyme activity was determined 
according to the indirect spectrophotometric method 
given by Elstner and Heupel [34]. The reaction mixture 
contained 0.5  mL of 65  mM phosphate buffer (pH 7.8) 
and 1 mL of xanthine oxidase from bovine milk contain-
ing 150 μg protein, 0.1 mL of 1.5 μmol xanthine, 0.1 mL 
of 1  μmol hydroxylamine hydrochloride, and 0.3  mL of 
crude enzyme. Following this, the mixture was incubated 
at 25 ± 2 °C for 20 min in the dark. 0.5 mL of the above 
reaction mixture was removed and added to 0.5  mL 
of 19  mM p-aminobenzene sulfonic acid and 0.5  mL of 
7 mM α-naphthylamine to obtain a new mixture, which 

was then incubated at 25 ± 2  °C for 20 min in the dark. 
SOD activity was determined by measuring the absorb-
ance of the reaction mixture at a wavelength of 530 nm. 
One unit of SOD was defined as the enzyme amount that 
inhibited the nitrite dioxide formation rate by 50% per 
min per mg of protein.

CAT and APX activities
The crude enzymes were extracted adding 2  g of peel 
tissue to 10  mL of 100  mM phosphate buffer (pH 7.5) 
containing 1% polyvinyl pyrrolidine and 1  mM EDTA, 
which was subsequently homogenized and centrifuged at 
15,000×g at 4 °C for 20 min. The supernatant was used to 
determine the CAT and APX activity [40].

CAT activity was determined based on the decreas-
ing concentration of H2O2 (extinction coefficient 
39.4  M−1  cm−1) at a wavelength of 240  nm for 90  s. 
The reaction mixture contained 0.02  mL of 30% H2O2, 
0.78  mL of 100  mM phosphate buffer added to 1  mM 
EDTA (pH 7.5), and 0.2 mL of crude extract enzyme.

APX activity was measured based on the oxida-
tion of ascorbate by H2O2 (extinction coefficient 
2800 M−1 cm−1) at a wavelength of 290 nm for 90 s. The 
reaction mixture contained 0.05  mL of enzyme extract, 
0.05 mL of 10 mM ascorbate, and 0.89 mL of 0.1 M phos-
phate buffer, to which 1 mM EDTA (pH 7.5) was added. 
The reaction was initiated by adding 0.01 mL of 20 mM 
H2O2.

GR activity
A 2 g sample of peel tissue was homogenized with 10 mL 
of 50 mM phosphate buffer (pH 7.0) containing 0.1 mM 
EDTA. The homogenate was centrifuged at 17,000×g for 
10 min at 4  °C. The supernatant was collected and used 
for the enzyme assays. The GR activity was determined 
based on the oxidation of NADPH (extinction coefficient 
6200 M−1 cm−1) at 340 nm for 1 min, as described by Rao 
et al. [41]. The reaction mixture (2 mL) was obtained by 
mixing 1.6 mL of 100 mM phosphate buffer (pH 7.8) con-
taining 2  mM EDTA, 0.2  mM NADPH, 0.5  mM GSSG, 
and 0.4 mL of the enzyme supernatant.

Statistical analysis
The obtained data were analyzed using the general linear 
model procedure with the statistical analysis software 
(SAS), version 9.0 (SAS Institute, Cary, N.C., USA), for 
completely randomized design experiments. The means 
were compared using an independent samples t-test. 
The value of P < 0.05, P < 0.01, and P < 0.001 expressed 
the statistical significance. Each treatment consisted 
3 replications and each replication consisted 6 fruits. 
Color measurement, the color values from 6 fruits were 
averaged and presented as the mean of one replication. 
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Biochemical analysis, the equal amounts of tissue sam-
ples from 6 fruits were collected, mixed well and used as 
one replication to assay the chlorophyll contents, chloro-
phyll-degrading enzyme activities, reactive oxygen spe-
cies, antioxidant compounds, and enzymatic antioxidant 
activities. Four replications were used to assay the respi-
ration rate and ethylene production for each treatment. 
The data were expressed in the form of mean ± standard 
error.

Results
Effect of E‑beam irradiation on chlorophyll content 
and chlorophyll‑degrading enzymes
Chlorophyll is the green pigment that plays a role as an 
indicator of fresh and healthy fruit. Chlorophyll a and b 
contents tended to reduce in E-beam-treated fruit and 
non-treated fruit throughout the storage period. On day 
0, there was no significant difference in chlorophyll a and 
b contents of the mango peels in both the treatments. On 
day 4 of storage, the E-beam treatment stimulated chlo-
rophyll degradation; afterwards the degradation of chlo-
rophyll contents in the E-beam-treated fruit was lower 
than that of the non-treated fruit from day 8 until the end 
of the storage period (Fig.  1a, b). This result correlated 
with the change in color of the peel. A statistical analysis 
demonstrated that the E-beam-treated fruit had signifi-
cantly lower values of a* (greenness) and ΔE (total dif-
ference in color) than the control fruit from days 8 to 16 
(Fig.  2a–f). Thus, E-beam treatment could maintain the 
green color of the mango peel.

