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Abstract

Advances in the field of predictive modeling using artificial intelligence and machine learning 

have the potential to improve clinical care and outcomes, but only if the results of these models are 

appropriately presented to clinicians at the time they make decisions for individual patients. 

Clinical decision support (CDS) systems could be used to accomplish this. Modern CDS systems 

are computer-based tools designed to improve clinician decision making for individual patients. 

However, not all CDS systems are effective. Four principles that have been shown in other medical 

fields to be important for successful CDS system implementation are (1) integration into clinician 

workflow, (2) user-centered interface design, (3) evaluation of CDS systems and rules, and (4) 

standards-based development so the tools can be deployed across health systems.
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Introduction

Clinicians today are faced with the challenging task of incorporating large amounts of data 

accurately and efficiently to make critical decisions that impact patient health.1 Clinicians 

who care for patients with glaucoma are faced daily with this challenge; caring for glaucoma 

requires synthesis of information from many data sources (tonometry, pachymetry, 

perimetry, optical coherence tomography, disc photographs, ocular exam, patient history, 

etc.) from many visits over long time periods.2 These data are often complex and have high 

test-retest variability.3 The data must be interpreted in the context of patient-specific 

circumstances.2 Adding to the challenge, the data need to be evaluated and integrated 

quickly to make a decision in the midst of a busy glaucoma clinic. Recent advances in the 

field of predictive modeling may help address some of these challenges.4

Predictive modeling in health care involves the analysis of retrospective healthcare data to 

estimate the future likelihood of an event for a specific patient.5 Predictive modeling for 

glaucoma has been conducted using traditional statistical methods (for example, linear 

regression,6–8 logistic regression,6,8,9 and Cox proportional hazards models10,11) and using 

more sophisticated artificial intelligence (AI) methods, including machine learning methods 

such as neural networks and deep learning using deep neural networks.12–25 However, these 

predictive models have not yet substantially influenced glaucoma clinical practice in part 

because calculating a prediction is not, in itself, sufficient to influence clinician behavior.4 

For the results of glaucoma predictive models to meaningfully improve clinical practice, 

clinically useful information from the models must be presented to the decision maker in an 

effective format at the optimal time in the clinical workflow to facilitate sound decisions.26 

Clinical decision support (CDS) systems can help address these challenges.26,27

Modern CDS systems are computer-based tools designed to improve clinician decision 

making for individual patients.27,28 These systems have been successfully employed for 

many non-ocular conditions, including diabetes,29 cancer,30 sepsis,31 acute respiratory 

distress syndrome,32 hyperglycemia,33 and neonatal hyperbilirubinemia.34 CDS systems can 

improve diagnostic test use35 and treatment decisions.36–38 An illustrative example of a 

successful CDS system is an electronic health record (EHR) add-on app for neonatal 

bilirubin management.34 Similar to glaucoma care, clinicians managing neonatal bilirubin 

levels must retrieve data that is scattered across the medical record, synthesize the data, and 

apply guideline algorithms to develop patient-specific treatment plans. The CDS tool 

gathered the data into one display and provided guideline-based individualized treatment 

recommendations.

While there has been a considerable amount of research regarding CDS in other medical 

fields, relatively little work has been done in ophthalmology and glaucoma. This may be 

because ophthalmology adopted EHRs later than many other medical fields.39 The use of 

EHRs in ophthalmology has increased dramatically.40 This, coupled with advances in 

predictive modeling for glaucoma, provides an opportunity for us to develop effective CDS 

for glaucoma. As we do this, we can learn from CDS successes and failures from other 

medical fields.41 A considerable body of literature has evaluated characteristics that are 
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important for the success of CDS systems.42–44 Four principles that have been shown in 

other medical fields to be important for successful CDS system implementation are (1) 

integration into clinician workflow, (2) user-centered interface design, (3) evaluation of CDS 

systems and rules, and (4) standards-based development so the tools can be deployed across 

health systems.42–44 The purpose of this paper is to describe these important CDS system 

principles and to discuss how they could be applied to glaucoma to allow us to develop CDS 

systems that leverage advances in glaucoma predictive modeling to improve clinical care.

Integration into Clinician Workflow

CDS systems need to be designed to facilitate implementation and integration into clinical 

workflow.45,46 Integration into clinical workflow means that the decision support is provided 

at the time the decision is being made to the decision maker in an effective and seamless 

format.26 Automatic provision of CDS as part of clinician workflow is one of the strongest 

predictors of whether or not a CDS tool will improve clinical practice.47 Clinicians spend a 

considerable amount of time using EHRs.48 CDS systems that require significant time and 

effort add to this burden and are less likely to be used.49 Instead, CDS systems should be 

designed to fit into clinicians’ routine use of the EHR.50

Studying the clinical context and workflow of decision making and incorporating the results 

of these studies in the design of CDS tools facilitates implementation and use of CDS.
45,51,52 For example, an in-depth analysis of the clinical workflow allowed Weir et al. to 

successfully implement CDS tools targeting improved geriatric care.52 In this study, 

researchers engaged users and IT departments to understand their workflow and interaction 

with the EHR and the CDS system. The CDS interventions were designed and adapted to fit 

into this workflow.

In the context of glaucoma management, integration into clinician workflow necessitates 

providing the CDS to the clinician seamlessly when a specific decision is being made. For 

example, a CDS tool designed to help identify glaucomatous progression would need to be 

presented to the clinician at the moment in clinical workflow that the clinician is deciding if 

there has been progression. In the case of glaucoma, additional research is needed to 

understand the glaucoma clinical workflow and decision-making process. Integration of 

future CDS systems for glaucoma into the established clinical workflow will make these 

systems easier to access and use, which will make them more likely to improve glaucoma 

outcomes.

