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Abstract

Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from 

classical dendritic cells. pDCs are generated in the bone marrow, and following development, they 

typically home to secondary lymphoid tissues. Nevertheless, while peripheral tissues are generally 

devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in 

particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential 

to produce large quantities of type I interferons in viral immunity. Subsequent studies have now 

unraveled their pivotal role in mediating immune responses, in particular in the induction of 

tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both 

mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal 

gland. Further, we will review our current understanding on the significance of pDCs in 

ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammations, 

and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, 

their key function in preserving corneal angiogenic privilege, as well as their potential application, 

as a cell-based therapy for ocular diseases.
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1. Introduction on Plasmacytoid Dendritic Cells

1.1. Identification of Plasmacytoid Dendritic Cells

The discovery of plasmacytoid dendritic cells (pDCs) began with observations in human 

tissues. In 1958, the pathologists Lennert and Remmele noted a previously unappreciated 

cell type in human lymph nodes in cases of non-specific lymphoid hyperplasia. These cells 

appeared medium sized, were referred to as a “lymphoblast”, and were noted to be present in 

clusters (Lennert et al. 1958). Considering that these cell clusters were later observed in T 

cell-associated (paracortical) areas of lymph nodes, and that electron microscopy studies 

indicated an abundant rough endoplasmic reticulum resembling plasma cells (Muller-

Hermelink et al. 1973), Lennert et al. later referred to them as “T-associated plasma cells” 

(Lennert et al. 1975). The advent of immunostaining techniques later revealed that these 

cells expressed the T-helper (Th) marker CD4 (clones Leu-3a and OKT4), but lacked 

common T cell and B cell lineage markers; thus, they were described as “plasmacytoid T 

cells” (Feller et al. 1983, Muller-Hermelink et al. 1983, Papadimitriou et al. 1983, 

Vollenweider et al. 1983, Harris et al. 1987). Yet, more extensive immunophenotyping 

revealed that these cells also expressed the myelomonocytic markers Ki-M6 and Ki-M7 

(Horny et al. 1987), and thus in 1988 Facchetti et al. proposed renaming them to 

“plasmacytoid monocytes” (Facchetti et al. 1988). In 1997, Grouard et al. showed that 

freshly isolated plasmacytoid T cells/monocytes were morphologically nearly identical to 

CD4+ CD11cneg Linneg immature cells, which differentiate into dendritic cells (DCs) in 

human peripheral blood, and upon cultures with interleukin (IL)-3 and CD40 ligand, they 

effectively promoted proliferation of naïve CD4+ CD45RA+ Th cells (Grouard et al. 1997). 

Few months later, Olweus et al. confirmed the phenotype of plasmacytoid T cells/monocytes 

and their capacity to induce naïve T cell proliferation following ex vivo stimulation (Olweus 

et al. 1997). In 1999, Rissoan et al. then designated these cells as “type 2 DC precursors 

(pDC2s)”, as their ex vivo cultures with naïve CD4+ T cells demonstrated that they favored 

production of a Th2 cytokine profile in naïve T cells, in contrast to monocytic precursors of 

myeloid (conventional or classical) DCs (cDCs), which promoted a Th1 response (Rissoan 

et al. 1999). However, since further studies indicated that both cDCs and pDC2s were able to 

interact with both Th1 and Th2 cells (Boonstra et al. 2003), the term “plasmacytoid dendritic 

cell” (pDC) was more commonly used.

Considering the importance of interferons (IFNs) in viral infections, in entirely independent 

line of studies, Trinchieri et al. showed that an unknown type of lymphocytes isolated from 

peripheral blood that did not belong to B or T cells, had a strong capacity to secrete IFNs 

(Trinchieri et al. 1978). In fact, the majority of IFNs in the blood were secreted by a rare 

subpopulation of immune cells that was initially termed natural “IFN producing cells” 

(IPCs) (Ronnblom et al. 1983). IPCs were distinct from cDCs, monocytes, natural killer 

(NK) cells, T cells, and B cells (Abb et al. 1983, Ronnblom et al. 1983, Perussia et al. 1985, 
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Fitzgerald-Bocarsly et al. 1988, Chehimi et al. 1989, Feldman et al. 1990, Ferbas et al. 1994, 

Svensson et al. 1996). Further, several studies showed that IPCs co-purified with cells with a 

dendritic morphology, expressed major histocompatibility complex (MHC)-II, and 

morphologically resembled DCs based on their large size, and veiled and ruffled 

morphology (Fitzgerald-Bocarsly et al. 1988, Ferbas et al. 1994). Moreover, Chehimi et al. 
demonstrated that IPCs and cDCs were distinct populations, by showing that cDCs, but not 

IPCs were potent inducers of strong mixed lymphocyte reactions (Chehimi et al. 1989). 

Svensson et al. showed that IPCs could promote T cell proliferation, suggesting that IPCs 

resembled immature but not mature cDCs (Svensson et al. 1996). Thus, by the mid-1990s 

cumulative evidence suggested that IPCs might belong to the DC family. In the late 1990s, 

Siegal et al., and Cella et al., independently demonstrated that IPCs in fact hold the same 

identity as the independently identified pDCs (Cella et al. 1999, Siegal et al. 1999).

Following the discovery of pDCs in humans, investigators aimed to unravel their murine 

counterparts. In 2001, a few years after unifying the identity of pDCs and IPCs in humans, 

Nakano et al., Asselin-Paturel et al., and Bjorck independently recognized a subpopulation 

of DCs in murine lymph nodes and spleens that displayed a plasmacytoid morphology 

(Asselin-Paturel et al. 2001, Bjorck 2001, Nakano et al. 2001). They demonstrated that these 

cells have the capacity to stimulate naïve T cells and produce IFN-α when stimulated in 
vitro and in vivo, proposing that they are equivalent to human pDCs (Asselin-Paturel et al. 
2001, Bjorck 2001, Nakano et al. 2001). Fig. 1 demonstrates scanning electron micrograph 

(Fig. 1A) and transmission electron micrograph (Fig. 1B) of pDCs isolated from human 

peripheral blood as well as pDCs in murine spleen during steady state (Fig. 1C). Upon 

verification of these observations by additional groups (Brawand et al. 2002, Martin et al. 
2002, O’Keeffe et al. 2003), later studies identified pDCs in monkeys (Coates et al. 2003), 

pigs (Summerfield et al. 2003), rats (Hubert et al. 2004), and sheep (Pascale et al. 2008), 

suggesting that pDCs may be preserved during evolution.

1.2. Phenotypic Markers of Plasmacytoid Dendritic Cells

1.2.1. Plasmacytoid Dendritic Cell Markers in Human—The original discovery of 

human pDCs showed that pDCs do not express CD3 (T cell marker), CD20, CD22 (both 

expressed by B cells and plasma cells), but do express CD4, CD68, and IL-3Rα (CD123)

(Lennert et al. 1975, Horny et al. 1987, Facchetti et al. 1988, Grouard et al. 1997). Later, it 

was shown that pDCs specifically express blood dendritic cell antigen (BDCA)-2 (CD303) 

(Dzionek et al. 2000), Ig-superfamily receptor or immunoglobulin-like transcript (ILT)-7 

(Rissoan et al. 2002, Cao et al. 2006), and share expression of BDCA-4 (CD304; 

neuropilin-1) with other cells (Dzionek et al. 2000). Further, in contrast to mice, human 

pDCs do not express CD11c (Facchetti et al. 1988, Grouard et al. 1997, Olweus et al. 1997).

BDCA-2 is a type II C-type lectin, which can take up antigens and inhibit secretion of IFN-

α/β and tumor necrosis factor (TNF)-α (Dzionek et al. 2001, Cao et al. 2006). Although it is 

deemed pDC-specific in humans, expression of BDCA-2 is down-regulated in pDCs, when 

cultured with IL-3 (Dzionek et al. 2000). ILT-7, similar to BDCA-2, is considered a human 

pDC-specific cell surface receptor, which can regulate secretion of IFN-α and TNF-α in 

stimulated pDCs (Cao et al. 2006, Cho et al. 2008). BDCA-4, a type I transmembrane 
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receptor, is a member of the class 3 semaphorin subfamily (Kolodkin et al. 1997), a co-

receptor for vascular endothelial growth factor (VEGF)-A, and is expressed by human pDCs, 

as well as by some other murine and human cell populations such as immune cells 

(Tordjman et al. 2002, Bruder et al. 2004, Delgado et al. 2005, de Paulis et al. 2006, Ghez et 
al. 2006, Bles et al. 2007, Lepelletier et al. 2007, Battaglia et al. 2008, Fantin et al. 2010, 

Carrer et al. 2012, Mendes-da-Cruz et al. 2014, Miyauchi et al. 2018), vascular endothelial 

cells (Herzog et al. 2001) and in multiple cancers (Jubb et al. 2012, Li et al. 2016, Zhu et al. 
2018, Ma et al. 2019, Yang et al. 2019). While this molecule has broad implications in 

axonal guiadance and angionegensis (Bagri et al. 2002, Plein et al. 2014), in pDCs, it may be 

implicated in IFN-α secretion (Grage-Griebenow et al. 2007) and similar to cDCs, may 

contribute to pDC-T cell interactions (Chaudhary et al. 2014).

Thus, in humans, pDCs can be indentified by their expression of CD4, IL-3Rα, CD45R/

B220, BDCA-2, BDCA-4, ILT-3, and IL-7, and lack of expression of T cell and B cell 

lineage markers, CD3 and CD19, as well as the myeloid marker, CD11b, and cDC marker, 

CD11c (Table 1). Among these markers, BDCA-2 and ILT-7 are considered specific pDC 

markers. Accurate detection of human pDCs requires a core panel consisting of CD45, 

BDCA-2, IL-3Rα, ILT-7, CD11c and CD11b (Barchet et al. 2005, Rogers et al. 2013, 

Swiecki et al. 2015).

1.2.2. Plasmacytoid Dendritic Cell Markers in Mice—In mice, detecting pDCs is 

more sophisticated as compared to humans. Murine pDCs were originally identified as 

CD11bneg CD4+ CD11clow/int CD45R/B220+ Gr-1+ Ly6C+cells (Asselin-Paturel et al. 2001, 

Bjorck 2001, Nakano et al. 2001, Brawand et al. 2002, Martin et al. 2002, O’Keeffe et al. 
2003). However, to date, no single marker is considered sufficiently specific to uniquely 

distinguish pDCs during steady state and inflammation in mice. The first purported pDC 

marker, the 120G8 antibody, recognizes splenic and bone marrow pDCs during steady state, 

and allows depletion pDCs both functionally and physically (Asselin-Paturel et al. 2003). A 

year later, plasmacytoid dendritic cell antigen (PDCA)-1 was introduced as another 

antibody. This antibody also recognizes and depletes pDCs (Krug et al. 2004). Later, Blasius 

et al. generated an antibody, which recognizes pDCs and reacts with bone marrow stromal 

cell antigen 2 (BST-2; also, known as CD317) (Blasius et al. 2006). They showed that both 

120G8 and PDCA-1 antibodies in fact recognize BST-2 as well (Blasius et al. 2006), 

suggesting that all three antibodies (120G8, PDCA-1 and BST-2) share a similar target. 

