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ABSTRACT

Anemia is a frequent comorbidity of chronic
kidney disease (CKD) and is associated with a
considerable burden because of decreased patient
health-related quality of life and increased health-
care resource utilization. Based on observational
data, anemia is associated with an increased risk
of CKD progression, cardiovascular events, and
all-cause mortality. The current standard of care
includes oral or intravenous iron supplementa-
tion, erythropoiesis-stimulating agents, and red
blood cell transfusion. However, each of these
therapies has its own set of population-specific
patient concerns, including increased risk of car-
diovascular disease, thrombosis, and mortality.
Patients receiving dialysis or those who have
concurrent diabetes or high blood pressure may
be at greater risk of developing these

complications. In particular, treatment with high
doses of erythropoiesis-stimulating agents has
been associated with increased rates of hospital-
ization, cardiovascular events, and mortality.
Resistance to erythropoiesis-stimulating agents
remains a therapeutic challenge in a subset of
patients. Hypoxia-inducible factor transcription
factors, which regulate several genes involved in
erythropoiesis and iron metabolism, can be sta-
bilized by a new class of drugs that act as
inhibitors of hypoxia-inducible factor prolyl-hy-
droxylase enzymes to promote erythropoiesis and
elevate hemoglobin levels. Here, we review the
burden of anemia of chronic kidney disease, the
shortcomings of current standard of care, and the
potential practical advantages of hypoxia-in-
ducible factor prolyl-hydroxylase inhibitors in the
treatment of patients with anemia of CKD.
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Key Summary Points

Anemia is common in patients with
chronic kidney disease and has been
associated with increased risk of
cardiovascular morbidity and mortality in
observational studies as well as decreased
patient quality of life and increased
healthcare utilization.

The current standard of care includes
supplemental iron, erythropoiesis-
stimulating agents, and red blood cell
transfusions, although each has
drawbacks.

High doses of erythropoiesis-stimulating
agents have been associated with
increased cardiovascular complications
and mortality.

Hypoxia-inducible factor-prolyl
hydroxylase inhibitors are novel
treatments for anemia of chronic kidney
disease that prevent degradation of the
transcription factor hypoxia-inducible
factor, which stimulates erythropoiesis to
physiologic levels.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.13035146.

INTRODUCTION

Anemia is a common complication of chronic
kidney disease (CKD), representing a significant
burden to patients and healthcare systems [1, 2].
According to the Kidney Disease: Improving
Global Outcomes (KDIGO) clinical practice
guidelines, anemia of CKD is defined as

hemoglobin (Hb)\13.0 g/dl for men
and\12.0 g/dl for nonpregnant women [3] and
largely results from decreased erythropoietin
(EPO) production by the failing kidney and/or
altered iron homeostasis [4, 5]. The current stan-
dard of care for anemia of CKD includes oral or
intravenous (IV) iron, erythropoiesis-stimulating
agents (ESAs), and red blood cell (RBC) transfu-
sion, each of which has potential problems and
variable effectiveness [2, 3]. The impact of anemia
correction on patient health-related quality of life
(HR-QOL) is unknown, and persistent safety
issues contribute to uncertainty regarding the
optimal target Hb. This article reviews the burden
of anemia of CKD, including its impact on mor-
tality and cardiovascular risk, HR-QOL, hospital-
ization and transfusion needs, iron supple-
mentation needs, the conservative management
of CKD to delay dialysis, end-stage renal disease
(ESRD) transition outcomes, anemia manage-
ment at home, and anemia management in
transplant recipients. An assessment of the risk to
the benefit profile associated with current stan-
dard of care and discussion surrounding novel
agents in development based on alternative ery-
thropoietic mechanisms are also provided. This
article is based on previously conducted studies
and does not contain any studies with human
participants or animals performed by any of the
authors.

DISEASE BURDEN

Prevalence

The estimated global prevalence of CKD is 11%
for patients with CKD stage 3 [estimated
glomerular filtration rate (eGFR)\ 60 ml/min/
1.73 m2] to stage 5 (eGFR\ 15 ml/min/1.73 m2)
and 13% for patients with CKD stage 1 (albu-
min-to-creatine ratio[ 30 plus eGFR[90 ml/
min/1.73 m2) to stage 5 [6]. In the US, the
prevalence of stage 1–5 CKD was 14.0% (repre-
senting * 31.4 million people) according to the
2007–2010 data from the National Health and
Nutrition Examination Survey (NHANES) [7].
Similarly, the US Centers for Disease Control
and Prevention estimated that the prevalence of
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CKD stage 1 to stage 4 (eGFR 15–29 ml/min/
1.73 m2) was 15% (*37 million people) in
2013–2016 [8].