User-Centered Interface Design

User-centered design focuses on the needs of users to make information systems more 

usable and involves identifying and understanding the system users, tasks, and environments 

in which the users perform the tasks.53 The user-centered design process is iterative and 

involves users throughout the design process.54 Established scientific methods for user-

centered design include ethnographic observations, interview analysis, think-aloud studies, 

cognitive work analysis, and observation of real-time use in the clinical application site.54 

Though many methods can be used for user-centered design, some basic principles are (1) 
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understanding the users, tasks, and environments, (2) understanding the usability 

requirements for the system being developed, (3) designing the system to meet these 

requirements, and (4) evaluating the design with users.53

User-centered interface design of CDS systems allows effective communication of CDS 

system recommendations and results.54–56 Involving clinicians in the design of CDS tools 

can increase usability and satisfaction.57 An example of user-centered design for a CDS 

system is a CDS tool developed to present results of published randomized controlled trials 

to clinicians at the point of care.57 In this study, Del Fiol et al. used rapid iterative cycles 

incorporating feedback from physician users of the CDS prototypes. This user-centered 

design process allowed for the development of a useful and usable CDS tool.

As CDS systems for glaucoma care are developed, it is important that user-centered design 

principles are followed. User-centered interface design for glaucoma CDS would involve 

clinicians who care for patients with glaucoma in the design and testing of the CDS interface 

to ensure that user needs are met and information is communicated effectively. Clinicians 

who care for patients with glaucoma should be actively involved in the planning, 

development, and testing of CDS systems designed to improve glaucoma care.

Evaluation of CDS Systems and Rules

CDS systems and rules should be rigorously evaluated.58 CDS rules are the underling 

predictive models or algorithms that CDS systems use to provide decision support. The most 

rigorous study design that is feasible should be used to evaluate CDS systems.50 Cluster 

randomized controlled trials are the preferred method, but if randomization is not feasible an 

interrupted time series study design may be appropriate.50

It is important that the results of CDS systems are also evaluated as the systems are applied 

in new populations. One key challenge of CDS is the rules developed in one context may not 

necessarily apply in another. For example, glaucoma CDS rules developed for an inner-city 

population at a large academic center may not be appropriate when applied in a private-

practice, rural clinic. One way to address this limitation is to retrospectively run the CDS 

rules on a large set of patients and examine the CDS results against each patient’s EHR data 

before implementing the CDS system.50

Standards-based Development

CDS tool interoperability means the tool to be used at different sites (with different EHRs).
58 Interoperability is one of the key challenges to widespread scaling of CDS.58 

Substitutable Medical Applications, Reusable Technologies (SMART) on Fast Healthcare 

Interoperability Resources (FHIR) (pronounced “smart on fire”) is an interoperable, 

standards-based platform that can be used for CDS. SMART and FHIR are health 

informatics standards frameworks developed by the Health Level Seven International (HL7) 

standards development organization.59 The FHIR standard provides a systematic, 

interoperable way to define and represent data in EHRs and allows for the exchange of 

healthcare information electronically. SMART on FHIR is a platform that uses the FHIR 
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standard to enable medical applications to be written once and run unmodified across 

different healthcare IT systems.60

The use of SMART on FHIR is promoted by the NIH as an important interoperable health 

informatics tool approach (NOT-OD-19-122).61 The SMART on FHIR platform provides a 

standard way for CDS systems and other health informatics applications to be integrated 

with the EHR and has been used for clinical decision support applications.34,62,63 The EHR 

add-on app for neonatal bilirubin management discussed above is an example of how the 

SMART on FHIR technology can link to the EHR and provide a scalable, usable approach to 

integrating CDS in health care.34 Other complementary standards include the HL7 CDS 

Hooks standard64 which enables alerts and reminders to be integrated with EHRs, as well as 

the HL7 Clinical Quality Language65 which provides a standard language for expressing 

rules for CDS and electronic clinical quality measurement.

FHIR already supports a number of data elements that would be useful for glaucoma CDS, 

such as age, gender, race, medical and ocular diagnoses, medications in use, past 

medications, past procedures, and visual acuity. For other data elements needed for eye care, 

the ophthalmology community could work together to advance the inclusion of those data 

elements in the U.S. Core Data for Interoperability66 which defines the FHIR data elements 

that must be supported by EHR vendors.67 Developing CDS tools for glaucoma 

management using a standards-based approach such as SMART on FHIR could enable these 

tools to provide value to glaucoma specialists across a variety of different practice types 

using a variety of different EHR systems.

Conclusion

For advances in predictive modeling to meaningfully improve glaucoma care, the results of 

these models need to be appropriately presented to clinicians at the time they make decisions 

for individual patients. CDS systems that are coupled with EHRs can accomplish this if 

these CDS systems are well-integrated into clinician workflow, have usable and 

understandable interfaces, and are standards-based to enable interoperability. If these CDS 

systems are developed and implemented appropriately with a focus on user needs, they have 

the potential to augment clinical decision making, enhance workflow, and improve patient 

outcomes.
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Clinical decision support systems are computer-based tools designed to improve clinician 

decision making for individual patients. These tools could be used to present the results 

of glaucoma predictive models to clinicians as they make decisions.
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