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DeePaN: deep patient graph convolutional network
integrating clinico-genomic evidence to stratify lung cancers
for immunotherapy
Chao Fang1, Dong Xu 2,3, Jing Su4,5✉, Jonathan R Dry 1✉ and Bolan Linghu 1✉

Immuno-oncology (IO) therapies have transformed the therapeutic landscape of non-small cell lung cancer (NSCLC). However,
patient responses to IO are variable and influenced by a heterogeneous combination of health, immune, and tumor factors. There is
a pressing need to discover the distinct NSCLC subgroups that influence response. We have developed a deep patient graph
convolutional network, we call “DeePaN”, to discover NSCLC complexity across data modalities impacting IO benefit. DeePaN
employs high-dimensional data derived from both real-world evidence (RWE)-based electronic health records (EHRs) and genomics
across 1937 IO-treated NSCLC patients. DeePaN demonstrated effectiveness to stratify patients into subgroups with significantly
different (P-value of 2.2 × 10−11) overall median survival of 20.35 months and 9.42 months post-IO therapy. Significant differences in
IO outcome were not seen from multiple non-graph-based unsupervised methods. Furthermore, we demonstrate that patient
stratification from DeePaN has the potential to augment the emerging IO biomarker of tumor mutation burden (TMB).
Characterization of the subgroups discovered by DeePaN indicates potential to inform IO therapeutic insight, including the
enrichment of mutated KRAS and high blood monocyte count in the IO beneficial and IO non-beneficial subgroups, respectively.
Our work has proven the concept that graph-based AI is feasible and can effectively integrate high-dimensional genomic and EHR
data to meaningfully stratify cancer patients on distinct clinical outcomes, with potential to inform precision oncology.
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INTRODUCTION
Recently immuno-oncology (IO) therapies including checkpoint
inhibitors have transformed the therapeutic landscape of non-
small cell lung cancer (NSCLC)1–3. However, responses to IO in
NSCLC are highly variable. Recent findings suggest a hetero-
geneous collection of genomic alterations and clinical phenotypes
can influence IO response4–6. Thus, there is a pressing need to
discover and characterize NSCLC subgroups across both clinical
and genomic landscapes to advance precision IO.
Real-world-evidence (RWE)-based clinical phenotype data such

as electronic health records (EHRs), which include patient
exposures, lab data, diagnosis, medications, and clinical out-
comes, represent a promising resource for precision oncology.
EHR-derived data have been used to identify patient subgroups
to inform cancer therapeutics7–12. Distinct molecular subtypes13–18

derived from rich genomic resources, including high tumor
mutational burden (TMB) and high PDL1 protein expression, have
also been associated with beneficial responses to checkpoint
inhibitor therapies in NSCLC1,19–21. The integration of both
genomic and EHR evidence is expected to reveal a fuller
description of tumor and patient characteristics impacting drug
response. Whilst there have been many comparative studies
between these high dimensional data modalities22–24, few studies
to date integrate both genomics and EHRs for patient stratification
due to all types of challenges. For instance, the study cohort can
be too small to investigate this heterogeneous disease; the
datasets used in subtyping studies may not be comprehensive
enough to incorporate both genomic data and diverse clinical-

phenotype data with long-term follow-ups; and the subtyping
algorithms and models may not be effective enough to integrate
high-dimensional data from both genomic and clinical domains.
Recently, artificial intelligence (AI) and deep learning methods

have demonstrated great potential for discovery of cancer
subtypes25–28, stemming from effective high-dimensional data
integration and capture of complex nonlinear relationships29–31.
However, most AI studies use a grid-based model28,32,33 for
patient-data representation which overlook patient–patient rela-
tionships and are sub-optimal for inclusion of multiple data
modalities. Graph-based patient similarity networks (PSNs) have
shown promise for patient subtyping34,35. PSNs effectively model
patient–patient relationships to intuitively enable heterogeneous
data integration and to cluster patients into subtypes based on
their feature similarities. Addition of deep convolutional neural
networks (CNNs)-based learning of patient-data embeddings to
the PSN framework holds great potential to augment patient
subtype discovery through integrative usage of both genomic
and EHR data.
Graph convolutional networks (GCNs)36 are such an efficient

variant of CNNs operated on a network (i.e. graph) like PSN’s. GCNs
offer fast and scalable classification of nodes in a graph through
graph embedding and convolutional operations. GCN has
demonstrated promise in multiple biomedical applications such
as protein interface prediction and side effects prediction37. We
sought to explore the feasibility and effectiveness of applying GCN
for patient subtype discovery through integrative usage of EHR
and genomic data.
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We developed a data-driven, unsupervised, graph-based AI
representation we call “DeePaN” (i.e. deep patient graph
convolutional network) to stratify NSCLC patients, integrating
100 EHR and genomic data features from the Flatiron Health and
Foundation Medicine NSCLC “clinico-genomic” database38 across
a cohort of 1937 IO-treated NSCLC patients. Our “DeePaN”
framework employs a GCN autoencoder (AE) to learn a patient-
similarity-graph-based feature representation, followed by graph
spectral clustering for patient subgrouping.
The “DeePaN” framework stratified patients into subgroups with

distinct outcomes post-IO therapy, and this stratification was most
significant when both genomic and EHR data modalities were
integrated. Median survival was 9.42 months from sub-groups
with poor survival vs. 20.35 months for the subgroup with better
survival (P-value of 2.2 × 10−11). Comparatively, patient sub-
groupings derived through well-established methods such as AE,
uniform manifold approximation and projection (UMAP), and
t-distributed Stochastic Neighbor Embedding (t-SNE) showed no
significant difference on IO therapy outcome. Furthermore, we
demonstrated the potential to use this DeePaN grouping to
augment the clinical utility of an emerging IO biomarker, TMB.
Characterization of the subgroups discovered by DeePaN indicates
potential to inform IO therapeutic insight, including the enrich-
ment of KRAS mutations and high blood monocyte count in the IO
beneficial subgroup and IO non-beneficial subgroup, respectively.
“DeePaN” represents a graph-based AI framework with advances