Although in mice, BST-2 is predominantly expressed on pDCs during steady state in 

multiple lymphoid organs, it is also expressed by other cell lines, such as embryonal 

carcinoma cell line P19, and is upregulated on multiple immune and non-immune cells 

during inflammation (Blasius et al. 2006, Holmgren et al. 2015). Further studies showed that 

expression of PDCA-1 is not necessarily restricted to pDCs even during steady state, as rare 

subpopulations of B cells and plasma cells may share expression of PDCA-1 with pDCs 

(Vinay et al. 2010, Vinay et al. 2012). Current studies suggest that PDCA-1, as a type II 

transmembrane glycoprotein, may tether viral membranes to host cell membranes and thus, 

prevent the release of multiple enveloped viruses from infected cells (Martin-Serrano et al. 
2011, Hotter et al. 2013). Furthermore, PDCA-1 may regulate IFN production by pDCs 

(Swiecki et al. 2012) and can amplify NF-κB signaling (Cocka et al. 2012).
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Another potentially specific pDC marker initially designated as 440c (Blasius et al. 2004), 

recognizes a member of the Sialic acid-binding immunoglobulin-type lectin (Siglec) family 

of I-type lectins, called Siglec-H, suggesting that Siglec-H is selectively expressed by 

murine pDCs (Blasius et al. 2006). Later studies indicated that pDCs share expression of 

Siglec-H with other immune cells, including marginal zone macrophages in the spleen, 

medullary cord macrophages in lymph nodes, and central nervous system microglia (Zhang 

et al. 2006, Konishi et al. 2017). Current data suggests that Siglec-H is an endocytic 

receptor, which mediates antigen uptake by pDCs and may regulate IFN and cytokine 

production in these cells, as well as interaction of pDCs with T cells (Blasius et al. 2004, 

Blasius et al. 2006, Zhang et al. 2006, Takagi et al. 2011).

Gr-1 was among the first array of markers by which murine pDCs were originally identified 

(Asselin-Paturel et al. 2001, Nakano et al. 2001). Prior to the discovery of murine pDCs, it 

was acknowledged that the Gr-1 antibody strongly reacts with granulocyte marker Ly6G, but 

also recognizes Ly6C as another member of Ly6 complex (Fleming et al. 1993). Later, it was 

shown that murine pDCs do not express Ly6G (Asselin-Paturel et al. 2003), but do express 

Ly6C, and thus, the antibody against Gr-1 (that recognizes Ly6C), can also detect pDCs. 

However, pDCs have a lower affinity to binding this antibody compared to neutrophils, and 

are thus, stained with less intensity with Gr-1 (Shortman et al. 2002). Moreover, although 

Ly6C is highly expressed on pDCs (Asselin-Paturel et al. 2003), due to its well-known 

common expression by subsets of multiple immune and non-immune cells (Jutila et al. 
1988), its solo application for differentiating pDCs is discouraged (Colonna et al. 2004).

Another important murine pDC marker is Ly49Q, a type II C-type lectin polypeptide (Rahim 

et al. 2014). Gr-1+ cells expressing Ly49Q, were shown to also express CD11c and CD45R/

B220, corroborating their identity as pDCs (Toyama-Sorimachi et al. 2005). However, in 

addition to pDCs, stimulated macrophages and cDCs may also express Ly49Q following 

treatment with IFN-α or IFN-γ (Toyama-Sorimachi et al. 2005). Further, in a few murine 

strains, all myeloid cells express low levels of this molecule (Toyama-Sorimachi et al. 2005). 

In addition to the potential role in pDC maturation (the process of up-regulation of MHC-II 

and antigen presentation to prime adaptive immune cells) (Toma-Hirano et al. 2009), 

through interaction with MHC-I, Ly49Q may regulate cytokine production, including IFN-

α, in pDCs (Tai et al. 2008).

In summary, murine pDCs express PDCA-1, Siglec-H, CD11clow/int, CD45R/B220, Ly49Q, 

Ly6C, and Gr-1 (Table 1). Thus, to accurately identify murine pDCs, assessment of multiple 

markers, such as a core panel of PDCA-1, CD45R/B220, Siglec-H, CD11b, CD11c, Ly6C, 

Ly49Q, CD3, and CD19 is recommended (Barchet et al. 2005, Jegalian et al. 2009, Rogers 

et al. 2013, Swiecki et al. 2015).

1.2.3. Plasmacytoid Dendritic Cells Repertoire of Toll-like Receptors—As 

members of the innate immune system, pDCs are equipped with a specific repertoire of 

pattern recognition receptors. Both in humans and mice, pDCs are known to particularly 

express endosomal/lysosomal receptors toll-like receptor (TLR)-7 and TLR-9, which 

enables them to detect single stranded RNA and double stranded DNA, respectively 

(Kadowaki et al. 2001, Krug et al. 2001, Hornung et al. 2002, Edwards et al. 2003). 
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Although traditionally pDCs were thought to express only TLR-7 and TLR-9, some reports 

suggests that pDCs may also express TLRs-1, −6, and −10 (Kadowaki et al. 2001, Krug et 
al. 2001, Hornung et al. 2002, Edwards et al. 2003, Hasan et al. 2005, Raieli et al. 2019), 

and may also up-regulate TLRs-2 and −4 (Hernandez et al. 2011, Zheng et al. 2012). Fig. 1D 

summarizes the markers and receptors expressed by pDCs in mice and humans.

1.3. Development of Plasmacytoid Dendritic Cells

The development of pDCs is defined by their remarkable plasticity. pDCs are continuously 

generated in the bone marrow and after terminal differentiation, they egress into the 

bloodstream (Sawai et al. 2013, Chistiakov et al. 2014). However, a minor subset of pre-

pDCs may enter the bloodstream and differentiate into pDCs or alternatively into cDCs, 

depending on the tissue environment (Schlitzer et al. 2012). In contrast to many other 

immune cells that originate from either myeloid or lymphoid progenitors, at least in mice, 

pDCs can arise from both common lymphoid and myeloid progenitors (Wu et al. 2001, 

Karsunky et al. 2003, Karsunky et al. 2005, Rodrigues et al. 2018, Dress et al. 2019). In fact, 

both lineages have been shown to lead to a common peripheral pDC phenotype with the 

characteristic set of pDC surface markers as described above, although myeloid-derived 

pDCs may show a higher cytokine secretory and T cell-stimulating capacities (Yang et al. 
2005).

1.3.1. Plasmacytoid Dendritic Cell Development in Mice—In mice, the evidence 

of the development of pDCs from both lineages is strongly supported by multiple 

immunophenotyping studies on the developing progenitors in the bone marrow, as well as 

recent single cell sequencing approaches on the characterizing pre-pDCs and pDCs 

(Rodrigues et al. 2018, Dress et al. 2019). Our current knowledge suggests that from the 

myeloid pathway, pDCs are derived either directly from myeloid macrophage/DC 

progenitors (MDPs), or via the MDP to common DC progenitor (CDP) pathway (Karsunky 

et al. 2005). In mice, CDPs are lineage marker-negative (Linneg), indicating they are not 

expressing mature cell lineage markers (Karsunky et al. 2005). In addition, CDPs are fms-

like tyrosine kinase (FLT)3+ (also known as CD135), receptor tyrosine kinase KIT low or 

intermediate (c-Kitlow/int), and macrophage colony stimulating factor receptor (M-CSFR)+. 

Exposure to FLT3-ligand (FLT3-L), and to a lesser degree M-CSF, induces CDPs toward 

pDCs (Karsunky et al. 2005).

pDC developmental paradigms are encoded by the cumulative effects of several key 

transcription factors. Among the key transcription factors in pDC development, are 

transcription factor 4 (TCF-4), also known as basic helix-loop-helix transcription factor or E 

protein (E2–2) and its protein co-factor MTG16, as well as B-cell lymphoma/leukemia 11A 

(BCL-11A), and interferon-regulatory factor 8 (IRF-8) (Cisse et al. 2008, Ghosh et al. 2010, 

Ippolito et al. 2014, Sichien et al. 2016, Grajkowska et al. 2017). As with most 

developmental paradigms, there are counteracting players involved. The DNA-binding 

protein inhibitor ID-2 acts by binding to and inhibiting E2–2. Therefore, if ID-2 is expressed 

by CDPs, pDC development is suppressed, as E2–2 is blocked from activating its 

downstream targets (Ghosh et al. 2014). When E2–2 is expressed by CDPs, it activates the 

interferon regulatory factors (IRF)-4 and IRF-8, two closely related transcription factors that 
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have a central role in pDC development (Tamura et al. 2005). Studies have demonstrated that 

pDCs are diminished in both IRF-4 and IRF-8 knockout animals and that thus, both IRF-4 

and IRF-8 are important in pDC development (Tamura et al. 2005). In fact, the expression of 

E2–2 is not only required for the initial development of pDCs from progenitors in the bone 

marrow, but also for the continued maintenance of the pDC phenotype in the periphery 

(Ghosh et al. 2010).

PU.1 is another key transcription factor in pDC development that regulates the expression of 

the Flt3 gene and as such, PU.1 deletion blocks pDC development (Carotta et al. 2010). 

Phosphoinositide 3-kinase, a mammalian target of rapamycin (mTOR), signals downstream 

of FLT3 (Sathaliyawala et al. 2010), and inhibition of mTOR reduces pDC numbers, 

whereas deletion of the Pten gene, a negative regulator of mTOR signaling, increases pDC 

differentiation (Sathaliyawala et al. 2010). Spi-B has also been highlighted as a master 

regulator of the pDC fate and is required for pDC development (Sasaki et al. 2012). Yet, 

another transcription factor, X-box binding protein-1 (XBP-1), has been implicated for both 

differentiation and survival of pDCs. Knockout of XBP-1 results in decreased numbers of 

pDCs, and stimulation of XBP-1−/− pDCs resulted in decreased survival (Iwakoshi et al. 
2007). Other transcription factors involved in pDC development include DNA-binding 

protein Ikaros, hypoxia-inducible factor 1α, growth factor independent 1, and nuclear 

polyadenylated RNA-binding protein 2 (Rathinam et al. 2005, Allman et al. 2006, Balzarolo 

et al. 2012, Backer et al. 2017). Several studies have shown that knockout mice lacking these 

transcription factors show reduced, if not eliminated pDCs in the examined tissues 

(Rathinam et al. 2005, Allman et al. 2006, Balzarolo et al. 2012, Backer et al. 2017).

Lymphoid progenitors (LPs) can also commit to the pDC lineage. pDC precursors of 

lymphoid origin include the lymphoid primed progenitors (LMPP), which give rise to 

MDPs, and the common lymphoid progenitor (CLP) (Vogt et al. 2009, Sathe et al. 2013). 

Although pDCs may originate from CLPs, they may develop independent of key enzymes 

required for B and T cell development. In this regard, it has been demonstrated that in 

RAG1−/− mice, which lack mature B and T cells (Mombaerts et al. 1992), and in mice with 

disruptive Ig H chain mu membrane exon that lack B cells in the peripheral blood (Kitamura 

et al. 1992), the density and phenotype of pDCs is comparable to wild-type mice (Nikolic et 
al. 2002). In contrast, the lymphoid cytokine IL-7 seems to play a role in pDC development 

as shown in IL-7 deficient mice, which contain few pDCs in the adult (Vogt et al. 2009). As 

in the myeloid pathway, lymphoid progenitors expressing FLT3, when exposed to FLT-3L, 

develop into pDC (Lyman et al. 1993, Maraskovsky et al. 1996).