Anemia prevalence increases with CKD
stage. In the NHANES analysis, 15.4% (*4.8
million people) had anemia of CKD, and ane-
mia prevalence was 17.4%, 50.3%, and 53.4% in
stages 3, 4, and 5 CKD, respectively [7]. Anemia
of CKD prevalence also increases in patients
with comorbidities and with age, from 28.0% in
those aged 18–63 years to 50.1% in those
aged C 66 years among US patients with non-
dialysis-dependent (NDD) CKD [1].

Cardiovascular Risk and Mortality

Anemia, fluid overload, and arteriovenous fis-
tulas can lead to volume overload that ulti-
mately results in cardiomyopathy, including
increased left ventricular hypertrophy (LVH),
and systolic and diastolic dysfunction [9, 10].
This cardiomyopathy may present as ischemic
heart disease or heart failure, even when arterial
vascular disease is absent [10]. Anemia has been
associated with an increased risk of cardiovas-
cular events and all-cause mortality in a number
of observational studies [11–18], and the
American Heart Association considers anemia
to be a nontraditional (non-Framingham) car-
diovascular risk factor in patients with CKD
[10]. In a US study of[900,000 patients with
NDD-CKD, functional iron deficiency anemia
was associated with an increased risk of mor-
tality [hazard ratio (HR) 1.11, 95% CI 1.07–1.14]
and an increased relative risk (RR) of cardio-
vascular hospitalization after 1 year (RR 1.21,
95% CI 1.12–1.30) and 2 years (RR 1.13, 95% CI
1.07–1.21) [11]. Similarly, a Danish study of
patients with dialysis-dependent-CKD (DD-
CKD) and NDD-CKD found that anemia was
associated with increased risks of major adverse
cardiovascular events (MACE), acute hospital-
ization, and all-cause death [12], and a Japanese
study of NDD-CKD patients reported that iso-
lated anemia and iron deficiency anemia were
associated with increased risks of cardiovascu-
lar-related and all-cause mortality [13]. After
adjusting for other cardiovascular risk factors
(including age, diabetes, hypertension, and

dyslipidemia), patients with anemia in the US
Atherosclerosis Risk in Communities (ARIC)
study had a significantly increased risk of stroke
with comorbid CKD versus no CKD (HR 5.43,
95% CI 2.04–14.41), whereas in patients without
anemia, the risk of stroke with CKD was not sig-
nificantly increased (HR 1.41, 95% CI 0.93–2.14)
[14]. In patients with diabetes, a pooled analysis
of data from the ARIC, Cardiovascular Health,
Framingham Heart, and Framingham Offspring
studies found an association between anemia and
increased risks of the individual and composite
outcomes of myocardial infarction (MI), fatal
coronary heart disease, stroke, or death, and all-
cause mortality among patients with comorbid
CKD, but not in those without CKD [15]. An
association between low Hb levels and increased
risks of cardiovascular and all-cause mortality was
also observed in a Korean study of *300,000
patients without cardiovascular disease [16]. Fur-
thermore, anemia was associated with increased
cardiovascular risk among Japanese patients
undergoing treatment for hypertension [17] and
in an Italian study of patients with diabetes [18].

However, the association between anemia
and cardiovascular morbidity and mortality in
patients with CKD is primarily based on obser-
vational studies, and randomized interven-
tional trials have yet to demonstrate a reduction
in mortality risk with correction of anemia [19].
Notably, clinical trials that attempted to raise
Hb to high levels (13–13.5 g/dl) with darbepo-
etin alfa therapy found an increased risk of
mortality or cardiovascular- or renal-related
complications compared with a near-normal or
low Hb target (11.3 g/dl; HR 1.34, 95% CI
1.03–1.74, P = 0.03) [20] and also an increased
risk of fatal or non-fatal stroke compared with
placebo (HR 1.92, 95% CI 1.38–2.68, P\ 0.001)
[21].