of effectively integrating heterogeneous clinico-genomic data
modalities, leveraging graph embedding to intuitively model
patient–patient relationships, and incorporating the high-
performance of AI to capture complex relationships of patient
data. Our work demonstrates the feasibility and effectiveness of
employing a graph-based AI approach to integrate RWE-based
high-dimensional EHRs and genomics to stratify NSCLC patients by
IO benefit. The subtypes discovered in this work may cast new light
on understanding the heterogeneity of IO treatment responses, and
pave ways to inform clinical decision making and therapeutics
insight for precision oncology.

RESULTS
Building an IO-treated NSCLC cohort with linked clinico-
genomic data
The aim of this study is to explore the feasibility and effectiveness
to develop a data-driven, unsupervised, graph AI-based “deep
patient graph” (DeePaN) framework integrating genomics and
EHRs to stratify NSCLC patients into subgroups useful for precision
immunotherapy. Using Flatiron NSCLC clinico-genomic database,

we identified an IO-treated cohort of 1937 patients characterized
by 100 clinico-genomic features to develop and test this frame-
work (“Methods” and Fig. 1). The cohort’s overall clinical and
demographic characteristics are shown in Table 1 and tumor
genomic characteristics are shown in Supplementary Fig. 1C.

Overview of the conceptual DeePaN framework
Figure 1 illustrates the overall conceptual DeePaN framework.
DeePaN employs a graph representation to summarize patient
data in an unsupervised AE, hereon referred to as the graph
autoencoder (GAE). Specifically, each node in the graph represents
a patient with node contents composed of “clinico-genomic”
(combined genomic and EHR-derived clinical) features; linked
neighbor patient nodes share similar clinico-genomic features. The
GAE employs a “denoising process” to learn a graph embedding
by allowing node content to interact with network features
(“Methods”). The addition of denoising with the GAE is referred to
as the marginalized graph autoencoder (MGAE)39. After applica-
tion of MGAE-based graph embedding, a graph-based spectral
clustering was then applied to discover patient subgroups with
differential IO-treatment benefit.

Patient subgroups from DeePaN show distinct IO treatment
benefit
Five distinct patient subgroups were identified (Fig. 2a) by
DeePaN. Overall survival (OS) post IO treatments were compared
across patient subgroups. The five subgroups showed significant
OS differences (Fleming-Harrington test P-value <0.0001, median
survival ranging from 9.32 to 20.35 months, Fig. 2b). This
demonstrated DeePaN can effectively discover subgroups with
distinct immunotherapy outcomes. Using the overall cohort (1937
patients) as the control, comparison of survival of each subgroup
with the overall cohort identified two subgroups with poor
survival, and one subgroup with better survival (Fig. 2c). Since the
two poor-survival subgroups have similar post-IO OS outcomes
(Fig. 2b, c), we combined them as one single IO non-beneficial
subgroup (n= 897, 46.3% of the cohort), for comparison to the
better survival group as the IO beneficial subgroup (n= 400,
20.7% of the cohort). We found significantly different survival post
IO between the two groups (log-rank P-value of 2.2 × 10−11,
median survival of 9.42 vs. 20.35 months, Fig. 2d and Supple-
mentary Note 10). The demographic and pathologic character-
istics of the IO beneficial and non-beneficial subgroups were
shown in Supplementary Table 1.

Fig. 1 The conceptual “DeePaN” framework as a deep patient graph convolutional network integrating electronic health records and
genomics to strategy NSCLC patients benefiting from immunotherapy. a An IO-treated NSCLC cohort (N= 1937) was identified from
Flatiron clinico-genomic database with linked EHRs and genomics data. The clinical and genomic features are preprocessed (see “Methods”
section for details) and concatenated as raw patient-data representations. b The raw patient-data representations are modeled by a deep
patient graph convolutional network (GCN) implemented as the marginalized graph autoencoder (MGAE) to learn latent patient
representations. In GCN modeling, patients are represented as nodes, and patients with similar clinico-genomic features are linked by edges.
Multiple layers of graph convolutional network are stacked to learn latent patient representations, with each layer of the graph neural network
being trained to produce a high-level patient-data representation from the output of the previous layer. c The graph-based deep patient
representations are then subjective to spectral clustering to discover patient subgroups with distinct immunotherapy outcomes to inform
precision-oncology including patient stratification by IO benefit.
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Graphical integration of EHR and genomics data is essential
To evaluate whether integration of both EHR and genomics
features is essential for effective identification of patient
subgroups with differential IO-treatment benefits, we compared
patient grouping using both types of features versus using EHR or
genomics features alone (see “Methods”, “Performance evaluation
on patient subgrouping by IO outcomes”). To make a robust
comparison, we explored patient grouping with different numbers
of resulting subgroups, including three, five, and ten subgroups,
respectively. The results demonstrated that integration of both
resources was essential to identify patient subgroups (Fig. 3a). This
highlighted that integration of genomics and real-world clinical
phenotype evidence can represent and reveal more of the
determinants of cancer patient survival than using genomics or
phenotype data alone.
Additionally, to investigate how (1) the patient–patient

relationship-based graph topology and (2) denoising process
contribute to the effectiveness to stratify patients into subgroups
with differential immunotherapy outcomes, we compared four
frameworks, our current MGAE which employed both the