1.3.2. Plasmacytoid Dendritic Cell Development in Humans—In humans, a new 

paradigm regarding pDC development has recently emerged, with noted differences from the 

murine model (Collin et al. 2018). Given the invasive nature of bone marrow biopsies, it is 

difficult to obtain and analyze human bone marrow of humans. The blood is easily 

attainable, and studies from those hematopoietic precursors have more recently been probed 

(Mohamedali et al. 2015). In the classical model of hematopoiesis, it was thought that 

progenitor cells divide and give rise to cells of alternative fates (e.g., CDP giving rise to 

pDCs and cDCs) with equal probability. However, this notion has been challenged based on 

available empirical data. The revised model suggests that priming occurs early on during 
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hematopoiesis, which determines the ultimate fate of the cell, although the cell will 

transiently pass through phenotypes that were previously considered progenitors (Collin et 
al. 2018). In fact, a study by Lee et al. assessing clonal assays of human CD34+ progenitor 

cells showed no human MDP or CDP progenitors (Lee et al. 2017). This concept has also 

been supported by single-cell analysis of cord blood (Karamitros et al. 2018). Given the lack 

of empirical evidence for specific progenitors, it has been proposed that there is no need to 

distinguish between myeloid and lymphoid lineages, as both result from an initial lymphoid-

primed multipotent progenitor (Collin et al. 2018). This revised model can make sense of the 

lymphoid and myeloid features of pDCs (such as shared cell markers with both lineages), 

which the previous classical model fell short of.

Aside from the revised model of hematopoiesis in humans, the developmental paradigms 

among mice and men are quite similar, sharing many of the same core transcription factors. 

E2–2 is a major transcription factor in pDC development along with Spi-B (Schotte et al. 
2004), IRF-4, IRF-8 (Sontag et al. 2017), and ZEB2, Zinc Finger E-Box Binding Homeobox 

2, working in conjunction with MTG16 to repress ID-2 expression (Villani et al. 2017), 

which mirrors murine pDC development. In humans, a loss of E2–2 or heterozygous 

mutation causes Pitt–Hopkins syndrome in which mature type I IFN-secreting pDC are 

significantly reduced (Cisse et al. 2008). Further, the cytokine thrombopoietin, along with 

FLT3-L, can synergistically promote human pDC development (Cisse et al. 2008, Nagasawa 

et al. 2008, Ghosh et al. 2010). Overall, it has been difficult to directly examine the ontogeny 

of human pDCs, as it is not feasible to perform fate-mapping experiments in humans as 

researchers have done in the murine systems. Fig. 2 summarizes development of pDCs from 

bone marrow stems cells and highlights the key transcription factors involved in their 

development.

1.4. Tissue Distribution of Plasmacytoid Dendritic Cells

pDCs are generally considered as rare, but potent immune cells, comprising close to only 

1% of immune cells in the bone marrow. Studies in mice and humans have widely confirmed 

that after generation in the bone marrow, pDCs enter the blood steam, where they constitute 

less than 1% of immune cells (Asselin-Paturel et al. 2003, Chowdhury et al. 2010, Murray et 
al. 2019). While circulating in the blood stream, during steady state they typically home to 

secondary lymphoid organs, including the spleen, lymph nodes, tonsils, thymus, and Peyer’s 

patches of the gut (Grouard et al. 1997, Bendriss-Vermare et al. 2001, Nakano et al. 2001, 

Jameson et al. 2002, Asselin-Paturel et al. 2003, Castellaneta et al. 2004, Omatsu et al. 2005, 

Contractor et al. 2007, Boor et al. 2019). Based on the current understanding, pDCs are 

typically absent in peripheral tissues during steady state, with few exceptions. However, they 

are recruited from the blood to sites of inflammation during microbial infections, tumors, 

and autoimmune conditions (Nestle et al. 2005, Santoro et al. 2005, Smit et al. 2006, 

Sozzani et al. 2010).

Nevertheless, few peripheral tissues do host pDCs during steady state, albeit in low 

densities. Among these peripheral tissues, lungs were among the first tissues in which 

resident pDCs were noted during steady state (Donnenberg et al. 2003, de Heer et al. 2004). 

Attempting to assess the role of antigen presenting cells (APCs) in the prevention of immune 
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responses to allergens, de Heer et al. showed that pDCs reside in the interalveolar 

interstitium, at almost twice-higher densities as resident cDCs (de Heer et al. 2004). Later 

studies confirmed the presence of resident pDCs in murine and human lungs; however, at 

lower densities compared with cDCs (Donnenberg et al. 2003, Lommatzsch et al. 2007, 

Venet et al. 2010, Ten Berge et al. 2012).

The kidney is another peripheral tissue in which resident pDCs have been reported during 

steady state by Coates et al., who showed that murine kidneys host CD11c+ CD45R/B220+ 

CD8αneg cells, presumably of pDC phenotype (Coates et al. 2004). Resident pDCs were 

reported in the tubulo–interstitium, and rarely within the glomeruli of normal human 

kidneys, although their density was less as compared to cDCs (Woltman et al. 2007). 

Assessing the role of pDCs in vaginal herpes simplex virus (HSV)-2 infection, Lund et al., 
showed that the murine vagina also hosts resident pDCs during steady state in a density 

comparable to cDCs (Lund et al. 2006). In line with their findings, Agrawal et al. later 

showed the presence of pDCs the cervical mucosa of healthy individuals (Agrawal et al. 
2009).

Moreover, based on currently available RNA sequencing performed on tissue samples from 

95 human individuals, E2–2 is expressed in the brain, heart, fat tissue, adrenal gland, ovary, 

and testis, in addition to lymphoid tissues and the lung, suggesting the potential presence of 

pDCs in these tissues (Fagerberg et al. 2014). Table 2 summarizes the non-ocular tissues, 

including secondary lymphoid organs and peripheral tissues in which pDCs have been 

reported during steady state.

Of note, although detailed morphologic assessment of resident pDCs in peripheral tissues 

needs further investigation, current evidence suggests that the morphology of pDCs in 

peripheral tissues may differ from circulating pDCs in the blood stream or lymphoid organs. 

As depicted in Fig. 1A–C, while electron microscopy of freshly isolated pDCs from blood 

circulation as well as histologic staining and MPM of pDCs in lymphoid organs (Fig. 1C) 

indicate that they appear as spherical cells without dendritic projections (Grouard et al. 
1997, Jegalian et al. 2009), histologic staining of pDCs in the peripheral tissues, such as 

resident pDCs in kidney and lung, suggest that they exhibit more elongated cell bodies with 

few stub-like projections (Masten et al. 2006, Woltman et al. 2007). Thus, pDCs may show a 

distinct morphology in the blood stream and lymphoid organs compared with peripheral 

tissues.

2. Resident Immune Cells in Ocular Tissues

The notion of ocular immune privilege has been described decades ago (Medawar 1948); 

however, this concept has undergone extensive modification and revision since its initial 

conception (Forrester 2009, Hori et al. 2010). While many pillars have been proposed that 

contribute to ocular immune privilege, from a lack or limited expression of MHC-II on 

resident APCs in ocular tissues (Streilein et al. 1979, Wang et al. 1987, Baudouin et al. 
1988), to lack of lymphatics and blood vessels (Medawar 1948), and an immunosuppressive 

microenvironment in the ocular tissues (Streilein et al. 1992, Taylor et al. 1994, Stuart et al. 
2005, Hori 2008, Taylor 2009), these pillars have failed to explain immune privilege in its 
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entirety (Paunicka et al. 2015, Hamrah et al. 2016, Hori et al. 2019). Work from several 

groups in the field has now demonstrated that there are in fact resident immune cells present 

in essentially all ocular tissues (Steptoe et al. 1995, Butler et al. 1996, Gomes et al. 1997, 

Hamrah et al. 2002, Hamrah et al. 2003, Hamrah et al. 2003, Hamrah et al. 2003, Forrester 

et al. 2005, Xu et al. 2007). Herein, we briefly review our current understanding on resident 

immune cell populations in ocular tissues and discuss what is known with respect to the 

function of these cells, in order to provide a framework as to how pDCs complement known 

functions of other immune cells in reinstating homeostasis in ocular tissues. Fig. 3A 

illustrates the presence and distribution of resident immune cells in ocular tissues.

2.1. Cornea

Despite the traditional view that cornea is a collagenous tissue devoid of resident immune 

cells, it has now been demonstrated that the normal cornea is in fact home to different 

populations of resident immune cells, in particular innate immune cells, including APCs 

(Rodrigues et al. 1981, Vantrappen et al. 1985, Brissette-Storkus et al. 2002, Hamrah et al. 
2002, Hamrah et al. 2003, Hamrah et al. 2003). Interestingly, resident corneal immune cells 

are not distributed evenly. While the majority of immune cells follow a decrease in density 

from the peripheral towards the central cornea, their localization throughout different 

corneal layers varies among subpopulations (Hamrah et al. 2002, Hamrah et al. 2003, 

Hamrah et al. 2003).

Subpopulations of cDCs are among the first populations of resident APCs that were detected 

in the cornea (Rodrigues et al. 1981, Chandler et al. 1985, Seto et al. 1987, Hamrah et al. 
2002, Yamagami et al. 2005). While initial reports, studying MHC-II, suggested that cDCs, 

including LCs, are confined to limbus and peripheral cornea, it was later shown that MHC-

IIneg cDCs are also located in the central corneal epithelium and stroma, with a decreasing 

density from periphery to center (Hamrah et al. 2002, Liu et al. 2002, Hamrah et al. 2003, 

Hamrah et al. 2003). Nevertheless, upon inflammatory stimuli, corneal cDCs increase and 

mature throughout the cornea, expressing increased levels of MHC-II and co-stimulatory 

molecules (Hamrah et al. 2003). In addition to cDCs, macrophages are shown to reside in 

the posterior corneal stroma during steady state in the peripheral and central cornea 

(Brissette-Storkus et al. 2002, Hamrah et al. 2003, Hamrah et al. 2003). Nakamura et al. 
demonstrated that 2 weeks following adoptive transfer of bone marrow-derived cells from 

eGFP-expressing mice to irradiated, syngeneic mice, eGFP+ cells appear in the corneal 

limbus and periphery, confirming the bone marrow origin of resident corneal immune cells 

(Nakamura et al. 2005). Further studies, taking advantage of transgenic CD11cDTR-eGFP 

mice that express enhanced green fluorescent protein (eGFP) under the control of CD11c 

promoter, confirmed the presence of eGFP+ cDCs in the cornea during steady state 

(Knickelbein et al. 2009). Similar to cDCs, studies on transgenic CX3CR1eGFP mice in 

which macrophages express eGFP, confirmed their presence in the cornea during steady 

state (Chinnery et al. 2007).

More recently, intravital multi-photon microscopy studies on corneas of CD11cDTR-eGFP and 

MHC-IIeGFP mice have provided in vivo insights into their behavior (Seyed-Razavi et al. 
2019). These studies have shown that during acute corneal inflammation, cDCs respond to 
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stimuli by exhibiting less volume and more sphericity, as well as increasing their motility, 

highlighting the alterations in their morphology and kinetics following inflammation (Seyed-

Razavi et al. 2019). In fact, resident corneal APCs play important roles in mediating immune 

responses to corneal insults, such as during infectious keratitis, dry eye disease (DED), and 

corneal transplantation (Liu et al. 2002, Buela et al. 2015, Hu et al. 2015, Hua et al. 2016, 

Ramke et al. 2016, Choi et al. 2017, Maruoka et al. 2018). Following corneal 

transplantation, corneal cDCs have been demonstrated to migrate to the mandibular draining 

lymph nodes (dLNs) and elicit adaptive immune responses (Liu et al. 2002). Further, cDCs 

are also vital for corneal wound healing in diabetic mice (Gao et al. 2016) and in corneal 

nerve survival in DED (Choi et al. 2017). In addition to antigen presentation and wound 

healing (Li et al. 2013, Bellner et al. 2015), corneal macrophages contribute to angiogenesis 

and lymphangiogenesis under pathologic conditions (Cursiefen et al. 2004, Maruyama et al. 
2005, Xu et al. 2007, Maruyama et al. 2012, Kiesewetter et al. 2019).