Health-Related Quality of Life

Anemia of CKD represents an independent risk
factor for poor HR-QOL [22]. In patients with
CKD anemia, cardiovascular complications are
associated with significantly impaired HR-QOL
(EQ-5D visual analog scale coefficient -5.68,
P = 0.028) and work productivity (Work
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Productivity and Activity Impairment ques-
tionnaire: activity impairment coefficient 8.04,
P = 0.032) compared with non-anemic CKD
patients [23]. The Centers for Medicare and
Medicaid Services states that all dialysis units
should actively monitor patient HR-QOL,
underscoring the need to understand long-term
HR-QOL implications when treating anemia
and other comorbidities in patients with CKD
[24].

Healthcare Resource Use

The high prevalence of anemia of CKD repre-
sents an important clinical and economic
healthcare burden [25]. Patients with moderate
CKD and severe anemia (Hb B 9 g/dl) generally
require increased hospitalization compared
with those without severe anemia [26]. Because
patients with CKD and anemia use more overall
healthcare resources, their care incurs more
costs than those without anemia [1]. In the US,
patients with anemia of CKD have estimated
total healthcare costs of US$3800–US$4800/pa-
tient-month [27]; yearly treatment costs among
US patients with CKD are estimated to be more
than three-fold higher in patients with anemia
than in those without anemia [28].

CURRENT STANDARD OF CARE

Current treatment options for anemia include
oral or IV iron, ESAs, and RBC transfusion
(Table 1). Although raising Hb levels can lead to
improved HR-QOL, morbidity, mortality, and
reduced hospitalization [29, 30], increasing Hb
to ‘‘normal’’ levels has led to adverse outcomes
highlighting the issues associated with the cur-
rent standard of care for anemia of CKD.

Iron

Iron deficiency frequently presents in patients
with CKD and is mediated by hepcidin, a hep-
atic peptide that inhibits iron absorption and
release from iron stores and macrophages [5].
Iron deficiency is compounded by increased
iron demands with ESAs, which can limit their

effectiveness [39]. Supplementary iron can
improve physical, cognitive, and immune
function [40]. Although less expensive and safer
than IV iron, oral iron is poorly absorbed and
associated with gastrointestinal adverse reac-
tions [3]. IV iron allows for administration of
larger doses with better tolerability and is con-
sidered to be superior to oral iron in patients
with CKD [41].

Although rare, IV iron administration may
be associated with an increased risk of iron
overload, which could potentially lead to organ
dysfunction in patients with or without ESRD,
although end-organ damage due to IV iron has
not been demonstrated in clinical studies [42].
Iron overload can also increase infection risk
and worsen CKD-associated inflammation,
while inflammation can exacerbate oxidative
stress caused by IV iron [42, 43]. Previous
reports of hypersensitivity with IV iron were
largely during the use of high-molecular-weight
iron dextrans that are no longer commercially
available [44, 45]. IV iron is burdensome in
patients with NDD-CKD because of the need for
IV access and a transfusion clinic [46].

Erythropoiesis-Stimulating Agents

ESAs trigger EPO production to increase Hb and
improve anemia [3]. Although ESAs reduce the
adverse impact of anemia on morbidity and HR-
QOL [47], safety concerns regarding the poten-
tial increased risk of cardiovascular events with
increased ESA doses (due to poor response or a
higher Hb target) have led to reductions in the
prescribed ESA dose, increased use of RBC
transfusion/IV iron, and uncertainty regarding
optimal target Hb [4]. Consequently, regulatory
authorities increasingly require detailed safety
data for ESAs. Other considerations for ESA use
include parenteral administration, cold storage,
expense, and the generation of neutralizing
anti-EPO antibodies, which may cause pure red
cell aplasia [4].
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Impact of ESA-Mediated Anemia
Correction

Hemoglobin normalization in patients with
CKD is currently not recommended because of
safety concerns related to ESA dosage [48]. Some
studies show cardiovascular benefits in treating
to a lower Hb target while others describe poor
cardiovascular outcomes with a physiologically
normal or supraphysiologic Hb target, render-
ing the optimal target Hb uncertain [3, 4, 30].
Higher ESA dose (rather than higher Hb) may
cause adverse effects, as ESRD patients who
maintain high Hb ([12 g/dl) without ESA
therapy do not show increased mortality com-
pared with other patients on dialysis [49]. Cur-
rent guidelines recommend a target
Hb B 11.5 g/dl [3].