patient–patient graph topology and the denoising process, (2)
the GAE which employed only the patient–patient graph topology
but not the denoising process, (3) the denoising AE which
employed only denoising process, and (4) the AE which employed
neither (see Supplementary Note 7 for design details of these
methods). The results indicate that the graph representation of
patient–patient relationship is essential since only the MGAE and
the GAE are capable to identify sub-groups with differential IO
treatment benefits (Fig. 3b).
Many unsupervised techniques now exist that can accept multi-

modal data as input. To further assess the performance of the
DeePaN framework, we compared it with the commonly used
tSNE40 and UMAP41 methods. The results showed that only the
DeePaN framework identifies subgroups with differential survival
post IO therapy (Fig. 3b). We also compared the DeePaN
framework with k-medoids clustering (see Supplementary Note 6).
The results showed DeePaN has better performance than k-
medoids clustering by identifying more patients with significant
IO beneficial and IO non-beneficial outcomes and with stronger
statistical confidence (Supplementary Fig. 4). Additionally, we
tested the robustness of the DeePaN framework using a ten-round
“adjusted Rand index” test42, the result shows the framework is
generally robust with a mean adjusted Rand index of 0.93 (see
Supplementary Note 5).

DeePaN discovered IO-beneficial patients with non-high TMB
High TMB is an emerging biomarker utilized to enrich for patients
likely to benefit from IO therapy43,44, as observed in our Flatiron IO
cohort (log-rank P-value of 6 × 104, median survival of 13.3 vs.
24.3 months for TMB non-high vs. TMB high groups, respectively,
Fig. 4a). Many TMB non-high patients, however, may still benefit
from IO therapy. We found that subtypes discovered by “DeePaN”
were able to further strategy TMB non-high patients into
subgroups with significantly differential survival post-IO therapy
(Fig. 4b, P-value of 3.8 × 10−6 from log-rank test, median survival
of 20.8 months and 10.8 months, respectively), with about
10 months’ median survival difference between the IO-beneficial
vs non-beneficial group. To assess if the better post-IO survival
group (green curve) in Fig. 4b has clinical-relevant beneficial IO
outcomes, we used three recently FDA-approved NSCLC IO trials
in 2019 and 2020 for references45–47. The better survival group has
the median survival of 20.8 months, which is comparable with the
median survivals in these recent FDA-approved IO NSCLC trials
and therefore demonstrated clinical-relevant IO beneficial out-
comes (see Supplementary Note 4 for details). This shows that
DeePaN can identify patients with non-high TMB but with clinical-
relevant beneficial post-IO outcomes with a median survival of
over 20 months.

DeePaN subgrouping shows potential to inform therapeutic
insight
To inform biological insight of patient stratification with DeePaN,
we characterized the IO beneficial vs. non-beneficial subgroups
identified by DeePaN and identified 21 significantly enriched
clinico-genomic features (Supplementary Table 2). Many features
have literature evidence indicating relevance to NSCLC prognosis
(Supplementary Table 3). To explore the potential of DeePaN to
real new and complementary insight in comparison with classical
approaches, we further explored the differences in biological
insight revealed by DeePaN compared to the classical log-rank
test (Supplementary Table 3). The log-rank test identified
14 significant features associated with IO outcomes with eight
features in common with DeePaN. Thirteen out of 21 features
enriched between DeePaN-defined subgroups did not show a
statistically significant relationship to post-IO survival by log-rank,
indicating the potential of DeePaN to inform insight on IO
stratification complementary to the classical approach. For instance,

Table 1. Baseline demographic and pathologic characteristics.

Characteristics Values

Number of patients 1937

Age (year)

Median, MAD 69.0, 10.4

Range 26.0–85.0

Sex: number (%)

Male 984 (50.8)

Female 953 (49.2)

Race: number (%)

African American 144 (7.4)

White 1428 (73.7)

Asian 46 (2.4)

Other Race 143 (7.4)

Histology: number (%)

Non-squamous cell carcinoma 1443 (74.5)

Squamous cell carcinoma 419 (21.6)

NSCLC histology NOS 75 (3.8)

Stage: number (%)

Stage I 164 (8.5)

Stage II 122 (6.3)

Stage III 372 (19.2)

Stage IV 1241 (64.1)

ECOG score: number (%)

0 375 (19.4)

1 856 (44.2)

2 273 (14.1)

3 50 (2.6)

4 2 (0.1)

Smoking status: number (%)

History of smoking 1657 (85.5)

No history of smoking 276 (14.2)

Previous treatment: number (%)

No 718 (37.1)

Yes 1219 (62.9)

MAD median absolute deviation, ECOG Eastern Cooperative Oncology
Group.
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among these 13 features uniquely enriched by DeePaN, features
relevant to peripheral immune status such as high blood monocyte
count and low blood lymphocyte count are associated with poor
post-IO prognosis in NSCLC with supporting literatures48–50; KRAS
mutations are enriched with the IO-beneficial subgroup51. There are
recent literatures indicating PD-1/PD-L1 blockade monotherapy
may be the optimal therapeutic schedule in NSCLC patients
harboring KRAS mutations, with KRAS mutations correlating with an
inflammatory tumor microenvironment and tumor immunogenicity
and thus resulting in superior patient response to PD-1/PD-L1
inhibitors51,52. Taken together, these enriched clinico-genomic
features derived from DeePaN-discovered subtypes may have
potential to inform therapeutic insight on IO outcome stratification
in NSCLC.