Notably, resident APCs, including both cDCs and macrophages are located closely to the 

corneal nerves (Cruzat et al. 2011, Leppin et al. 2014, Seyed-Razavi et al. 2014, Paunicka et 
al. 2015, Gao et al. 2016, Hamrah et al. 2016, Hori et al. 2019). However, they dissociate 

after corneal injury, implying that neuro-immune crosstalk has a potential role in corneal 

health and disease (Seyed-Razavi et al. 2014). Employing multi-photon microscopy in 

double-transgenic CD11ceYFP×Thy1YFP mice, we have recently assessed the significance of 

corneal nerves on alterations in morphology and kinetics of CD11c+ cDCs in DED. We 

observed that in mice with DED, cDCs are less frequently associated with nerves, and that 

association with nerves diminishes alterations in cDC morphology and kinetics observed in 

DED (Jamali et al. 2020).

In addition to cDCs and macrophages, subpopulations of T cells, such as γδ T cells (Li et al. 
2007), type 2 innate lymphoid cell (ILCs) (Liu et al. 2017), and NK cells (Liu et al. 2012) 

have been reported in the limbus during steady state, and are involved in maintaining corneal 

immune privilege (Skelsey et al. 2001) and wound healing (Li et al. 2007, Li et al. 2011, Liu 

et al. 2012, Liu et al. 2017). Although the various functions of resident immune cells have 

been assessed in various pathological conditions and diseases, their contribution to the 

maintenance of homeostasis has not been demonstrated. For instance, it is not clear if/how 

resident immune cells may contribute to angiogenic privilege of the cornea, or how they may 

interact with corneal nerves to mediate corneal nerve health and function during steady state. 

Further, although role of various immune cells during viral keratitis has been studied, it is 

not yet known how much they contribute to production of type I IFNs, an important cytokine 

involved in antiviral immunity.

2.2. Conjunctiva

In contrast to the avascular cornea, the conjunctiva contains a variety of resident immune 

cells during steady state. In fact, the conjunctiva is unique among the ocular tissues as it 

considered as part of mucosal immune system, which is designated as conjunctiva-

associated lymphoid tissue. Immune cells in the conjunctiva are either scattered in the tissue 

or clustered in structured aggregates resembling follicles (Fix et al. 1989, Hingorani et al. 
1997). The majority of the resident immune cells in the conjunctiva reside in the substantia 
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propria, however, to a lesser extent, they are also found in the epithelium (Fix et al. 1989, 

Gomes et al. 1997, Hingorani et al. 1997).

Among innate immune cells, mast cells, NK cells, cDCs, LCs, macrophages, and rarely γδ 
T cells and ILCs are reported in the normal conjunctiva (Allansmith et al. 1978, Sacks et al. 
1986, Sacks et al. 1986, Soukiasian et al. 1992, Baddeley et al. 1995, Gomes et al. 1997, 

Hingorani et al. 1997, Knop et al. 2000, Ohbayashi et al. 2007, Yoon et al. 2018). While 

during steady state, cDCs appear to be the most common professional APCs in the 

conjunctiva, LCs have also been reported in the conjunctival epithelium and sub-epithelial 

layers (Rodrigues et al. 1981, Ohbayashi et al. 2007), with regional differences in 

distribution of both (Sacks et al. 1986). Macrophages tend to majorly populate in the 

substantia propria and can be rarely found among the epithelial cells, however, they are not 

detected among ductal cells (Gomes et al. 1997). Macrophages are increased in the course of 

experimental allergic conjunctivitis and contribute to antigen uptake and presentation 

(Fukushima et al. 2010, Ishida et al. 2010). Noteworthy, the density of APCs increases in the 

conjunctiva during aging (Bian et al. 2019). γδ T cells constitute a minor subpopulation of T 

cells in the conjunctival epithelium and substantia propria during the steady state 

(Soukiasian et al. 1992) and are shown to play a pivotal role in promoting clinical severity 

and eosinophilic infiltration in the conjunctiva in murine model of allergic conjunctivitis 

(Reyes et al. 2011).

In addition to innate immune cells, adaptive immune cells are present in the conjunctiva. 

Plasma cells are detected in the conjunctiva, in particular in the substantia propria or 

superficial layers of conjunctival epithelium during steady state (Allansmith et al. 1978, 

Bhan et al. 1982, Franklin et al. 1984, Vantrappen et al. 1985, Sacks et al. 1986, Hingorani et 
al. 1997, Knop et al. 2000, Siebelmann et al. 2013). Similar to resident innate immune cells, 

B and T cells are more frequently found in the conjunctival substantia propria rather than 

epithelium (Gomes et al. 1997). T cell population outnumber B cells in the conjunctiva 

(Sacks et al. 1986, Gomes et al. 1997, Hingorani et al. 1997). It has also been reported that 

the conjunctiva is endowed with a significant regulatory T cell population (Nesburn et al. 
2007), likely contributing to the immune privileged status of the ocular surface.

It has been suggested that development of immune cells in the conjunctiva is age-dependent; 

resident immune cells peak in adolescence, they tend to decline through adulthood 

(Siebelmann et al. 2013). Nevertheless, similar to the cornea, the turnover of the immune 

cells in the conjunctiva needs further investigation.

2.3. Choroid, Iris, and Ciliary Body

Populations of APCs have also been described throughout the entirety of the uveal tract. In 

the iris and ciliary body, the described resident immune cell populations are predominantly 

macrophages, based on their expression of F4/80. Subpopulations could also be delineated 

by the expression of either Mac-1 or MHC-II (Williamson et al. 1989). Further, less 

frequently, resident cDCs have also been identified within these tissues. 

Immunohistochemistry studies has revealed distinct localization of resident macrophages 

and cDCs; while cDCs are present within the epithelial layers and the stroma, macrophages 

reside in the substantia propria (McMenamin et al. 1992).
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Interestingly, the turnover rate of iris-resident macrophages and cDCs differ substantially. 

Bone marrow transplantation into irradiated mice indicated that cDCs have a turnover rate 

with a half-life of 3 days, whereas macrophages had a turnover rate with a half-life of 10–12 

days (Steptoe et al. 1996). Further, presence of CD34+ progenitor immune cells in the iris 

has been shown, which may suggest potential in situ renewal of at least some subtype of 

immune cells in this tissue during steady or following inflammatory stimuli (Vrapciu et al. 
2014). Iris-resident cDCs have been shown to induce T cell proliferation in vitro, whereas 

macrophages failed to do so (Steptoe et al. 1995). Later studies revealed that while resident 

iris macrophages could not stimulate proliferation in unprimed T cells, they were capable of 

promoting the proliferation of primed, antigen-specific T cells (Steptoe et al. 2009). This 

distinction between resident cDCs and macrophages can be explained in that upon antigen 

uptake, resident cDCs migrate to the dLNs to induce T cell responses, whereas the resident 

macrophages may potentiate those responses within the tissue.

In the choroid, resident cDCs appear to have an immature phenotype, as indicated by little to 

no expression of the co-stimulatory molecules CD80 and CD86. The lack of these molecules 

suggests that these cDCs are not capable of antigen presentation, but rather, points toward a 

role in antigen capture (McMenamin 1999). A close association between these resident 

immune cells and retinal pigment epithelial cells has also been described (Forrester et al. 
1994). Choroidal cDCs are poor antigen presenters unless activated in vitro. Interestingly, 

choroidal macrophages are poor antigen presenters, even after activation, but improve the 

antigen presentation by cDCs when co-cultured (Forrester et al. 2005). More recently, 

choroidal resident myeloid cells have been investigated ex vivo by time-lapse confocal 

microscopy. These experiments utilized young and aged CX3CR1eGFP/+ mice to address if 

immune-vascular associations are altered during aging. These studies, highlighting close 

interaction of resident immune cells and choroidal vasculature and show that the density of 

myeloid cells increases with age (Kumar et al. 2014).

In the uveal track, resident immune cells, including cDCs and macrophages play an 

important role in mediating immune responses, in part through acting as local APCs in 

conditions such as autoimmune uveitis (Butler et al. 1996, McMenamin et al. 1997, Jiang et 
al. 1999), and macular degeneration (Luhmann et al. 2009, Cherepanoff et al. 2010, Bretz et 
al. 2018). Although our understanding of the role of resident immune cells in the uveal track 

in disease states has significantly increased, their role in maintaining immune and 

vasculature homeostasis during steady state remains mainly elusive.

2.4. Retina

The retina, being an extension of the central nervous system, is host to microglia. During 

steady state, microglia are typically detected in three layers of the retina: (1) nerve fiber 

layer/ganglion cell layer, (2) inner plexiform layer, and (3) outer plexiform layer (Hume et 
al. 1983, Diaz-Araya et al. 1995, Provis et al. 1995, McMenamin et al. 2019). However, 

some reports suggest that in adult retinas, they are absent from the nerve fiber layer/ganglion 

cell layer. Microglia are widely implicated in mediating immune responses, 

neurodevelopment, neuronal survival, and synaptic pruning throughout the central nervous 

system (Silverman et al. 2018). Microglia are tissue-resident long-lived cells; however, 
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during injury it has been shown that bone marrow-derived cells may infiltrate into the retina 

and differentiate into microglia-like cells (Xu et al. 2007, Kaneko et al. 2008).

In addition to microglia, the retina hosts small fractions of other resident immune cells, such 

as macrophages and cDCs. Retinal perivascular macrophages are located in close association 

to epiretinal vessels, extending their processes around the vessels or bridging adjacent 

vessels (Cuff et al. 1996). These cells constitute a distinct population from microglia, since 

unlike microglia, they lack expression of Iba-1, although they share expression of F4/80 and 

CD11b with microglia (Mendes-Jorge et al. 2009). In fact, in a series of experiments, 

O’Koren et al. demonstrated that despite similarities, it is possible to distinguish microglia 

from macrophages within the retina via extensive phenotyping by flow cytometry (O’Koren 

et al. 2016). Interestingly, they demonstrated that microglia, at least within the retina, 

maintain a stable phenotype even during neuroinflammation in the light-induced retinal 

degeneration model (O’Koren et al. 2016). More recently, it has been demonstrated 

microglia residing in inner plexiform and outer plexiform layers harbor distinct properties, 

since only survival of the microglia in the inner plexiform layer is dependent on ganglion 

cells’ secretion of IL-34 (O’Koren et al. 2019). Further, solely microglia in the inner 

plexiform layer contribute to feedback regulation of cone-bipolar cell axons and thus, visual 

information (O’Koren et al. 2019).

During retinal injury, both retinal microglia and infiltrating macrophages contribute to 

removal of debris. Additionally, infiltrating macrophages re-enter the circulation, a possible 

indication of their antigen-presenting potential (Joly et al. 2009). Further, microglia have 

been shown to interact with retinal pigmented epithelium (RPE) cells. When injected into 

the subretinal space of naïve mice, microglia caused alterations in RPE cells including 

increased expression of pro-inflammatory and pro-angiogenic molecules, with a concurrent 

increase in the extent of choroidal neovascularization (Ma et al. 2009). It has since been 

demonstrated that modulating interferon-β signaling can provide benefit in choroidal 

neovascularization, as mice benefit from systemic interferon-β therapy in a laser burn model 

(Luckoff et al. 2016).