Anemia correction with ESAs may provide
improvement in cardiovascular parameters,
including ejection fraction, left ventricular (LV)
mass index, and LV wall thickness [22, 50]. In
patients with NDD-CKD, the risk of renal events
(i.e., progression to renal replacement therapy,
doubling of serum creatinine, or decline in
eGFR to\ 6 ml/min/1.73m2) was significantly
lower in those with Hb target of C 11 g/dl ver-
sus\11 g/dl [51]. However, the ACORD,
CHOIR, and CREATE studies in patients with
NDD-CKD showed no advantage with a high
(13.0–15.0 g/dl) versus low (10.5–11.5 g/dl) Hb
target in the risk for LVH [52] or cardiovascular
events (including sudden death, stroke, tran-
sient ischemic attack, MI, acute heart failure,
hospitalization for angina pectoris, cardiac
arrhythmia, or congestive heart failure, or
complication of peripheral vascular disease)

Table 1 Pros and cons of pharmacologic treatment for anemia of chronic kidney disease

Short-acting ESAs Long-acting ESAs HIF-PH inhibitors

Pros Reduces need for RBC transfusions

[31]

May reduce fatigue and improve

HR-QOL [29]

IV administration is preferred in

patients on hemodialysis [32]

Reduces need for RBC transfusions

[21]

May reduce fatigue and improve

HR-QOL [29]

Can be administered less frequently

than short-acting ESAs [33]

May be cheaper than short-acting

ESAs [34]

IV administration is preferred in

patients on hemodialysis [32]

Have been shown to be

noninferior to ESAs in raising

or maintaining Hb [35]

Can be administered orally [36]

May reduce the need for iron

supplementation by mobilizing

stored iron [37]

Cons Higher doses required to reach high

Hb targets may increase risk of

adverse cardiovascular outcomes

[20]

Often requires supplemental iron

administration [3]

Administered 3 times per week [31]

Higher doses required to reach high

Hb targets may increase risk of

adverse cardiovascular outcomes

[21]

Often requires supplemental iron

administration [3]

May confer increased risk of mortality

compared with short-acting ESAs

[38]

Additional research needed to

evaluate potential effects on

tumor growth [36]

ESA erythropoiesis-stimulating agent, Hb hemoglobin, HIF-PH hypoxia-inducible factor prolyl-hydroxylase, HR-QOL
health-related quality of life, IV intravenous, RBC red blood cell
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[20, 53]. Additionally, in a subanalysis of the
TREAT trial, poor initial response to ESA therapy
(and consequently higher doses of ESA) in
patients with NDD-CKD and type 2 diabetes was
associated with increased risks of all-cause death
(HR 1.41, 95% CI 1.12–1.78) and adverse car-
diovascular events (HR 1.31, 95% CI 1.09–1.59)
compared with patients with better response to
ESA [54]. Due to greater risks for death, MACE,
and stroke with target Hb C 13 g/dl [20, 21], the
US Food and Drug Administration (FDA) rec-
ommends that ESA dosing be individualized to
the lowest dose necessary to reduce RBC trans-
fusion requirements rather than to a specific
target Hb [48]. Notably, following the FDA
communication, there was a 59%–74% decrease
in the prescribing of ESAs despite stable anemia
prevalence rates [55]. However, there was no
corresponding reduction in the rate of mortality
or MACE [56].

Impact of ESAs on HR-QOL

Although benefits are reported often, significant
improvements in HR-QOL following ESA treat-
ment of anemia in patients with CKD are
inconsistent. ESA therapy was associated with
significant improvements in fatigue, vitality,
mental health/emotional well-being, and over-
all physical health in patients with NDD-CKD
[20]. Correction of anemia to a target Hb of
13–15 g/dl improved HR-QOL in patients with
CKD with or without diabetes [52, 53] with
improvements in several subscales of the Short
Form 36 health survey versus a target Hb of
10.5–11.5 g/dl [53]. In contrast, a meta-analysis
showed that ESA therapy to obtain higher Hb
targets (10.2–13.6 g/dl) does not improve HR-
QOL [57]. In patients with CKD on dialysis, ESA
therapy is associated with better overall HR-
QOL and lower costs and healthcare resource
utilization compared with no ESA therapy,
although there appears to be minimal benefit
with higher Hb targets [58]. Partial correction of
anemia with ESAs in dialysis patients has been
shown to reduce fatigue and improve exercise
tolerance and general well-being, while high-
dose ESA was associated with increased cardio-
vascular risk that negatively impacted HR-QOL,

thereby resulting in only a modest overall
improvement [59, 60].