DISCUSSION
In this study, we explored the feasibility and effectiveness of a
graph AI-based unsupervised framework, “deep patient graph”
(DeePaN), to stratify IO-treated NSCLC patients from integrating
rich genomics and EHR-derived clinical data. Our work has proven
the concept that graphical-data-representation-based AI can
effectively integrate high-dimensional genomic and EHR data to
stratify cancer patients relevant to distinct clinical outcomes. This
establishes the opportunity to use graph AI modeling for precision
oncology.
Genomic and EHR data are two major domains of RWE

generated in clinical care. Integrative modeling of these data
remains challenging but holds great promise to inform precision
oncology. Our work demonstrated a graph AI framework can

Fig. 2 Clinico-genomic “DeePaN” framework discovered NSCLC subgroups with distinct overall survival outcomes of post-IO treatment.
a Five distinct patient subgroups were discovered by DeePaN, visualized by the 2D UMAP projection of the deep patient graph representation
in the latent space. Each data point denotes a patient and colors denote distinct subgroup memberships. b The five subgroups discovered by
DeePaN showed overall significant post-IO survival difference by the Kaplan–Meier survival plots (same subgroup color encoding as in
a). c Using the overall cohort (1937 patients) as the control, comparison of survival of each subgroup with the overall cohort identified distinct
IO beneficial and IO non-beneficial subgroups, demonstrated by a volcano plot (see “Methods”). Each bubble represents a patient subgroup,
same subgroup color encoding was used as in a and b, and bubble sizes are proportional to corresponding subgroup patient counts. The x
axis represents the difference of the estimated median survival times between a subgroup and the overall cohort. The vertical line marked
zero median survival difference, with bubbles on the right of the vertical line showing the tendency of beneficial IO outcomes and bubbles on
the left showing the tendency of IO non-beneficial outcomes. y axis is the −(FDR) of the corresponding log-rank test between a subgroup vs.
the overall cohort with multiple-comparison adjustment by Benjamini–Hochberg procedure, representing the statistical significance of the
observed survival difference. The horizontal dashed line marked the statistical significance cutoff of FDR of 0.05. Two IO non-beneficial
subgroups (red and orange) and one IO beneficial subgroup (green) were identified with significantly different post-IO overall survival from
the overall cohort. We combined the two IO non-beneficial subgroups (red and orange) into one subgroup since they have similar post-IO
survival outcomes. d The IO beneficial and the combined IO non-beneficial subgroup showed significant (P-value of 2.2 × 10−11) post-IO
survival difference with estimated median survival of 20.35 months and 9.42 months, respectively, by the Kaplan–Meier survival plots.

C. Fang et al.

4

npj Digital Medicine (2021)    14 Published in partnership with Seoul National University Bundang Hospital



effectively achieve clinico-genomic data integration to inform
patient stratification with relevance to outcomes post-IO therapy,
and is superior to data type alone and other stratification methods
(Fig. 3). For instance, enrichment analysis on patient subgroups
identified by DeePaN indicates that both clinical features such as
blood monocyte count, blood lymphocyte count, and genomic
features such as mutated KRAS are potentially associated with
differential IO-treatment benefits (Supplementary Table 2 and
Supplementary Note 8).

Importantly, the results demonstrate that graph representa-
tions of EHR and genomic patient data are important to discover
patient sub-groups with differential IO-treatment benefits (Fig.
3b). The rationales and advantages of graph-based GCN
modeling can be explained as below. First, one of the major
challenges of RWE-based data analysis is the presence of noise
and missingness of the data. GCN’s key concept, “neighbor
aggregation”, can effectively address this challenge. In particular,
the GCN method is to augment a node’s features from neighbor

Fig. 3 Graph representation of patient data and integration of both EHR and genomics data are essential toward identifying patient
subgroups with differential IO-treatment benefits. In both volcano bubble plots, each bubble represents a patient subgroup, the x axis
represents the difference of the estimated median survival times between a patient subgroup and the overall cohort as control. The vertical
line marked zero median survival difference, with bubbles on the right of the vertical line showing the tendency of beneficial IO outcomes
and bubbles on the left showing the tendency of IO non-beneficial outcomes. y axis is the −log10(FDR) of the corresponding log-rank test
between a subgroup vs. the overall cohort with multiple-comparison adjustment by Benjamini–Hochberg procedure, representing the
statistical significance of the observed survival difference. The horizontal dashed line marked the statistical significance cutoff of FDR of 0.05.
a Integrating both EHRs and genomics is important for effective patient subgroup discovery on IO treatment benefits and setting the number
of clusters (subgroups) to five outperforms cluster number of three or ten. We compared patient subgrouping using both types of features
versus using EHR or genomics features alone. To make a robust comparison, we explored different number of resulting subgroups, including
three, five, and ten subgroups respectively. Integrating both types of features discovers patient subgroups with significant IO beneficial and
non-beneficial outcomes, while individual features alone do not identify any subgroup with significant IO beneficial or non-beneficial
outcomes. In the setting of incorporating both genomic and clinical features, we obtained optimized results when the targeted number of
clusters was set to 5, which is able to identify more patients with significant IO beneficial and non-beneficial outcomes and with stronger
statistical confidence. b Graph representation of patient clinico-genomic data is important for effective patient subgroup discovery on IO
treatment benefits. Subgrouping results compared with other methods demonstrates that graph representation of patient data (MGAE and
GAE) discovers patient subgroups with significant IO beneficial and IO non-beneficial outcomes, while non-graph-based approaches (t-SNE,
UMAP, autoencoder, and denoising autoencoder) did not identify any subgroups with significant IO beneficial or IO non-beneficial outcomes.

Fig. 4 DeePaN can identify patients with non-high TMB but with beneficial post-IO outcomes. a High tumor mutation burden (TMB) is
associated with beneficial post-IO outcomes, as observed in the overall IO cohort (log-rank P-value of 6 × 10−4, median survival of 13.3 vs.
24.3 months for TMB non-high vs. high groups, respectively). b DeePaN can identify patients with non-high TMB but with beneficial post-IO
outcomes. Subgroups discovered by “DeePaN” are able to strategy TMB-non-high patients into subgroups with significantly differentiated
survival post IO therapy (P-value of 3.8 × 10−6 from log-rank test, median survival of 20.8 months and 10.8 months, respectively), with about
10 months’ median survival difference between the IO-beneficial vs. non-beneficial group.