In addition to microglia and peri-vascular macrophages, resident cDCs have also been 

reported in the retina (Gregerson et al. 2003, Xu et al. 2007). In a study, using 

CD11cDTR-GFP mice, it has been shown that GFP+ cDCs were observed in the retina, 

expressing CD11b and intermediate levels of CD45, further confirming the presence of 

resident cDCs in the retina (Lehmann et al. 2010). Resident retinal cDCs selectively up-

regulate MHC-II expression following retinal injury, suggesting their role in antigen 

presentation and identification in conditions such as autoimmune uveoretinitis (Xu et al. 
2007, Lehmann et al. 2010). Nevertheless, considering the recent discovery of resident 

cDCs, their functions during steady state and disease needs to be further elucidated.

2.5. Lacrimal Gland

The lacrimal gland forms part of the lacrimal functional unit, key for maintenance and 

homeostasis of the tear film at the ocular surface. As such, resident immune cell populations 

within the lacrimal gland will briefly be discussed. A variety of immune cells are present in 

the lacrimal gland, including macrophages, cDCs, and unique subpopulations of 
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lymphocytes (Pappo et al. 1988, Wieczorek et al. 1988, Gomes et al. 1997, Saitoh-Inagawa 

et al. 2000). In the lacrimal gland, APCs are the predominant immune cell type followed by 

lymphocytes.

These immune cell populations appear to be involved in the homeostatic function of the 

lacrimal gland. For instance, following exposure to environmental antigens or ocular 

immunization with toxins, such as cholera toxin, the density of antibody-secreting cells in 

the lacrimal gland increases, leading to an increase in tear antibody levels against the 

antigens (Allansmith et al. 1987, Saitoh-Inagawa et al. 2000). Also, if the parasympathetic 

innervation to the lacrimal gland is severed, mRNA levels of mediators such as NFκB, 

MHC-II, macrophage metalloelastase, and CD53 are increased at early and late time points 

(Nguyen et al. 2006). Similarly, inflammatory cytokines, such as CCL2, CCL4, IL-6, MHC-

II, are increased the lacrimal glands of rabbits which were housed in warmer temperatures 

and/or lower humidity (Mircheff et al. 2011). Additionally, ex vivo studies have 

demonstrated that inflammatory cytokines such as IL-1β and IL-6 directly impact secretory 

function and decrease chloride flux in response to treatment with carbachol, a muscarinic 

agonist (Selvam et al. 2013). Thus, within the lacrimal gland there are complex interactions 

between the parasympathetic nerves, resident immune cells, and even environmental cues, 

likely relayed by corneal afferents (Stern et al. 2004). Perturbation of any of these 

components can result in lacrimal gland dysfunction. Additional work is warranted in this 

area to unravel the complexities of such interactions and to uncover contributions of various 

immune cells.

2.6. Perspective

Previous studies have elucidated the presence of a variety of immune cells in ocular tissues 

during steady state and their role in different pathological settings. This has led to the 

potential for therapeutic targeting of immune pathways in ocular diseases. However, our 

understanding of the homeostatic function of immune cells in ocular tissues is lacking. An 

additional area that requires further investigation are whether these immune cell populations 

are replenished by in situ proliferation, local progenitors, or bone marrow-derived immune 

cells recruited from blood stream. While it appears as though there is a distinction in 

functions of cDCs and macrophages in these settings, studies have indicated close 

associations between resident immune cells and nerves as well as resident immune cells and 

vasculature. Understanding the neuro-immune and immune-vascular crosstalks in these 

tissues remain to be elucidated.

3. Distribution of Plasmacytoid Dendritic Cells in Ocular Tissues

Considering that innate immune cells are found in ocular tissues during steady state, more 

recent studies have assessed if murine or human ocular tissues also host resident pDCs. 

Notably, considering the difficulty of accessing healthy human ocular tissues, most of our 

knowledge on tissue-resident pDCs is derived from murine studies. Under this section, we 

briefly review our current understanding on presence of resident pDCs in ocular tissues and 

the alterations in their density or phenotype in various ocular diseases. Fig. 3B summarizes 

our current knowledge on distribution of resident pDCs in the ocular tissues.
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3.1. Cornea

Investigations into the potential existence of pDCs in ocular tissues date back to 2005, when 

Sosnova et al. first showed that a subpopulation of double-positive CD45R/B220+ Gr-1+ 

cells among CD45+ bone marrow-derived cells in the cornea (Sosnova et al. 2005). 

Although this study first brought up the potential presence of pDCs in normal murine 

corneas, considering that the expression of CD45R/B220 and Gr-1 is not restricted to pDCs, 

these data remained inconclusive. Extensive studies on the identification of pDCs in ocular 

tissues awaited until 2010, when it was demonstrated that during steady state, pDCs, initially 

specified as CD45+ PDCA-1+ CD45R/B220+ cells, reside in the anterior stroma in both the 

central and peripheral murine cornea, with their particular localization immediately below to 

the corneal basal epithelium (Zheng et al. 2010). These studies further showed that corneal 

pDCs express TLR-7 and TLR-9 (Zheng et al. 2010), consistent with prior studies in other 

tissues (Kadowaki et al. 2001, Krug et al. 2001, Hornung et al. 2002, Edwards et al. 2003). 

In addition to CD45R/B220, co-expression of CD11c was shown on CD45+ PDCA-1+ cells. 

Interestingly, as illustrated in Fig. 4A, both populations of CD45+ PDCA-1neg CD11chigh 

cDCs (Fig. 4A, arrow heads) and CD45+ PDCA-1+ CD11clow presumable pDCs (Fig. 4A, 

arrows) are detectable in the murine limbus during the steady state. Nevertheless, clear 

characterization of pDCs via confocal microscopy seems technically impractical since it 

requires co-staining with multiple markers such as PDCA-1, Siglec-H, CD11c, CD45R/

B220, and Ly6C. Thus, unequivocal confirmation of the presence of pDCs in the murine 

cornea during steady state awaited thorough flow cytometric evaluations, which 

demonstrated that the majority of CD45+ PDCA-1+ CD45R/B220+ cells in the cornea co-

express CD11c (low), Ly6C, Gr-1, and Ly49Q, but are negative for CD11b, F4/80, Ly6G, 

CD3, and CD19 (manuscript under review). Interestingly, pDCs appear in the cornea during 

the embryonic stage of life, suggesting their early homing to ocular tissues during 

development (Abou-Slaybi et al. 2019). Surprisingly, despite their rarity in the peripheral 

blood and secondary lymphoid organs, pDCs constitute approximately 0.4% of total corneal 

cells and 15–25% of corneal immune cells (CD45+ cells) in corneal single cell suspensions 

during the steady state. In addition studies on corneal inflammation have shown that both 

sterile and infectious inflammatory stimuli, including thermal cautery, stromal suture 

placement, or HSV-1 keratitis, result in increased corneal pDC density in both the peripheral 

and central cornea (Zheng et al. 2010, Blanco et al. 2017) (manuscript currently under 

review).

The advent of intravital multiphoton microscopy has enabled in vivo imaging of immune 

cells of interest with high resolution over time in living animals, in particular in the cornea 

(Sumen et al. 2004, Seyed-Razavi et al. 2019). In this regard, DPE-GFP×RAG1−/− 

transgenic mice provide a potent source for studying pDCs in vivo, since in these mice, 

which lack RAG1, GFP is expressed under the control of CD4, leaving pDCs as the solely 

GFP-tagged cells in the tested organs (Iparraguirre et al. 2008). Taking advantage of this 

technology and availability of the transgenic mice, precise localization, morphology, and 

kinetics of pDCs in the cornea have recently been studied (Blanco et al. 2017). The findings 

of the study confirmed the presence of corneal pDCs during steady state without the need for 

application of immunofluorescence staining, confirming their higher density in the 

peripheral cornea. pDCs generally appear with a central cell body and few stub-like 
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extensions (Fig. 4B, arrows), however, they do not possess thin dendrites as observed in 

cDCs. In addition, a minor population of pDCs in the cornea harbored a round cell body 

without cytoplasmic extensions (Fig. 4B, arrow head). In contrast, cDCs tend to have a 

round cell body with multiple fine dendrites, while macrophages generally exhibit shorter 

stellates compared to pDCs. Further, the study showed that morphology and migratory 

properties of pDCs are altered during inflammation, regardless of the etiology. In fact, while 

pDCs are sessile during steady state, during inflammation, their migratory behavior is 

significantly altered, as shown by their higher mean speed and longer displacement in the 

cornea (Blanco et al. 2017) (manuscript under review). These findings suggest that corneal 

pDCs sense and respond to inflammatory stimuli.

Of note, in the limbus, the distribution of pDCs is uniquely organized. In DPE-

GFP×RAG1−/− mice, GFP+ pDCs engulf the limbal vessels (Fig. 4C and Supplementary 

Video 1), and in rare occasion are found in the lumen of the vessels, patrolling the 

intravascular space (Jamali et al. 2020). In the limbus, the majority (approximately 85%) of 

the resident pDCs accompany limbal vessels, with higher frequency around larger vessels 

(Jamali et al. 2020). Considering the critical localization of pDCs, it might be postulated that 

they may promptly participate in dampening immune responses, by traveling to dLNs in 

order to prevent unnecessary immune responses. Further, as reviewed in the relevant sections 

below, they may contribute to vascular integrity and corneal angiogenic privilege.

Following identification of pDCs in murine corneas during steady state, the presence of 

resident pDCs in human corneas has also been confirmed (manuscript under review). 

Performing flow cytometry on single cell suspensions of eyebank corneas from healthy 

individuals, it was shown that similar to mice, approximately 1–2% of corneal single cell 

population express CD45, among which about 15–20% co-express BDCA-2 and BDCA-4, 

suggesting that the normal human cornea is also endowed with resident pDCs (manuscript 

under review). In a recent study on human cadaveric corneas and limbal explant cultures, 

Luznik et al. suggested the presence of pDCs as judged by expression of BDCA-2, CD123, 

and lack of expression of CD11c on a fraction of CD45+ immune cells (Luznik et al. 2019).. 

Nevertheless, further evidence is needed to support the findings of this study due to the 

technical shortcoming of the study, such as lack of presentation of a viability marker, 

fluorescence minus one controls, as well as discrepancies in presented gating strategies and 

the density of pDCs in the peripheral cornea.

3.2. Conjunctiva

In the conjunctiva, in an initial study in 2007, investigators reported that PDCA-1+ CD11c+ 

cells, as presumable pDCs, are very rarely detected in the conjunctiva during steady state. 

However, following allergen stimulation (without subsequent challenge), pDCs are well 

noticed in the subepithelial layer of the conjunctiva throughout the substantia propria of 

bulbar, forniceal, and tarsal conjunctiva (Ohbayashi et al. 2007). Further, as early as 24 

hours (h) following allergen challenge, pDCs are significantly increased compared with 

stimulated but not challenged mice in the conjunctiva, in particular in the forniceal 

conjunctiva (Ohbayashi et al. 2007). Interestingly, pDCs reach higher densities compared 

cDCs (Ohbayashi et al. 2007). Similarly, Stern et al. demonstrated that while during steady 
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state PDCA-1+ CD11clow pDCs constitute a minor fraction of immune cells on the ocular 

surface (combining corneal and conjunctival tissue), their density remarkably increases as 

early as 1 day following induction of DED by subcutaneous administration of scopolamine 

and environmental desiccating stress (Stern et al. 2012). Despite these initial findings that 

demonstrated resident PDCA-1+ CD11c+/low cells in the conjunctiva during steady state and 

their increase following allergic or desiccating stimuli, conclusive evidence could not be 

drawn regarding presence of resident pDCs in the conjunctiva as only two pDC markers that 

can also be found on other cells, were used in these studies.