Red Blood Cell Transfusion

Before ESA availability, frequent RBC transfu-
sion was the primary means of correcting CKD
anemia [47]. Currently, *20% of patients with
NDD-CKD receive RBC transfusions [61]; how-
ever, blood volume overload, hyperkalemia,
iron overload, blood-borne infections, fever, or
allosensitization may occur [3]. Given the bur-
dens associated with RBC transfusion, clinicians
should consider alternative treatments for ane-
mia in CKD [61]. However, RBC transfusion
may be the only available option in some
patients in whom ESAs are not recommended,
for example, cancer patients with non-
chemotherapy-associated anemia (except for
selected patients with myelodysplastic syn-
drome) [62].

SPECIAL POPULATIONS

Elderly Patients

The prevalence of cardiovascular conditions
increases in elderly patients with anemia of
CKD [1]. Indeed, CKD, anemia, and mobility
limitation are important prognostic indicators
of mortality risk in elderly patients [63]. Older
patients with CKD have higher rates of inflam-
matory conditions, nutritional deficiencies, and
cardiovascular comorbidities, as well as
increased hepcidin levels [64], potentially
complicating iron and/or ESA therapy. In addi-
tion, Hb decreases with age because of reduced
erythropoiesis, so the optimal target Hb in
elderly patients may be lower [64].

Diabetes

Type 2 diabetes frequently contributes to CKD
development and may also increase the risk of
anemia in CKD [65]. Diabetes is an inflamma-
tory condition exacerbated by hyperglycemia
and other inflammatory disorders, including
obesity, arterial hypertension, and
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dyslipidemia; this increased inflammation is
thought to cause EPO deficiency in patients
with diabetes [66–68]. Deficiencies in EPO and
iron, as well as hyporesponsiveness to EPO, are
the main mechanisms for anemia development
in patients with diabetic kidney disease [69]. In
patients with diabetes, anemia is generally more
severe, occurs at an earlier stage of CKD, and is
associated with a potentially greater risk of
cardiovascular disease [70]. Additionally, dia-
betic macrovascular complications also con-
tribute to the development of atherosclerosis
[71], which can further complicate anemia
management. However, despite the increased
risk of adverse clinical outcomes in patients
with diabetes and anemia, there is often clinical
inertia regarding initiating IV iron or ESA ther-
apy in these patients [72]. In patients with
comorbid diabetes, treatment with the ESA
darbepoetin alfa showed no reduction in the
risk of composite outcomes (death or cardio-
vascular event and death or renal event) and an
increased risk of stroke versus placebo [21]. In
this study, patients with poor initial response to
ESA therapy (who received higher ESA doses to
meet Hb targets) had increased risks of all-cause
mortality (HR 1.41, 95% CI 1.12–1.78) and
cardiovascular events (HR 1.31, 95% CI
1.09–1.59) than those with better initial
response [54]. This indicates that some patients
with diabetes and anemia may benefit from
alternative therapies, eliminating the need for
ESA dose escalation in those with poor initial
response to ESA therapy.

End-Stage Renal Disease

In patients with stage 3 CKD, those who
develop anemia have more rapid progression to
stage 4 and 5 CKD [73]. Dialysis plays a key role
in ESRD management, but HR-QOL for patients
with DD-CKD remains a concern, suggesting
the need for a more patient-centric assessment
[74]. In addition to blood loss associated with
hemodialysis, complications of severe anemia
contribute significantly to a decreased HR-QOL
and increased dependence on RBC transfusion
[75]. Iron overload is another concern and was
observed in 84% of patients with DD-CKD

treated with ESAs and IV iron [76]. Similar to
patients with NDD-CKD, adverse outcomes
occur in patients with DD-CKD, with higher
mortality rates and no difference in cardiovas-
cular events when epoetin was used to target
higher versus lower hematocrit [77]. Notably,
attenuation of CKD progression has not been
shown with ESA therapy.