C. Fang et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    14 



aggregation in a bottom-up fashion, i.e. augmenting a given
patient’s clinico-genomic features from borrowing information
from its similar neighbors, as a result, the clinico-genomic
features of a given patient would be augmented with increased
precision and less missingness. Second, GCN modeling of patient
relationships also enables us to take into account the specificity
of network context associated with each different neighborhood
to augment a patient’s clinico-genomic features accordingly.
Compared with alternative methods such as AE, which assumes
all the patients are independent, GCN is expected to utilize the
patient-to-patient similarity relationships more effectively and
hence achieve better signal-to-noise ratio for patient subtype
clustering and discovery. Third, another advantage of using GCN
method stems from the fact that GCN enables utilization of the
global patient network topology for effective patient subtype
clustering, which takes into account all the patients and their
similarities in a hierarchical structure. Through iterative graph
convolution and stacking multiple layers of GCNs, the GCN
method effectively enables leveraging the global network
topology by integrating both the direct first neighbor and the
non-direct neighbors such as the second and third neighbors
with suitable weights, reflecting their relative importance at
different levels of neighborhood. This is not achieved through
typical graph approaches, most of which only consider condi-
tional dependence by edges of directly neighboring nodes. Last,
similar usage of topological information derived from node
features for graph modeling has been proved successful in
recent biomedical informatics applications such as single-cell
RNA-seq data analysis53–57, particularly in the GCN setting58,59,
where the edges of the cell graph were derived from kNN of
gene expression profiles.
Characterization of the IO beneficial vs. non-beneficial sub-

groups identified by DeePaN indicates potential to inform new
and complementary therapeutic insight for IO stratification in
NSCLC in comparison with classical approaches such as the log-
rank test approach (Supplementary Table 3). Mechanistic insight
on IO outcomes in NSCLC was indicated by features significantly
enriched by DeePaN-discovered patient subgroups but not
reaching statistical significance by log-rank test. For instance,
the enrichment of high blood monocyte count and low
lymphocyte count in the IO non-beneficial group identified by
DeePaN indicates that host peripheral immune status may
contribute to IO outcomes; the enrichment of mutated KRAS in
the IO beneficial subgroup was supported by literature evidence
that KRAS mutations correlating with an inflammatory tumor
microenvironment and tumor immunogenicity and thus resulting
in superior patient response to PD-1/PD-L1 inhibitors in NSCLC51.
Another DeePaN unique finding is the enrichment of mutated
NKX2-1 gene in the IO-beneficial subgroup. NKX2-1 is a proto-
oncogene contributing to lung cancer development, literature
evidences are debating the role of NKX2-1 in lung cancer
prognosis, our finding supports to continue to explore its role
on post-IO prognosis60.
There are opportunities for future work. First, in EHRs, the

existence of an assay result or the design of the treatment plan for
a patient can be the result of comprehensive factors including
economic stabilities, educations, community and social context,
et al. One aspect of future work is to include more features such as
social economic conditions et al into modeling. Second, as a
graph-based AI framework, DeePaN utilized both the non-linear
combination of clinico-genomic features and the patient graph
structure for effective subtype identification, it remains challen-
ging to biologically interpret this process61. We utilized enriched
clinico-genomic features derived from DeePaN-discovered patient
subtypes to inform therapeutic insight, which can be improved by
future work of developing more interpretable graph-AI models such
as graph attention networks62 to understand what drives the patient
stratification to inform biomarker and therapeutic insight discovery.

To validate “DeePaN”-discovered patients’ subtypes to inform clinical
insight, we suggest that, as many researchers have argued61,63,64

and the U.S. Food and Drug Administration has been advocating65,66

and practicing67, AI models should be considered as medical devices
or drugs and thus the effectiveness and safety should be evaluated
through randomized clinical trials, including EHR-based pragmatic
trials. A future direction will be to use multi-site randomized
pragmatic trials to examine the effectiveness of the identified
subtypes in augmenting clinical decisions on immunotherapies.
Additionally, during the translation of a model to real-world
implementation, the difference between the training and the
implementation cohorts may undermine model’s effectiveness and
accuracy. Due to the interpretability challenges of AI models, the
impact of cohort difference on model performance cannot be apriori
estimated and adjusted. Instead, transfer learning and other
approaches are used68–70. Our model has great potential in transfer
learning, benefited from the highly representative training cohort.
The Flatiron cancer clinico-genomics data were collected from over
270 different cancer clinics across the nation, allowing our model to
capture the common relations between biomarkers and IO
responses shared by these clinics. Therefore, our model has
beneficial generalizability and transfer learning potential when
implemented for a specific healthcare provider. There is also room
for improving the GCN model to address the over-smoothing issue,
i.e., indistinguishable representations of nodes in different classes71

by exploring latest methods72,73.
Future work also includes exploring how the identified subtypes

can be utilized in reality. First, the clinico-genomic features
enriched in the IO-beneficial vs. non-beneficial subtypes can assist
clinicians to decide what clinico-genomic tests to order to inform
if IO therapy shall be prescribed for a new patient. Many of these
enriched clinico-genomic features are relatively easy to measure
from blood lab tests or genomic tests (see Supplementary Table 2).
For instance, if a patient’s genomic test shows the presence of
KRAS mutation, immunotherapy might be considered as a
preferred therapy based on the insight discovery from our study.
Second, a new patient can be assigned to a subtype according to
modeling of clinico-genomic features. Many well-established
approaches can be used for such purposes. For example, the
trained DeePaN model, together with the training data, can be
directly used as a transductive model to predict the subtype of a
new patient through transfer learning. Our robustness test results
(Supplementary Note 5) suggest that the subtyping results of the
DeePaN model remain stable when the cohort varies slightly.
Other approaches such as label transfer57,59 or supervised learning
can also be used to assign new patients to DeePaN-discovered IO
beneficial or non-beneficial group to inform clinical decision
making. Last, in our future work, we can also explore predictive
modeling to directly predict a new patient’s clinical outcome,
which can be synergized with the patient-subgroup findings from
DeePaN. For instance, we can include the enriched features
characterizing IO-beneficial vs. non-beneficial subgroups as pre-
selected input features to enhance predictive modeling (see
Supplementary Note 9).
Our work thus provides evidence that integrative modeling