No significant difference in Chlase activity was 
observed between the control and E-beam-treated fruit 
throughout the period of storage, and their activity lev-
els were 0.76–1.32  U  mg−1 protein (Fig.  1c). The PPH 
activities of the treated and non-treated fruit were not 
significantly different from days 0 to 12, with a range of 
2.81–5.33 U mg−1 protein. However, on the last day (day 
16), the PPH activity of the E-beam-treated fruit was 
2.12-fold lower than that of the control fruit (Fig.  1d), 
which is a considerable difference. The Chl-POX activ-
ity of the control fruit increased from 0.13 U mg−1 pro-
tein on day 0 to 1.19 U mg−1 protein on day 16, whereas 
the Chl-POX activity of the E-beam-treated fruit rap-
idly increased and peaked on day 4 (0.92  U  mg−1 pro-
tein) before declining slightly until the end of storage 
(0.68 U mg−1 protein). This result indicates that the Chl-
POX activity of treated fruit was significantly lower than 
the control fruit in the late period of storage (Fig. 1f ). The 
MD activity range was 0.47–0.51  U  mg−1 protein, and 
it was not significantly different for the two treatments 
from days 0 to 12. However, at the end of the storage 
period, E-beam-treated fruits showed significantly higher 
MD activity than the control (Fig. 1e). Thus, the present 

work demonstrates that the delay in chlorophyll degrada-
tion in the mango peel was caused by the E-beam treat-
ment, which suppressed PPH and Chl-POX activities in 
the later stage of storage. However, E-beam treatment did 
not strongly affect Chlase and MD activities.

Effect of E‑beam irradiation on ethylene production 
and respiratory rate
Notably, ethylene production increased immediately 
after the fruit was treated with E-beam (day 0), and it was 
significantly higher than that in the non-treated fruit. On 
days 4 to 12, ethylene production of the treated and non-
treated fruit were not significantly different and remained 
stable within the range of 1.14–8.50 ng kg−1  s−1. More-
over, on day 16, the ethylene production in both fruit 
groups increased; the control fruit showed a rapid 
increase than the treated fruit (Fig.  3a). E-beam treat-
ment increased the respiration rate by about 1.61-fold 
as compared to the non-treated fruits on day 0. After 
8–16  days, the respiration rate of E-beam-treated fruit 
sharply decreased and became lower than that of the 
control (Fig. 3b).

The present results imply that the E-beam treatment 
triggered the ethylene production and respiration rate of 
mangoes in the early stage, which were later suppressed 
by the treatment.

Effect of E‑beam on ROS production
E-beam treatment induced the production of O−.

2 
immediately after implementation (0.30  μmol  kg−1  s−1), 
which then declined during storage (0.19 μmol kg−1 s−1). 
In contrast, the O−.

2 production in the control fruit 
increased throughout the period of storage (from 0.19 
to 0.50 μmol kg−1 s−1). At the end of the storage period 
(day 16), O−.

2 production in E-beam-treated fruit was 
approximately 2.6 times lower than that of the control 
fruit (Fig. 4a). E-beam also induced H2O2 content imme-
diately after treatment: it was 0.36  mmol  kg−1 on day 
0, which was significantly higher than the control fruit 
(0.19  mmol  kg−1). After this, a slight decline occurred 
until the end of the storage period (0.15 mmol kg−1). In 
contrast, the H2O2 content in untreated fruits tended to 
increase throughout the storage period. On day 16, the 
H2O2 content of the control fruit was 2.8-fold higher than 
that of the treated fruit (Fig.  4b). The results show that 
the E-beam treatment suppressed O−.

2 production and 
H2O2 content in mango fruit during the storage period.

Effect of E‑beam on antioxidant capacity
The SOD activity in both the treated and control fruits 
tended to decline during storage. E-beam-treated fruits 
showed significant suppression in SOD activity from days 
0 to 8 as compared to the control, while no significant 
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differences were found on days 12 to 16 (Fig.  5a). CAT 
activity of both the treatments tended to decrease, and 
the E-beam-treated fruit had significantly higher CAT 
activity than the control fruit throughout the storage 
period except for the first and last few days (Fig.  5b). 
APX activities of both the treatment and control groups 
tended to increase during days 0–12 and peaked on day 
12. They declined by the end of storage (day 16). E-beam-
treated fruit had significantly higher APX activity on 

day 0 than the control fruit, followed by an insignificant 
difference between the E-beam-treated fruit and non-
treated fruit until the end of storage (Fig.  5c). The GR 
activity tended to decrease in both the groups. E-beam-
treated fruit had lower GR activity than untreated fruit 
but without any significant difference during the storage 
period (Fig. 5d).