Recently, following the observation of CD45+ PDCA-1+ CD11clow cells in the bulbar 

conjunctiva and limbus of naïve mice by confocal microscopy, the presence of PDCA-1+ 

Ly6C+ CD11bneg F4/80neg pDCs among CD45+ cells in the bulbar conjunctiva was 

confirmed during steady state by flow cytometry. In fact, these cells constitute 

approximately 15% of total immune cells in this tissue. Further, immunophenotyping of 

these cells using fluorescence minus one controls revealed that as expected for pDCs, 

CD45+ PDCA-1+ Ly6C+ CD11bneg F4/80neg cells are also CD11c+ and Ly49Q+, but lack 

expression of CD3, CD19, and Ly6G (Jamali et al. 2020). As depicted in Fig. 4C, the 

presence of resident pDCs in the conjunctiva has also been observed in DPE-GFP×RAG1−/− 

mice. Importantly, the GFP+ cells in the conjunctiva of these mice express CD45 (Fig. 4D) 

as well as PDCA-1 (Fig. 4E), but lack CD3 and CD19 (Fig. 4E), confirming their identity as 

pDCs. Notably, although the majority of GFP+ cells in the conjunctiva of these transgenic 

mice aligned with pDC identity, considering that CD4 might be expressed by other APCs, 

such as minor subtypes of macrophages or cDCs (Vremec et al. 2000, Bialecki et al. 2011, 

Abtin et al. 2014, Bain et al. 2018), together with the presence of a minor subpopulation of 

GFP+ cells that lacked expression of PDCA-1, it may be postulated that a minor population 

of GFP+ cells in the conjunctiva of these transgenic mice may represent subtypes of cDCs or 

macrophages. In this regard, although expression of other immune cell markers such as 

myeloid cell marker, CD11b, as well as monocyte/macrophage markers, F4/80 and CD68, 

was not assessed on conjunctival GFP+ cells to further support the identity of these cells as 

pDCs in the conjunctiva of DPE-GFP×RAG1−/− mice, in the cornea they mainly appeared 

negative for CD68 (manuscript under review). Further, during steady state, conjunctival 

pDCs express moderate levels of MHC-II, higher levels of co-inhibitory molecules PD-L1 

and B7-H3, and minor to negligible levels of ICAM-1, CD40, and CD86, suggesting their 

potential tolerogenic functions (Jamali et al. 2020). Similar to these findings on the 

phenotype of resident conjunctival pDCs, murine resident lung pDCs express negligible 

levels of the co-stimulatory molecule CD40, and low levels of CD80 and CD86, yet 

considerable levels of PD-L1 (de Heer et al. 2004). Further, in human lung specimens, pDCs 

also express negligible levels of co-stimulatory molecules CD40 and CD80, and low levels 

of CD86 and ICAM-1 (Demedts et al. 2005). Similarly, pDCs detected in the kidney during 

steady state do not express CD40, and only express minor levels of CD80 and CD86 (Coates 

et al. 2004).

In humans, the presence of pDCs in the normal conjunctiva has not yet been explored. 

However, pDCs have been detected in peri- and intra-granuloma infiltrates in conjunctival 

biopsies of children with primary chronic blepharitis leading to granulomatous conjunctivitis 

(BAïZ et al. 2012). In summary, current evidence indicates that pDCs reside in the 

Jamali et al. Page 18

Prog Retin Eye Res. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conjunctiva during steady state, at least in mice. However, considering our limited 

knowledge on their life cycle, it is interesting to study the longevity of these tissue-resident 

pDCs and to assess how these cells keep their niche in the conjunctiva during steady state.

3.3. Choroid and Retina

Currently, there are few studies on the presence of tissue resident pDCs in murine or human 

choroid and retina. In a recent preliminary report, Baban et al. assessed the presence of 

CD11c+ CD45R/B220+ cells in human eyebank retinas by immunohistochemistry (Baban et 
al. 2015). They observed that presumable pDCs reside in the normal human retina and that 

pDC density is decreased in the retinas from diabetic patients (Baban et al. 2015). More 

recently, murine retinas and choroid have been shown to host pDCs during steady state 

(Gupta et al. 2017). Using flow cytometry of collagen-digested tissues, CD45+ PDCA-1+ 

CD45R/B220+ pDCs were shown to constitute less than 5–10% of CD45+ cells in the retina 

and choroid during steady state. The pDC identity of these cells has been further confirmed 

as they expressed CD11c and Gr-1, and are negative for CD3 and CD19 (Gupta et al. 2017). 

Using transgenic DPE-GFP×RAG1−/− mice with GFP-tagged pDCs, the presence of GFP+ 

cells in the choroid/retinal tissues has been demonstrated during steady state, in close 

proximity to the vasculature. Further, GFP+ cells in the aforementioned tissues expressed 

TLR-7 and TLR-9, the main intracellular receptors of pDCs (Gupta et al. 2017) (manuscript 

under preparation). Similar to the other ocular tissues, our knowledge is currently limited on 

how pDCs renew in the choroid and retina. Therefore, further studies are necessary to 

unravel the life cycle of pDCs in these tissues and to demonstrate how these cells regenerate 

following cell death.

3.4. Lacrimal Gland

As the main source of the tear aqueous layer, the lacrimal gland plays a key role in ocular 

surface homeostasis. Considering the putative role of pDCs in Sjögren’s syndrome and 

DED, as well as prior research indicating the presence of immune cells, and more 

specifically APCs in the lacrimal gland, the presence of pDCs in the lacrimal gland has been 

assessed. Using multiple pDC markers, it has been shown that during steady state, 

approximately 3–4% of CD45+ cells in the murine lacrimal gland are CD11bneg F4/80neg 

CD3neg CD19neg PDCA-1+ Gr-1+ CD11clow, suggestive of the presence of pDCs in the 

lacrimal gland (manuscript under preparation). GFP+ cells were also detected in the lacrimal 

gland of transgenic DPE-GFP×RAG1−/− mice (Fig. 4F), with the majority expressing CD45 

(Fig. 4G), PDCA-1, moderate to low levels of CD11c, and Gr-1 (Fig. 4H), but as expected, 

were negative for CD11b, CD3 and CD19 (Fig. 4H), confirming the majority of them align 

with a pDC identity. Of note, a minor population of GFP+ cells did not express PDCA-1 and 

were positive for CD11b and/or high expressed levels of CD11c, in the lacrimal gland, 

suggesting that a minority of the GFP+ cells may represent other immune cells, such as 

cDCs or macrophages (manuscript under preparation). The GFP+ cells in the lacrimal gland 

of these transgenic mice express high levels of E2–2, TLR-7, and TLR-9, further suggesting 

their identity as pDCs (manuscript under preparation). Taken together, these observations 

suggest that similar to the cornea, conjunctiva, choroid, and retina, pDCs may also reside in 

the lacrimal gland during steady state in mice, although in sparse numbers. Fig. 3B 

summarizes our current knowledge on distribution of resident pDCs in the ocular tissues.
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4. Plasmacytoid Dendritic Cell Functions

4.1. General Immune Functions of Plasmacytoid Dendritic Cells

As members of innate immunity, pDCs contribute to a wide range of functions. Despite their 

diverse role, they exert their functions through two main approaches: (1) secretion of soluble 

molecules, and (2) interaction with other immune cells. Although pDCs were originally 

appreciated for their production of type I IFNs, they secret multiple immunomodulatory and 

pro-inflammatory cytokines and chemokines (chemotactic cytokines), including type I IFNs 

(IFN-α, IFN-β, IFN-ω, and IFN-τ), type II IFN (IFN-γ), type III IFNs (including IFN-λ1 

[IL-29], IFN-λ2 [IL-28a], and IFN-λ3 [IL-28b]), TNF-α, IL-4, IL-6, IL-8, IL-10, IL-12, 

CCL3, CCL4, and CXCL10 (Coccia et al. 2004, Cox et al. 2005, Kamogawa-Schifter et al. 
2005, Omatsu et al. 2005, Ito et al. 2006, Decalf et al. 2007, Smolen et al. 2014, Doyle et al. 
2019). Through secretion of these cytokines and chemokines, pDCs communicate with other 

immune cells and surrounding cells in tissues, in order to direct pro-inflammatory or anti-

inflammatory responses.

In addition to employing their secretary machinery, pDCs regulate immune response by 

directly interacting with other cells of the immune system. Freshly isolated splenic pDCs, as 

immature APCs, display a poor capacity in inducing naïve T cell proliferation. However, 

following stimulation, they up-regulate expression of T cell co-stimulatory molecules, such 

CD40, CD80, CD86, adhesion molecule CD54, and the maturation marker MHC-II, and can 

promote T cell proliferation (Grouard et al. 1997, Nakano et al. 2001), albeit, with a lower 

efficiency compared to cDCs (Abe et al. 2005, Tokita et al. 2008). In addition to priming 

effector T cells, pDCs may mediate the generation of regulatory T cells (Tregs), which can 

suppress allospecific responses (Gilliet et al. 2002, Moseman et al. 2004, Ito et al. 2007).

Through these mechanisms pDCs bridge innate and adaptive immunity. Thus, it is not 

surprising that pDCs play a key role in the development or progress of miscellaneous 

conditions. In the sections below, we describe how pDCs are implicated in the pathogenesis/

immune response to pathogens, autoimmune diseases, as well as tumors, and organ 

transplantation in non-ocular and ocular tissues.

4.2. Role of Plasmacytoid Dendritic Cells in Infectious Diseases

4.2.1. Viral Infections

4.2.1.1. Non-ocular Viral Infections: In 1957, Isaacs and Lindenmann found that 

supernatants of virally infected cells produce proteins that interfere with viral replication, 

called interferons (Isaacs et al. 1957). About four decades later, investigators discovered that 

pDCs are the main producers of type I IFNs among immune cells upon viral exposure or 

following exposure to unmethylated CpG-DNA sequences typically found in viruses and 

bacteria (Cella et al. 1999, Siegal et al. 1999, Kadowaki et al. 2001). Over several years, 

multiple additional studies revealed that pDCs are involved in anti-viral immunity against 

multiple viruses (Swiecki et al. 2010, Swiecki et al. 2015). Following viral encounter, pDCs 

are redistributed from the circulation to the lymph nodes or peripheral tissues to the site of 

infection, where they secrete type I IFNs (Donaghy et al. 2001, Penna et al. 2001, Barron et 
al. 2003, Yoneyama et al. 2005, Gerlini et al. 2006, Lund et al. 2006, Smit et al. 2006, 
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GeurtsvanKessel et al. 2008, Brown et al. 2009, Donaghy et al. 2009, Gao et al. 2009, Kim 

et al. 2009, Lukens et al. 2009, Wolf et al. 2009, Huch et al. 2010, Lehmann et al. 2010, 

Davidson et al. 2011, Dunmire et al. 2015).

Although pDCs produce type I IFNs during viral infections, particularly in the early time 

points after viral exposure (Krug et al. 2004, Smit et al. 2006, Swiecki et al. 2010, Swiecki 

et al. 2013), their contribution in eliciting immune responses and promoting viral clearance 

is not always imperative and dependent on the secretion of type I IFNs and pro-

inflammatory cytokines and chemokines (Krug et al. 2002, Penna et al. 2002, Jego et al. 
2003, Swiecki et al. 2013). In fact, the contribution of pDCs to viral immune responses goes 

beyond secretion of type I IFNs, as they regulate different subpopulations of immune cells, 

including T cells, B cells, cDCs, and NK cells (Penna et al. 2002, Jego et al. 2003, Krug et 
al. 2004, Yoneyama et al. 2005, Tsuchida et al. 2012, Swiecki et al. 2013, Lynch et al. 2018). 