using genomics and EHR data in a graph AI framework has clinical
utility in precision oncology. As a case study, we show that as an
emerging IO biomarker, although TMB-high vs. TMB-non-high
groups are associated better and worse post-IO outcomes
respectively, the TMB-non-high group may contain a heteroge-
neous patient population with distinct post-IO outcomes (Fig. 4a,
b). Importantly, patient subgrouping discovered from our DeePaN
framework can effectively stratify the heterogeneous TMB-non-
high group to identify patient subtypes with non-high TMB but
beneficial IO outcomes. This highlights the potential clinical utility
of our framework on augmentation of the TMB IO biomarker.
Characterization of the IO beneficial vs. non-beneficial subgroups
discovered by DeePaN indicates potential to inform therapeutic
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insight to stratify NSCLC patients on IO outcomes. The “DeePaN”
approach can be potentially applied in a wide range of clinical
applications. For example, by incorporating other types of
treatment regimens such as targeted therapies, chemotherapies,
radiotherapies et al, this methodology can be used for recom-
mending therapies for NSCLC patients. Similarly, this approach can
be applied in other cancer types or non-cancer diseases to inform
precision medicine. Besides unsupervised subtyping, representa-
tion of the original clinico-genomic data in latent space from a
graph embedding can also be used for supervised learning to
predict disease diagnosis or prognosis, for health trajectory
projection, and so on. Our approach thus paves ways in effectively
using clinico-genomic graph AI modeling for diverse applications
in precision medicine.
In summary, our work serves as a proof-of-concept study to

demonstrate that a patient-graph-based AI framework such as
GCN is feasible and effective to integrate EHR and genomic data
to inform precision oncology. With the continuous advancement
of various graph-building tools and graph AI methods, we will
expand our work to incorporate them to continue to inform more
precision-medicine questions in the future.

METHODS
Study design
The aim of this study is to explore the feasibility and effectiveness of a
data-driven, graph AI-based unsupervised framework to strategy IO-
treated NSCLC patients into subgroups with distinct immunotherapy
outcomes by integrating rich genomics and EHR data. To define
immunotherapy outcomes, we focused on the OS of the NSCLC population
since the start date of the first IO treatment. The clinical and genomic
features were defined as baseline features measured before the start of the
IO therapies.
This is a secondary analysis of pre-existing, de-identified, retrospective

electronic medical record data and therefore IRB review is not required.

Patient cohort and endpoint
The NSCLC IO study cohort and dataset were established from the Flatiron
Health longitudinal EHR-derived database including RWE genomics and
clinical data curated from the EHR data of over 270 cancer clinics
representing more than 2 million active patients across the United States.
The Foundation Medicine genomic testing data in this database was from
January 2010 to October 2018. The inclusion criteria of the cohort were
(see Supplementary Fig. 1A and Supplementary Note 1): NSCLC patients
identified with International Classification of Diseases (ICD) code for lung
cancer (ICD-9: 162.x; ICD-10: C34.x or C39.9)38, evidence of administration
of checkpoint inhibitors anti-PD-1/PD-L1 agents either as monotherapy or
as part of a combination regimen38, and with the Foundation Medicine
genomic testing data available.
The endpoint is defined as the OS of post-IO treatment. The OS time was

defined as the length of time from the first use of IO therapies to the event
of deceased patients, or to the last follow-up date38.

Clinical features and genomic features
The clinical and genomic features were defined as baseline features
measured within 6 months before the start of the IO therapies. Clinical and
genomic features were screened according to prior knowledge and data
availability. Totally 52 clinical features and 48 genomics features were used
in our work.
Clinical features included: (1) demographics: race, gender; (2) behavioral:

smoking status; (3) vitals: body weight, body height, oxygen saturation in
arterial blood by pulse oximetry; (4) medical history: lines of IO therapy; (5)
pathological features: Eastern Cooperative Oncology Group (ECOG)
performance status, cancer stage; (6) pathological staining of biomarkers:
ALK, BRAF, EGFR, KRAS, ROS1, PDL1 in tumor cells, and PDL1 in tumor
infiltrated lymphocytes (TIL); (7) laboratory measurements available in
more than 800 patients: leukocytes, hemoglobin, platelets, hematocrit,
erythrocytes, serum creatinine, urea nitrogen, alanine aminotransferase,
serum sodium, serum potassium, aspartate aminotransferase, alkaline
phosphatase, serum albumin, bilirubin, serum protein, lymphocytes per
100 leukocytes, calcium, lymphocytes, monocytes per 100 leukocytes,

serum glucose, serum chloride, monocytes, neutrophils, basophils per 100
leukocytes, glomerular filtration rate, basophils, eosinophils per 100
leukocytes, eosinophils, serum magnesium, granulocytes per 100 leuko-
cytes, neutrophils, lactate dehydrogenase, and serum ferritin (see
Supplementary Fig. 1B for the visualization of clinical features); (8)
Foundation Medicine derived features: PDL1 expression levels in tumor
cells, PDL1 expression levels in TIL, TMB38 (high if TMB ≥20 mutations/MB;
non-high if TMB <20 mutations/MB)38, and microsatellite instability (MSI).
Genomic features are based on tumor sequencing of FoundationOne