Kidney Transplantation

Anemia prevalence decreases following kidney
transplant, from 71% pre-transplant to 51% at
6 months and 37% at 2 years post-transplant.
However, post-transplant anemia does occur
[78]. In kidney transplant recipients, lower Hb is
a predictor for a return to dialysis, graft failure,
subsequent kidney transplant, reduced LV mass
index, or death [78, 79]. ESA use to target high
Hb (12.5–13.5 g/dl) appears to attenuate the
decline of kidney function compared with low
Hb (10.5–11.5 g/dl) after 3 years of follow-up in
kidney transplant recipients [80]. Of note,
patients with ESA hyporesponsiveness before
kidney transplant remained hyporesponsive
following transplant [81], indicating a need for
new therapies to treat anemia in this
subpopulation.

EMERGING ALTERNATIVES

Given the inherent limitations of the current
standard of care, new effective and tolerable
treatment options for CKD anemia are needed.
One particularly promising class of agents in
development is hypoxia-inducible factor-prolyl
hydroxylase (HIF-PH) inhibitors.

HIF-PH Inhibitors

Hypoxia-inducible factor (HIF) regulates gene
expression in response to hypoxia, including
genes involved in erythropoiesis and iron
metabolism, promoting iron absorption, iron
transport, and heme synthesis (Fig. 1) [37].
Notably, work on the discovery of HIF and its
mechanism of action received the 2019 Nobel
Prize in Physiology or Medicine. Under

58 Adv Ther (2021) 38:52–75



normoxic conditions, HIF-PH enzymes promote
HIF degradation; thus, selective HIF stabiliza-
tion with HIF-PH inhibitors is an innovative
approach for treating anemia of CKD [36, 82].
Several HIF-PH inhibitors are currently under
development (Table 2). HIF-PH inhibitors are
orally administered, and significantly lower
EPO levels are induced compared with the
supraphysiologic levels typically attained with
ESA therapy (Fig. 2) [82]. Animal studies have
shown that HIF-PH inhibitors stimulate EPO
expression in the kidneys and liver, increasing
Hb levels in models of anemia of CKD, includ-
ing 5/6th nephrectomized rats [83, 84]. HIF-PH
inhibitors have also been shown to decrease
hepcidin, which may allow patients to mobilize
iron stores and lessen iron supplementation
needs. Additionally, HIF stabilization should
increase gastrointestinal iron absorption
through increased expression of divalent metal
transporter-1 and duodenal cytochrome B [85].

Approved HIF-PH Inhibitors

Roxadustat (FG-4592) was the first-in-class HIF-
PH inhibitor approved in Japan for the treat-
ment of anemia in patients with DD-CKD [121]
and in China for patients with DD-CKD or
NDD-CKD [122]. Daprodustat (GSK1278863)
and vadadustat (AKB-6548) are also now
approved in Japan for the treatment of anemia
in patients with DD-CKD or NDD-CKD
[123, 124]. All three HIF-PH inhibitors effec-
tively stimulate EPO production in patients
with anemia of CKD, providing dose-dependent
increases in Hb and reductions in hepcidin
levels, and thus improving total iron bind-
ing capacity (TIBC) [35, 90–93, 96–98, 103,
125–127].

In NDD-CKD patients, roxadustat was asso-
ciated with superior and/or statistically signifi-
cant Hb response rates and changes from
baseline compared with placebo in a Chinese

Fig. 1 Hypoxia-inducible factor (HIF) pathway biology.
Under normoxic conditions, the HIF-a transcription
factor subunit undergoes ubiquitination and proteasome
degradation after prolyl hydroxylation (left side of figure).
Under hypoxic conditions or pharmacologic HIF prolyl-
hydroxylase inhibition, HIF-a is stabilized and, after
heterodimerization with HIF-b, increases transcription of

hypoxia-responsive genes, including those encoding ery-
thropoietin (EPO) and iron metabolism (right side of
figure). DCYTB duodenal cytochrome B, DMT1 divalent
metal transporter 1, EPO erythropoietin, FPN ferroportin,
OH hydroxide, PH prolyl hydroxylase, Ub ubiquitin, VHL
von Hippel-Lindau protein
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phase 3 randomized study [96] and in prelimi-
nary results from three international phase 3
studies [92, 97, 98]. In these studies, roxadustat
was also associated with a reduced risk of rescue
therapy (ESA or IV iron) and RBC transfusion
[98] and reduced hepcidin levels compared with
placebo (between group difference -50 ng/ml)
[96]. Interim data from a phase 3 study showed
that roxadustat was noninferior to darbepoetin
alfa regarding Hb response in NDD-CKD
patients [125]. Preliminary data from a Japanese
phase 3 study showed that vadadustat was as
effective as darbepoetin alfa in maintaining Hb
levels in both ESA-naı̈ve and ESA-converted
NDD-CKD patients with anemia [126].