For instance, pDC depletion in local vaginal HSV-2 infection does not affect IFN-α levels, 

viral load, or mortality, but absence of pDCs in systemic HSV-1 and HSV-2 infections leads 

to decreased IFN-α levels, as well as decreased NK cell activation and reduced production 

of IFN-γ by virus-specific CD8+ T cells, without affecting their proliferative capacity or 

accumulation in the site of inflammation (Swiecki et al. 2013). In subcutaneous HSV-1 

infection, pDCs poorly induce virus-specific T cell responses; however, in their absence, 

cDCs lose their capacity to prime CD4+ or CD8+ T cells (Yoneyama et al. 2005). In 

summary, during systemic HSV-1 and HSV-2 infections, pDCs act in concert with other 

immune cells including cDCs, NK cells, and T cells to direct the immune response. 

However, they are not indispensable in local infections.

In influenza virus infections, depletion of pDCs does not affect viral clearance and 

generation of virus-specific CD8+ cytotoxic or memory T cells (GeurtsvanKessel et al. 2008, 

Wolf et al. 2009), and has controversial effects on production of anti-viral neutralizing 

antibodies (GeurtsvanKessel et al. 2008, Wolf et al. 2009). Further, although pDC depletion 

may not affect viral clearance (GeurtsvanKessel et al. 2008, Wolf et al. 2009), in the absence 

of pDCs, infiltration of T cells to the lungs is delayed (Wolf et al. 2009), which can be 

explained by expression of both macrophage inflammatory protein (MIP)-1α and MIP-1β 
chemoattractant proteins necessary for recruitment of effector Th1 and CD8+ T cells 

(Bonecchi et al. 1998, Loetscher et al. 1998, Penna et al. 2002, Castellino et al. 2006). pDCs 

may even destroy viral-specific CD8+ T cells through FasL-Fas signaling, when 

encountering lethal, but not sublethal doses of influenza virus, contributing to the mortality 

due to lethal infections in mice (Langlois et al. 2010).

Furthermore, it has been shown that in respiratoty synsytial virus (RSV) infections, pDC 

depletion leads to increased airway hyperreactivity, accumulation of inflammatory cells, and 

prevention of viral clearance (Smit et al. 2006). Noteworthy, the increased 

immunopathologic severity of the RSV infection following pDC depletion, is not only due to 

decreased production of IFN-α and delayed viral clearance, but also due to lack of 

modulation of T cell responses in the absence of pDCs, since pDC depletion enhances 

production of both Th1 and Th2 cytokines in the lungs and dLNs (Smit et al. 2006). In line 

with these findings, it has been demonstrated that pDC depletion augments the severity of 

airway inflammation induced by the pneumonia virus of mice (PVM) in neonatal mice and 
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is accompanied by decreased neuropilin-1+ Tregs, as pDCs express semaphorin 4A and 

promote the generation of neuropilin-1+ Tregs (Lynch et al. 2018). In contrast, adoptive 

transfer of pDCs decreases airway inflammation through inhibition of Th1 and Th2 

responses, favoring Treg generation (Tsuchida et al. 2012).

In murine cytomegalovirus (CMV) infection, depletion of pDCs leads to reduced levels of 

type I IFN and increased levels of IL-12p70, with reduced NK cytotoxic activity, and higher 

viral loads, particularly in early time points; however, at later time points, pDCs seem to 

limit secretion of IFN-γ by NK cells (Krug et al. 2004, Swiecki et al. 2010). Further, 

although following pDC depletion expression of MHC-II by cDCs is considerably confined, 

the ability of cDCs to prime CD8+ T cells is not affected (Swiecki et al. 2010). Similarly, in 

vesicular stomatitis virus (VSV), pDC depletion abolishes early IFN-α increase. However, 

dissimilar to CMV, pDCs promote accumulation and survival of antigen-specific T cells in 

VSV (Swiecki et al. 2010). In line with these findings, it has been shown that pDCs can 

induce cDC maturation and promote CD8+ T cell clonal expansion by cDCs (Yoneyama et 
al. 2005).

In summary, in viral infections in various non-ocular tissues, pDCs play a vital role in viral 

encounters through production of type I IFNs and through modulating innate and adaptive 

immune responses, based on the offending agent and its route of entry. Considering the key 

role of pDCs in viral infections, below we review our understanding on their contribution to 

HSV-1 keratitis.

4.2.1.1. Ocular Viral Infections: As described above, classically, pDCs were 

acknowledged for their pivotal role in viral challenges (Cella et al. 1999, Siegal et al. 1999, 

Coccia et al. 2004, Krug et al. 2004, Lund et al. 2006, Smit et al. 2006, Swiecki et al. 2010). 

Thus, viral infections were among the first conditions in which the role of pDCs were 

investigated in ocular diseases. In this regard, in an early report, Kittan et al. assessed the 

distribution and function of pDCs in acute retinal necrosis caused by HSV or VZV in 

humans. They observed that in individuals with acute retinal necrosis, pDCs seem to display 

a lower frequency in the blood stream compared to controls. However, they observed low 

numbers of pDCs in the vitreous of one (out of two) of the examined patients, suggesting 

potential redistribution of pDCs to the site of inflammation. Further, although pDCs isolated 

from the peripheral blood of the individuals with acute retinal necrosis expressed higher 

levels of co-stimulatory molecules, their capacity to produce IFN-α was limited compared to 

controls (Kittan et al. 2007).

Considering constant exposure of the ocular surface to the environment and thus pathogens, 

shortly following the identification of resident corneal pDCs, their significance was 

investigated in viral infections of the cornea. In this regard, due to the importance of HSV-1 

keratitis as the leading cause of infectious blindness in developed countries (Liesegang 

2001), studies on the role of pDCs in corneal infections mostly focused on HSV-1 keratitis 

(Hu et al. 2013, Sendra et al. 2015, Sendra et al. 2016).

Dissimilar to other tissues, primary infection of HSV-1 in humans rarely accompanies 

clinical symptoms and signs in the cornea (Darougar et al. 1985, Liesegang et al. 1989); 
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Typically, during primary ocular or mucosal infection, HSV-1 invades the sensory dendrites 

and is transferred to neuronal cell bodies in trigeminal ganglion (TG), where it remains in a 

dormant state. However, following the resolution of the primary infection, the dormant virus 

in TG can be re-activated by various stressors, traveling back to the cornea via sensory 

dendrites in a retrograde fashion, leading to recurrent epithelial keratitis manifested as 

corneal inflammation, neovascularization, scarring, perforation and in severe cases blindness 

(Liesegang 1999, Giménez et al. 2013, Rowe et al. 2013). Although the HSV-1 virus entry to 

TG is thought to follow a non-corneal HSV-1 infection, it may also arise from “front door” 

transmission through the cornea (Kaye et al. 1992, Kovacs et al. 2009, Shah et al. 2010).

To directly assess the contribution of pDCs in immune responses in HSV-1 keratitis, our 

group has examined how density of pDCs is altered during the course of acute HSV-1 

keratitis. We observed that as early as 1 day following HSV-1 inoculation, pDCs are 

increased in both peripheral and central corneas compared with sham-inoculated controls 

and their increase tends to progress till day 6 post inoculation (Hu et al. 2013) (manuscript 

under review). This observation was further validated by flow cytometry, showing 

considerable increase in the density of CD45+ CD45R/B220+ PDCA-1+ pDCs, which co-

expressed CD11c, Ly49Q, Ly6C, and Gr-1, but are negative for CD11b, F4/80, Ly6G, CD3, 

and CD19 on day 3 following HSV-1 inoculation (manuscript under review). To evaluate 

how depletion of pDCs alters immune response to HSV-1 keratitis, transgenic BDCA-2-

DTR mice which express simian DTR under the control of pDC specific BDCA-2 promoter 

(Swiecki et al. 2010) have been used. It has been shown that pDC depletion prior to HSV-1 

inoculation is accompanied by deterioration of clinical severity of HSV-1 keratitis, enhanced 

infiltration of immune cells to the cornea, increased viral load in the cornea, and viral 

transmission to dLNs and TG (Hu et al. 2013, Sendra et al. 2017) (manuscript under review; 

Fig. 5). Further, it has been shown that pDC depletion is accompanied by reduced IFN-α 
levels in the cornea, and blocking TLR-9 in pDC-sufficient corneas prevents HSV-1 induced 

IFN-α response, suggesting an important role of pDCs signaling through TLR-9 in IFN-α 
responses in acute HSV-1 keratitis (manuscript under review). Nevertheless, the study does 

not clarify whether the observed deterioration of clinical severity of HSV-1 keratitis or 

enhanced tissue damage in pDC-depleted corneas is linked to reduced IFN-α secretion or 

potentially other properties of pDCs.

In contrast to the cornea, the periorbital skin, including eye lids, similar to skin covering 

other body sites, clinically manifests signs of primary HSV-1 infection (Darougar et al. 
1985). Noteworthy, the skin is known to be devoid of resident pDCs during steady state, and 

thus, it might be postulated that the presence of tissue-resident pDCs in the cornea during 

steady state may, at least in part, explain how the cornea is preserved from signs of primary 

HSV-1 infection in humans. Nevertheless, this hypothesis needs to be further tested by 

evaluating immune response to skin tissue, with prior adoptive transfer of pDCs or 

alternatively, in murine corneas depleted from pDCs and inoculated with low dose of HSV-1, 

which is usually infective for skin.

The role of pDCs in mediating adaptive immune responses in HSV-1 keratitis has also been 

studied. It has been shown that following corneal HSV-1 inoculation, the density of pDCs 

increases remarkably in the dLNs, with a major shift towards mature (MHC-II+) pDCs. 
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Further, although the distribution of pDCs in subcapsular, paracortical, and cortical areas of 

the dLN is remained unchanged following corneal HSV-1 inoculation, their motility and 

displacement is enhanced in the dLNs (Sendra et al. 2016). Further, it has been reported that 

depletion of corneal pDCs in BDCA-2-DTR mice prior to HSV-1 inoculation is 

accompanied by alterations in the dLN cytokine milieu, leading to decreased density of 

Tregs (Sendra et al. 2017) (manuscript under preparation). Recently, it has been shown that 

during HSV-1 keratitis, Tregs may become unstable and can be reprogrammed to effector T 

cells. Such ex-Tregs harbor pathogenic properties and can propagate the severity of keratitis 

(Bhela et al. 2017). Recent studies highlight that pDCs not only favor generation of Tregs 

during HSV-1 keratitis, but they also prevent reprogramming of Tregs to pathogenic effector 

ex-Tregs. In this regard, it is shown that, local corneal depletion of pDCs is accompanied by 

enhanced density of ex-Tregs in the dLN as well as increased recruitment of ex-Tregs to the 

cornea in vivo. Further, in vitro experiments indicated that co-culture of pDCs with Tregs 

prolongs expression of Foxp3 in Tregs and diminishes their reprogramming to effector T 

cells (manuscript under review).

Our current knowledge on the role of pDCs in mediating innate and adaptive immune 

responses in HSV-1 keratitis is depicted in Fig. 5. Despite these findings, our knowledge is 

limited on how pDCs mediate several aspects of immune responses in HSV-1 keratitis. For 

instance, although it has been reported that following inflammation, a higher frequency of 

corneal pDCs express the proliferation marker Ki-67 (Schwarzenbacher et al. 2017), 

currently the contribution of extravasating pDCs from the blood versus the potential in situ 
proliferating resident pDCs and their respective functions following HSV-1 keratitis remains 

to be elucidated. Further, molecular mechanisms through which pDCs may prevent viral 

entry and transmission to TG are not studied. In addition, future experiments may reveal if 

pDCs may interact with other cells/structures in the cornea, such as epithelial cells, stromal 

cells, and corneal nerves to mediate the immune responses following exposure to HSV-1 and 

to re-establish homeostasis following resolution of the keratitis. Thus, further studies are 

needed to assess if the findings on the important role of pDCs in controlling HSV-1 keratitis 

can be generalized to other viral causes of keratitis. In this regard, studying the significance 

of pDCs in mediating immune response and clearing the virus in viral conjunctivitis and 

more importantly sight-threatening viral infections such as varicella zoster virus (VZV) 

keratitis or CMV retinitis, warrants further investigation.