platform, which includes full exonic coverage of 395 genes and intronic
analysis for rearrangements at a depth of 500–1000×38. Genomic features
include known and likely genomic alterations occurring in at least 50
patients at the gene level, including the following genes (sorted by
frequency, see Supplementary Fig. 1C): “TP53”, “KRAS”, “CDKN2A”, “STK11”,
“CDKN2B”, “EGFR”, “PIK3CA”, “LRP1B”, “MYC”, “KEAP1”, “NF1”, “NKX2-1”,
“PTEN”, “SMARCA4”, “ARID1A”, “RBM10”, “RB1”, “SOX2”, “NFKBIA”, “CCND1”,
“FGF3”, “FGF4”, “FGF19”, “BRAF”, “MLL2”, “ATM”, “MDM2”, “ERBB2”, “TERC”,
“MET”, “SPTA1”, “FGFR1”, “RICTOR”, “MCL1”, “DNMT3A”, “ARID2”, “PRKCI”,
“FAT1”, “ZNF703”, “TERT”, “APC”, “NFE2L2”, “FGF12”, “MYST3”, “FRS2”,
“TET2”, “PTPRD”, and “CCNE1”.
EHRs typically have missing data. To mitigate bias, avoid artifacts, and

leverage the non-linear nature of AI models, missing values in raw data
were treated as new categorical levels. Briefly, all features in raw data were
converted to categorical variables, with both missing and non-missing
values in original data summarized into categorical levels (see later section
“Additional descriptions of methods”).

Problem formulation
Given the NSCLC patient data with clinico-genomic features, we formulate
the task of patient subgrouping as a graph clustering problem on an
undirected graph encoding patient–patient relationships. Specifically,
patients are represented as nodes in the graph, and patients with similar
clinico-genomic features are linked by edges.
It is beneficial to formulate the patient–patient relationship into a graph

since both the node content (patient clinical and genomic features) and
node relationships (patient–patient connectivity based on feature similar-
ity) will be used and integrated. We model the original clinico-genomic
data as a graph G= (V, E, X) with each node vi ∈ V, i ¼ 1; � � � ; n represents a
patient, each edge ei,j ∈ E represents that the corresponding two nodes vi,
vj ∈ V (i.e., patients) are similar, and xi ∈ X represents the attribute vector
associated with node vi. The attribute vector of each node is composed of
d clinico-genomic features of the corresponding patient such as race,
gender, LDH lactate dehydrogenase measurement, mutation status of a
gene, etc. Details of categorical representation of patients’ original clinico-
genomic features as well as the generation of the patient similarity graph
are described in later section “Additional descriptions of methods”.
Formally, the graph can be represented by two types of information, the

patient content information X ∈ Rn×d and the graph G represented by its
adjacent matrix A ∈ Rn×n. Given a patient–patient graph G, the goal of
patient subtyping is to partition the patients (i.e., nodes) into k disjoint
subgroups {S1, S2,…,Sk} so that patients belonging to the same subgroup
are close to each other on the graph G, and to discover patient subgroups
with differential OS outcomes after IO treatment.

Implementation
To achieve the above-mentioned goal, we need to solve two main tasks:
(1) to learn informative patient feature representation for the downstream
graph clustering method to work properly; (2) to discover new patient
clusters (subgroups) on the graph that have beneficial and non-beneficial
outcomes after IO treatments.

Learn patient deep feature graph representation. To fully extract and have
deep feature representation, we apply the MGAE method39 to exploit
the patient network information. The MGAE is based on GCN36 and to learn
the convolution feature representation on the graph structure with the
node content in the spectral domain. The reason why we use MGAE as a
representative method within the GCN methodology is because of the
following. First, MGAE can exploit the interplay between node content and
graph structure information by using a marginalization process, which is to
encode content features of the graph into the deep learning framework74.
Second, MGAE demonstrated superior performance in comparison with
the variational graph autoencoder (VGAE) and multiple typical graph-
based clustering methods, based on common benchmark datasets74. In
particular, the reconstructed feature representation can be achieved by
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training an MGAE39 on this patient network using the objective function L
as “Eq. (1)”:

L ¼ 1
m

Xm

i¼1

jX � ~D�1
2~A~D�1

2~XiW
���

���
2
þ λjjWjj2F (1)

where ~X ¼ ~X1; ¼ ; ~Xm
� �

represents m corrupted copies of the original
input X ¼ x1; ¼ ; xnf g 2 Rn´ d , ~A ¼ Aþ I is the adjacent matrix modified
with self-connections, I is the identity matrix, ~D is the degree matrix of ~A, W
is trainable weights, �k k2F is Frobenius norm, and λ is the regularization
coefficient.
To learn a deep feature representation of patients’ network, we built up

the network in a deep layer fashion by stacking multiple layers of AEs (Fig. 1).
The patients’ representation from the output (l− 1)-th layer Z(l−1) can be
then used as input of the l-th layer. We used the reconstructed output from
the last layer as the high-level patients’ representation for downstream
analysis, i.e. detection of new patient subgroups. The implementation of
MGAE is based on the open-source code available at https://github.com/
FakeTibbers/MGAE.
We also explored different numbers of hidden layers as a major hyper

parameter tuning, including one, three, five, and ten hidden layers. We
selected three hidden layers, which is able to identify more patients with
significant IO beneficial and IO non-beneficial outcomes or with stronger
statistical confidence than hidden layers of one, five, and ten (see
Supplementary Fig. 3 and Supplementary Note 3).
Regarding other design details of our graph neural network, based on

the recommended hyperparameters in similar models published by
others74, we set the noise corruption level to be 0.4, network regularization
lambda to be 1e−5, and set the number of feature maps for each hidden
layer to be 275.