In both ESA-naı̈ve and -experienced DD-CKD
patients with anemia, roxadustat demonstrated
non-inferiority or superiority in increasing Hb
from baseline versus epoetin alfa or darbepoetin
alfa in a Chinese phase 3 study [35] and in
preliminary data from four international phase
three studies [90–93]. Greater decreases in hep-
cidin from baseline were also observed with
roxadustat versus epoetin alfa [35]. In a phase 3
Japanese study in ESA-naı̈ve hemodialysis
patients, daprodustat effectively corrected and
maintained Hb levels within the target range
(10–12 g/dl), decreased hepcidin levels, and
increased TIBC [103]. Similarly, preliminary
data demonstrated that vadadustat was as
effective as darbepoetin alfa in maintaining Hb
levels within the target range in Japanese
patients on maintenance hemodialysis and
resulted in reduced hepcidin levels and
increased TIBC over 24 weeks, which was not
observed in the darbepoetin alfa group [127].

HIF-PH inhibitors were well tolerated in
phase 3 clinical studies, and adverse events
(AEs) were consistent with those expected in a
CKD population [35, 92, 96, 126, 127]. The
most common AEs with roxadustat were
hyperkalemia and metabolic acidosis in NDD-
CKD patients [96] and hyperkalemia in DD-
CKD patients [35]. Additionally, preliminary
data from two further international phase 3
studies reported the most common AEs with
roxadustat to be ESRD, urinary tract infection,
pneumonia, and hypertension in NDD-CKD
patients [128] and diarrhea in DD-CKD patients
[129]. The most commonly reported AE withT
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daprodustat in DD-CKD patients was naso-
pharyngitis [103]. For vadadustat, these were
nasopharyngitis, diarrhea, and constipation in
NDD-CKD patients [126] and nasopharyngitis,
constipation, and shunt stenosis in DD-CKD
patients [127].

Preliminary results from a pooled safety
analysis of NDD-CKD or stable DD-CKD
patients with anemia indicated a similar or
reduced risk of MACE and MACE plus heart
failure or unstable angina requiring hospital-
ization (MACE?)with roxadustat versus placebo
and epoetin alfa, respectively [130]. In incident
DD-CKD patients with anemia, the HRs for
MACE and MACE? were 0.70 (95% CI
0.51–0.97, P = 0.03) and 0.66 (95% CI 0.5–0.89,
P = 0.005), respectively, with roxadustat versus
epoetin alfa [130]. Further analyses are needed
to confirm these initial safety findings.

HIF-PH Inhibitors in Development

Several other HIF-PH inhibitors are in develop-
ment, with data available for molidustat (BAY
85-3934), enarodustat (JTZ-951), and desidustat
(Zyan1) (Table 2). These studies show dose-de-
pendent Hb increases and maintenance of Hb
(in NDD-CKD) and maintenance of Hb (in DD-
CKD) for molidustat [109], enarodustat
[111, 112], and desidustat [113]. However, high
Hb or a rapid rate of increase led to high inci-
dences of early discontinuation from some
studies of molidustat [109]. In the long-term
extension studies DIALOGUE 3 and DIALOGUE
5, Hb was maintained in the target range
(10–12 g/dl) for up to 36 months with
molidustat, with a similar effect to darbepoetin
or epoetin [110]. Increased TIBC and/or
decreased hepcidin and/or ferritin was observed
with these agents, which were generally well
tolerated [109, 112, 113]. Furthermore, animal

Fig. 2 Actions of erythropoiesis-stimulating agents (ESAs) and hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-
PHIs). IV intravenous
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studies have indicated that prolonged exposure
to roxadustat is not associated with pro-onco-
genic activity [131, 132]. However, long-term
clinical data are needed to confirm the safety of
HIF-PH inhibitors regarding to cardiovascular
events and carcinogenesis.