The GSH content of the E-beam-treated fruit and con-
trol fruit increased from days 0 to 12 and then declined 

Fig. 1  Chlorophyll a (a) and chlorophyll b (b) contents and chlorophyll degrading enzyme activities: chlorophyllase (c), pheophytinase (d), 
Mg-dechelatase (e) and chlorophyll degrading peroxidase (f) of mangoes after being treated with E-beam at a dose of 0 (control) and 0.5 kGy, and 
then stored at 13 °C for 16 days. The data are expressed as mean ± standard error. Asterisks (*) indicate significant differences between the two 
treatments during storage (t-test; *P < 0.05, **P < 0.01, ns not significant)
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Fig. 2  The appearance of mangoes (a–d), a* value (e), and total color difference (f) after treatment with E-beam at a dose of 0 (control) and 0.5 kGy, 
and then stored at 13 °C for 16 days. The data are expressed as mean ± standard error. Asterisks (*) indicate significant differences between the two 
treatments during storage (t-test; *P < 0.05, **P < 0.01, ns not significant)

Fig. 3  Ethylene production (a) and respiratory rate (b) of mango fruit after treatment with E-beam at a dose of 0 (control) and 0.5 kGy, and 
then stored at 13 °C for 16 days. The data are expressed as mean ± standard error. Asterisks (*) indicate significant differences between the two 
treatments during storage (t-test; *P < 0.05, **P < 0.01, ns not significant)
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slightly by the end of the storage. The GSH content in the 
E-beam-treated fruit was significantly higher than that 
of the control fruit (Fig. 5e). The difference between the 
GSSG content of the E-beam-treated and control fruit 
was insignificant from day 0 to 12. On the last day of stor-
age, the GSSG content of the E-beam-treated fruit was 
significantly lower than that of the control fruit (Fig. 5f ). 
In the present study, vitamin C was found to slightly 
decrease in both the groups, but it was not a significant 
difference except on day 8 (Fig. 5g). The pattern of phe-
nolic content was similar to the vitamin C content. The 
phenolic content of the treated fruit and control slightly 
decreased, and there were no significant differences 
(Fig. 5h).

Discussion
The color of a mango is an important and valid criterion 
to assess its quality, and it plays a crucial role in con-
sumer acceptability. After mangoes are harvested, sev-
eral biochemical changes are involved in the ripening 
process, such as an increase in the respiratory rate, eth-
ylene production, and fruit softening as well as pigment 
changes. Medlicott et  al. [42] reported that the mango 
peel color changes from green to yellow while ripening, 
which is accompanied by a chlorophyll breakdown. The 
present research shows that E-beam induces chlorophyll-
degrading enzyme activity, particularly that of Chl-POX, 
in the early stages (day 4), which then sharply decreases 
until the end of storage. The Chl-POX activity was sig-
nificantly lower in the treated fruits than the non-treated 
fruits. In addition, E-beam irradiation was found to 
reduce the activity of PPH and significantly increase MD 
at the end of the storage. However, in this study, E-beam 
had no effect on Chlase activity, implying that E-beam 
irradiation may delay chlorophyll degradation via the 

suppression of Chl-POX and PPH activities at the end 
of storage. Previous researches have shown that ioniz-
ing gamma irradiation maintains chlorophyll content in 
quince fruit [18], tomatoes [19], plums [20], and pears 
[21]. This may be caused by the effect of irradiation on 
chlorophyll-degrading enzymes, as seen in this work. 
Ethylene is a well-known plant hormone that acceler-
ates plant senescence [32]. In the present work, E-beam 
elicited ethylene production immediately after treatment, 
and the production was strongly suppressed at the end 
of storage, leading to a delay in chlorophyll degradation. 
Thus, low ethylene production in E-beam-treated fruit 
may cause a delay in chlorophyll degradation.

It is known that ROS is generally formed by the res-
piratory process of living cells. The plant’s mitochon-
drial respiratory electron transport chain generates O−.

2 
as a byproduct during energy metabolism in complex I 
and complex III [43, 44]. The O−.

2 is converted to H2O2 
by SOD in the chloroplasts, peroxisomes, and mito-
chondria [45, 46]. Afterward, H2O2 combines with the 
reduced transition metal ions such as Fe2+ or Cu+ to 
generate OH−. via the Fenton and Haber–Weiss reac-
tion [47]. Tahergorabi et al. [48] also demonstrated that 
ROS can generate in plants by water radiolysis under 
E-beam ionizing irradiation. Our experiment shows that 
E-beam treatment triggers the increase of H2O2 and O−.