Discovery of patient subgroups. The learned representation Z0 for the
patients’ graph, which is reconstructed from MGAE’s representation
(integration of both content and structure information), can then be used
to discover patient subgroups. We applied the spectral clustering
algorithm39 to discover patient subgroups. Before directly applying spectral
clustering, we refine the reconstructed representation Z0 as follows:

i. Apply a linear kernel function to achieve Z1 as described by “Eq. (2)”
to learn the pairwise relationship for the patient node;

Z1 ¼ Z0Z
T
0 (2)

ii. Ensure the representation is symmetric and nonnegative, and we
achieved normalized Laplacian Z2 as described by “Eq. (3)”

Z2 ¼ 1
2

Z1j j þ ZT
1

�� ��� �
(3)

New clusters (i.e. patient subgroups) were then identified using a spectral
clustering algorithm, which was done by running k-means on the top number
of clusters eigenvectors of the normalized Laplacian Z2. Those clusters are
identified as new patient subgroups. Spectral clustering is commonly used to
perform dimensionality reduction from all the nodes in a graph and identify
clusters of nodes75. It is probably a more natural fit to graph neural networks,
which also incorporate the global information of a graph, than a “bottom-up”
approach like hierarchical agglomerative clustering.
We explored different numbers of clusters (patient subgroups) as a major

hyper parameter tuning, including three, five, ten clusters (Fig. 3a,
Supplementary Note 2, and Supplementary Fig. 2). As demonstrated in
Fig. 3a, in the setting of incorporating both genomic and clinical features, we
obtained optimized results when the targeted number of clusters was set to
five, which is able to identify more patients with significant IO beneficial and
non-beneficial outcomes and with stronger statistical confidence.
We used the Kaplan–Meier (KM) estimate76 to assess if discovered

subgroups have differentiable post-IO survival outcomes to inform patient
stratification benefiting from IO therapies. For crossed over survival curves,
log-rank test is not appropriate to calculate test statistics. Therefore, we have
used Fleming-Harrington test to calculate the P-value for the crossed KM
plots77 using “surv_pvalue” function from R package “survminer v0.4.7”.

Performance evaluation on patient subgrouping by IO outcomes. Our goal
is to provide actionable insight to support the clinical decision for immune
therapy, i.e. to cluster patients into subgroups and decide which
subgroups are IO-beneficial or IO non-beneficial. We therefore used three

measures impacting relevance to IO outcomes to assess the performance
by a volcano plot (see Fig. 2c as an example). These criteria were (1)
difference of median survival times between an identified cluster and the
overall cohort as the baseline, with positive values corresponding to the
tendency of IO beneficial outcomes and negative values corresponding to
the tendency of IO non-beneficial outcomes (x axis); (2) statistical
significance of the observed survival difference between an identified
cluster and the overall cohort as the baseline (y axis); and (3) percentage of
patients clearly assigned to significant IO beneficial and IO non-beneficial
clusters using a FDR cutoff of 0.05.
A better performance corresponds to identify more patients with

significant IO beneficial and non-beneficial outcomes, with stronger
statistical significance, and with bigger median survival difference in
comparison with the overall cohort as the baseline.

Additional descriptions of methods
Clinico-genomic feature encoding and defining linked patients. In the
DeePaN modeling, patients are represented as nodes in the graph with
associated clinico-genomic features, and patients with similar clinico-
genomic features are linked by edges. The node features are encoded by
categorical feature vectors X. In particular, the genomic features are binary
encoding, i.e. if a patient carries one or more known or likely genetic
alternations in a gene, the corresponding gene feature is 1; otherwise, 0.
For numerical features, we used the high- and low-bound measurement
annotations provided by EHRs to bin the numerical features into
categorical features. For example, a patient has the hemoglobin
measurement as 8.3 g per deciliter, the low- and high-bound references
for hemoglobin are 14 and 18 g per deciliter, respectively. Since it falls
between two bounds, it is categorized as the “normal” class. There are 100
clinico-genomic features included, which are encoded as 275 feature
dimensions. The two nodes are connected if the node feature vectors are
similar. Here we employed cosine similarity to define similarity35. The
reasons to use cosine similarity is as below. First, cosine similarity has been
successfully used to estimate patient similarity based on EHRs35. Second,
the usage of cosine similarity for binary attributes is supported by multiple
literature recommendations78–80. We then used the cosine similarity of 0.5
as an empirical cutoff. If cosine similarity is less than 0.5, then there is not a
link between two nodes; otherwise, connected. The similarity threshold 0.5
is chosen based on previous literatures’ recommendation28,35.

Missing data handling. EHRs typically have missing data. To mitigate bias,
avoid artifacts, and leverage the non-linear nature of AI models, missing
values in raw data were treated as new categorical levels. Briefly, all
features in raw data were converted to categorical variables, with both
missing and non-missing values in original data summarized into
categorical levels. This approach, comparing with imputation, provides
many advantages. (1) Better use of the RWE data. EHR data are often
informatively censored, with data availability patterns associated with
patients’ health status, access to healthcare, and clinical decisions. Our
approach allowed such valuable information being intuitively captured,
represented, and utilized in our model. (2) Mitigates artifacts and biases.
Imputation approaches rely on information from non-missing values from
closely associated features. These features often show similar data missing
patterns in RWE data, known as structural data missing. For example, all lab
results generated from the basic metabolic panel have the same
availability pattern. This unique challenge undermines the efficiency of
data imputation and exaggerates artifacts81. (3) Suitable for AI models. One
major concern of categorizing missing values instead of imputing them is
the bias and artifacts in linear models. The intrinsic nonlinear nature of AI
models allows effective leveraging such data representation. Therefore, in
our work, we categorize missing values to better reserve useful information
and avoid artifacts and biases.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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