Potential for Clinical Use of HIF-PH
Inhibitors

HIF-PH inhibitors may present several practical
advantages for patients with anemia of CKD. In
addition to their oral route of administration,
HIF-PH inhibitors may provide closer to physi-
ologic EPO levels than the intermittent high
levels attained with ESA therapy [87, 95].
Beyond erythropoiesis stimulation, HIF-PH
inhibitors may improve iron homeostasis [133]
and therefore reduce patients’ iron supplemen-
tation needs, thus potentially reducing costs
and medication burden. Although data on the
cost effectiveness of HIF-PH inhibitors are lim-
ited, a meta-analysis conducted to evaluate the
cost effectiveness of roxadustat in Chinese
patients with NDD-CKD confirmed that rox-
adustat was cost effective compared with pla-
cebo [134].

Evidence suggests that HIF-PH inhibitors
may be efficacious without increasing inflam-
matory status [88], which could benefit patients
with inflammation, associated with diabetic
and non-diabetic kidney disease as well as those
with acute inflammation (e.g., associated with
infection). Although clinical data in patients
who are ESA hyporesponsive are limited, key
studies included patients with moderate
inflammation, which is associated with reduced
responsiveness to ESA therapy [135]. In the
Chinese phase 3 study of roxadustat in patients
with DD-CKD, similar increases in Hb levels
were observed in patients with normal and
elevated C-reactive protein levels (B 4
and[ 4 mg/l) [35]. In addition, preliminary
phase 3 data showed greater mean changes in
Hb in patients with elevated high-sensitivity
C-reactive protein levels receiving roxadustat
versus epoetin alfa (DD-CKD) [91] or placebo
(NDD-CKD) [98]. In these patients with mod-
erate inflammation, who are potentially

hyporesponsive to ESA therapy, HIF-PH inhibi-
tors may be an effective alternative that avoids
the need for high-dose ESA therapy. Further
studies are needed to confirm the efficacy of
HIF-PH inhibitors in patients who are ESA
hyporesponsive. Finally, HIF-PH inhibitors may
confer a reduced risk of cardiovascular events
compared with ESAs in incident dialysis
patients as a preliminary phase 3 pooled anal-
ysis showed a lower risk of MACE and
MACE? with roxadustat versus epoetin alfa
[130]. Further studies are needed to confirm the
practical benefits of HIF-PH inhibitors in
patients with anemia of CKD.

Because HIF transcription factors regulate
many biologic processes, there was concern that
HIF-PH inhibitors may adversely affect choles-
terol metabolism [136]. Based on animal stud-
ies, constitutive HIF-2 activation may
theoretically suppress hepatic fatty acid b-oxi-
dation and lipid synthesis and increase lipid
storage capacity [136]. However, clinical studies
showed reductions in total and low-density
lipoprotein cholesterol (LDL-C) with roxadustat
over 19–24 weeks [87, 94] and daprodustat over
24 weeks [103] as well as no changes in serum
lipids with vadadustat over 16 or 20 weeks
[106, 107] and only small changes in LDL-C
with molidustat over 16 weeks [109]. Roxadus-
tat phase 3 data showed decreases in low-den-
sity lipoprotein cholesterol versus placebo
(NDD-CKD patients) [96] or versus ESA (DD-
CKD patients) [35]. One potential mechanism
for this reduction in serum cholesterol with
roxadustat is thought to be a HIF-dependent
decrease in 3-hydroxy-3-methylglutaryl coen-
zyme A reductase levels, a rate-limiting enzyme
in the cholesterol biosynthesis pathway [137].

At-Home Anemia Management

At-home care of CKD is one of the goals out-
lined in the recent Executive Order, Advancing
American Kidney Health, which aims to
improve the diagnosis and treatment of CKD
[138]. Compared with conventional hemodial-
ysis, at-home hemodialysis benefits include
reductions in LV mass and hypertension and
increased HR-QOL, although there are no
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observed differences in anemia management
[139, 140].

Because they are orally administered, HIF-PH
inhibitors may confer advantages for at-home
CKD care. In ESRD patients receiving peritoneal
dialysis, the more common modality for at-
home dialysis, roxadustat increased Hb to
within the target range [141], and daprodustat
pharmacokinetics were similar in patients
receiving peritoneal dialysis or in-center
hemodialysis, while Hb was maintained in
those receiving peritoneal dialysis [142].

CONCLUSIONS

Anemia of CKD represents a considerable bur-
den to both patients and the healthcare system.
Although effective, the current standard of care
is associated with inherent practical difficulties
and safety concerns, including the increased
risk of cardiovascular events and mortality. HIF-
PH inhibitors may offer advantages over ESAs
through more physiologic and effective means
of treating anemia of CKD.
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