2 
immediately after treatment (day 0), which then gradu-
ally decreases throughout storage. Therefore, an increase 
of H2O2 and O−.

2 on day 0 may be caused by high res-
piratory and water radiolysis process. However, previous 
studies report that treatments of ROS (O−.

2, H2O2, and 
hydroxy radical (OH−.)) in higher plants are a cause of 
chlorophyll degradation due to the chlorophyll phytyl 
chain getting oxidized to form isophytol [15, 16]. There-
fore, high chlorophyll degradation in E-beam-treated 

Fig. 4  Superoxide radical (a) and hydrogen peroxide (b) contents of mango after treatment with E-beam at a dose of 0 (control) and 0.5 kGy, and 
then stored at 13 °C for 16 days. The data are expressed as mean ± standard error. Asterisks (*) indicate significant differences between the two 
treatments during storage (t-test; *P < 0.05, **P < 0.01, ***P < 0.001, ns not significant)
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Fig. 5  Superoxide dismutase (a), catalase (b), ascorbate peroxidase (c), glutathione reductase (d), glutathione content (e), glutathione disulfide 
(f), vitamin C content (g) and phenolic content of mangoes after treatment with E-beam at a dose of 0 (control) and 0.5 kGy, and then stored at 
13 °C for 16 days. The data are expressed as mean ± standard error. Asterisks (*) indicate significant differences between the two treatments during 
storage (t-test; *P < 0.05, **P < 0.01, ns not significant)
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fruit on day 4 can be assumed to have been caused by 
high H2O2 and O−.

2 production, and the low chlorophyll 
degradation from day 8 until the end of storage is related 
with the low content of H2O2 and O−.

2.
The antioxidant system is known to play an impor-

tant role in delaying chlorophyll degradation and plant 
senescence [49–51]. E-beam irradiation also affects 
the antioxidant capacity that participates in scaveng-
ing ROS in plants. The present study shows that E-beam 
irradiation suppresses SOD activity. Similarly, results of 
previous studies show that ionizing beta-irradiation or 
gamma irradiation retards SOD activity in mandarins 
[52], apricots [53], pepper [54], and Zizania latifolia 
[55]. The activities of CAT and APX in E-beam-treated 
fruit tended to increase during storage as compared to 
the control fruits in the present study. These results are 
in agreement with those of Zhang et al. [52], Duan et al. 
[56], Hong et  al. [57], and El-Beltagi et  al. [58], who 
respectively reported that ionizing irradiation triggers an 
increase in CAT and APX activities in mandarin, wheat, 
and rosemary.

Vitamin C is an antioxidant compound that preserves 
the quality and phytonutrient of a fruit, whereas GSH 
plays an important role in detoxification, antioxidant 
defense, thiol status maintenance, and cell proliferation 
modulation [59]. Both vitamin C and GSH are associ-
ated with the ascorbate–glutathione cycle, which plays 
a crucial role in protecting plant cells in response to 
stress [60]. Our results show that the vitamin C content 
decrease in both the E-beam-treated and non-treated 
fruits without any significant differences. In contrast, 
the GSH content increase in a similar pattern in both the 
groups from days 0 to 12, with a slight decrease toward 
the end of the storage period. Similar results were dem-
onstrated by Kim and Yook [61] and Maraei and Elsawy 
[62], indicating that vitamin C content in harvested kiwis 
and strawberries does not get affected by gamma irra-
diation. Further, Erkan et al. [63] reported that UV irra-
diation induces an increase in GSH in strawberries. GR 
is an ubiquitous NADPH-dependent enzyme that con-
verts GSSG to GSH in the ascorbate–glutathione cycle 
[60]. The present results indicate that E-beam treatment 
does not affect GR activity during storage. Moreover, the 
present research shows that E-beam treatment does not 
affect phenolic compounds. These results suggest that 
E-beam has the potential to apply on mango fruits and 
other fruits for delaying ripening and senescence such as 
our recent research in lime fruit [64]. It can be used as 
the optional treatment of ionizing gamma ray. Because 
the limits of gamma irradiation are high cost, difficult to 
operation as compared with E-beam irradiation. Since 
the radioactive isotopes (60Co, harmful) is required to 
generate gamma ray where E-beam uses the electricity 

as the energy source to generate E-beam [65] which it 
is much safer than using radioactive nuclides. However, 
the basic research information of E-beam treatment for 
mango industry still limits. Its application for controlling 
physiochemical changes, insect infestation and posthar-
vest diseases are required in further study.
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