4.2.2. Bacterial Infections—In addition to their pivotal role in viral infections, pDCs 

contribute to immune responses during bacterial infections. Early evidence on their potential 

role in bacterial infections was provided by Svensson et al., who showed that upon 

stimulation with Staphylococcus (S.) aureus, pDCs increase and produce type I IFNs 

(Svensson et al. 1996). Later, it was shown that exposure to S. aureus and other bacteria, 

such as Neisseria meningitides and Haemophilus influenza may trigger secretion of 

cytokines, such as IL-6 and TNF-α by pDCs (Michea et al. 2013). Similarly, exposure to 

gram positive bacteria can enhance cytokine production by pDC and their capability to 

promote CD4+ T cell expansion and proliferation (Raieli et al. 2019).

During Listeria (L.) monocytogenes infection, pDCs tend to accumulate in the lymph nodes 

and spleen and up-regulate expression of the co-stimulatory molecule CD86 and maturation 
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marker MHC-II (Tam et al. 2006). pDC depletion leads to reduced levels of pro-

inflammatory serum cytokines, including IFN-γ, IL-6, and IL-12p40, reduced pathogen 

load, and improved survival (Takagi et al. 2011). Further, it has been shown that although 

bone marrow pDCs encountered with L. monocytogenes produce IFN-α and IFN-β in a 

MyD88-dependent fashion in vitro, their contribution to the production of type I IFNs in L. 
monocytogenes in vivo is minimal (Stockinger et al. 2009). In line with these findings, 

depleting pDCs with anti-PDCA-1 antibody during L. monocytogenes infection does not 

affect type I IFNs levels (Solodova et al. 2011). Thus, in bacterial infections, pDCs may not 

serve as the main source of type I IFNs, but may play a pivotal role in mediating both innate 

and adaptive immune responses through other yet unknown mechanisms.

Protective effects of pDCs are also evident in Citrobacter (C.) rodentium bacterial colitis, 

where pDCs are increased in the spleen and infiltrate the colon. Systemic pDC depletion in 

C. rodentium results in overall poor health, necessitating euthanasia (Rahman et al. 2019). 

Although pDC depletion does not affect the density of infiltrating immune cells, CD3+ 

CD4+ Th cells, and Tregs, it is accompanied by increased pro-inflammatory serum 

cytokines, increased vascular permeability and higher bacterial burden, suggesting the 

importance of pDCs in conserving the architecture of mucosal barrier (Rahman et al. 2019).

The molecular mechanisms, through which pDCs sense and respond to bacteria, are still 

controversial. While a study suggested that production of IFN-α following exposure to S. 
aureus is not mediated through TLR-2 and may require TLR-7/TLR-9 activation (Parcina et 
al. 2008), other evidence suggests that secretion of IFN-α can be abolished via blocking 

TLR-2 (Raieli et al. 2019). Additionally, the secretion of other pro-inflammatory cytokines 

and up-regulation of co-stimulatory molecules by pDCs may be mediated through TLR-1 

(Raieli et al. 2019).

In summary, bacterial infection or exposure to bacteria in vitro alters pDCs properties and 

enables them to alter the inflammatory milieu and to prime naïve T cells to differentiate into 

other T cell populations. However, unique features of the immune responses mediated by 

pDCs to various bacteria and modulating different T cell and B cell responses by pDCs in 

both mice and human remains to be elucidated. In ocular tissues, Staphylococcus aureus, 

Streptococcus pneumoniae, Haemophilus species, and Pseudomonas aeruginosa are among 

the main causes of serious bacterial infections of the conjunctiva and cornea. Considering 

the role of pDCs in mediating immune response in various bacterial infections, it is 

worthwhile to study if and how pDCs may control potentially blinding bacterial infections.

4.2.3. Parasitic Infections—To date, few studies have studied the role of pDCs in 

parasitic infections, such as toxoplasmosis and malaria infections. Toxoplasmosis, caused by 

the obligate intracellular protozoan Toxoplasma gondii, is the most common cause of 

infective retinitis in immunocompetent patients. Following systemic T. gondii infection, 

through signaling of TLR-11, pDCs in the lymph nodes proliferate and acquire a mature 

state by up-regulating MHC-II and co-stimulatory molecules, suggesting an early role for 

pDCs in T cell activation (Pepper et al. 2008). Further, Koblansky et al. showed that while 

pDCs express both TLR-11 and TLR-12, the role of TLR-12 is more prominent in the 

induction of immune responses during toxoplasmosis, as exposure to profilin-like protein 
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from T. gondii enhances production of IL-12p40 in pDCs. However, this effect is abrogated 

in pDCs isolated from TLR-12−/−, but not TLR-11−/− mice (Koblansky et al. 2013). Further, 

in TLR-11−/− mice, depletion of pDCs succumb the relative resistance to toxoplasmosis, 

enhancing the mortality of mice upon T. gondii challenge (Koblansky et al. 2013). The effect 

of T. gondii on pDCs resembles exposure of these cells to IL-10, since both result in the 

abolishment of cytokine production, by regulating downstream effects of TLR-9 signaling, 

such as IRF7 and STAT3, thereby blocking IFN-α production (Pierog et al. 2018).

In summary, pDCs mediate various innate and adaptive immune responses to offending 

pathogens ranging from viruses to parasites. While in viral exposures pDCs mainly employ 

TLR-7 and TLR-9 for responding to the pathogen, their machinery for sensing other 

microorganisms is less known and may include other TLRs.

4.3. Role of Plasmacytoid Dendritic Cells in Autoimmunity and Sterile Inflammation

4.3.1. Sjögren’s Syndrome—Sjögren’s syndrome (SS) is a systemic autoimmune 

disease, which although primarily affects salivary and lacrimal glands, can also affect other 

organs (Zoukhri 2006). Initial evidence on the potential implication of pDCs in the 

pathogenesis of SS originated from genome-wide gene expression profiling of minor 

salivary gland in individuals with SS. The study demonstrated that in individuals with SS, 

IFN-inducible genes are up-regulated, suggesting that pDCs, as the main producers of type I 

IFNs, may participate in pathogenesis of SS (Gottenberg et al. 2006). Similarly, in 

monocytes of individuals with SS, a cluster of IFN-inducible genes are up-regulated, which 

together with higher expression of CD40 on pDCs in these individuals, suggests that pDCs 

may play a role in the pathogenesis of SS (Wildenberg et al. 2008). Further, the density of 

circulating pDCs is decreased in individuals with SS (Vogelsang et al. 2010) and while 

pDCs were not found in salivary glands of healthy individuals, they accumulated in the main 

or minor salivary glands in individuals with SS, signifying they are redistributed from 

circulation to affected tissues in SS (Gottenberg et al. 2006, Vogelsang et al. 2010).

Behavior of pDCs is altered in the course of SS. In fact, miRNome analysis of circulating 

pDCs has shown that pDCs isolated from individuals with SS exhibit distinctive expression 

of miRNAs involved in regulation of apoptosis, autophagy, and survival, compared with 

pDCs isolated from healthy controls (Hillen et al. 2019). Additionally, transcriptome of 

peripheral pDCs from individuals with SS patients are similar to pDCs stimulated by TLR-7, 

as both exhibit low ribosomal proteins expression (RPL11, RPL27 and RPS11) compared 

with pDCs isolated from healthy volunteers. Further, it has been shown that TLR-stimulated 

pDCs from individuals with SS produce remarkably higher levels of IFN-α and IFN-b 

compared with pDCs from healthy individuals, altogether, indicating that pDCs are activated 

during the course of the SS (Hillen et al. 2019). Further, pDCs are suggested to have an 

indirect role in B cell recruitment to minor salivary glands, and thus to contribute to the 

development of SS, as IFN-α secretion by pDCs promotes release of CXCL13 by 

macrophages, which in turn leads to the recruitment of B cells (Zhao et al. 2016). Studies 

also assessed alterations in the functions of pDCs during SS. In vitro studies found that 

pDCs can phagocytose autoantigens, which exist in apoptotic bodies of epithelial cells of 

human submandibular gland in individuals with SS. Exposure to these apoptotic particles led 
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to the production of inflammatory cytokines such as IFN-α, IL-6, IL-8 and TNF-α by pDCs 

through TLR-7 and TLR-9. Additionally, it is known that sex hormones are altered in SS, 

with decreased estrogen and dihydrotestosterone levels. These sex hormones had no effect 

on TLR-7 and TLR-9 expression by pDCs, and did not alter their pro-inflammatory cytokine 

production in vitro; however, they were protective of the epithelial cells, reducing their 

apoptosis, and thus, limiting exposure of pDCs to autoantigens (Ainola et al. 2018)

In summary, pDCs accumulate in the salivary glands in the course of SS and exhibit 

characteristics of activation. However, it is not clear if they are in fact the initiators of the 

disease or if they contribute to the progress of the disease through secretion of type I IFNs 

and cytokines. Of note, lacrimal gland dysfunction is one of the hallmarks of SS, and it 

remains unknown how pDCs are altered in the lacrimal gland in the course of the disease 

and how they may contribute to the disease pathophysiology. Thus, further studies are 

necessary to evaluate the role of pDCs in the lacrimal gland in SS.

4.3.2. Systemic Lupus Erythematosus—Systemic lupus erythematosus (SLE) is an 

autoimmune disorder characterized by loss of tolerance to self-antigens, with a wide range 

of clinical manifestations (Dorner et al. 2019). Ocular involvement is common in individuals 

with SLE, affecting about one third of patients. In addition to its most common associate, 

Sjögren’s syndrome (please see relevant section above), ocular manifestation of SLE range 

from involvement of ocular adnexa to vision-threatening retinal vasculitis to optic 

neuropathy (Palejwala et al. 2012, Shoughy et al. 2016, Silpa-archa et al. 2016). In SLE, 

several autoantibodies against self-molecules in the nucleus, cytoplasm, and cell surface, in 

addition to soluble molecules, such as IgG and coagulation factors, participate in the 

pathogenesis of the disease (Dorner et al. 2019). Due to the presence of a variety of 

autoantibodies, SLE can virtually manifest in any tissue. Neutrophil extracellular traps 

containing nucleic acid antigens, as well as apoptotic cells, may expose DNA and nuclear 

proteins that interact with autoantibodies to form immune complexes. pDCs harbor Fc 

receptors on their surface and are thus capable of engulfing immune complexes. Following 

internalization of immune complexes, fusion with endosomes allows the engagement of 

TLR-7 and TLR-9, mediating pathogenic production IFN-α, along with other cytokines such 

as TNF-α (Tian et al. 2007, Sakata et al. 2018, Smith et al. 2019). Secreted type I IFNs 

subsequently activate and sustain autoantibody generating B cells (Jego et al. 2005, 

Banchereau et al. 2006).

Early depletion of pDCs in SLE ameliorates the disease progression in mice, by limiting 

aberrant B cells and subsequent autoantibody generation (Rowland et al. 2014). Conversely, 

pDC repopulation results in reduced splenic weight, decreased autoantibodies, B cells and 

CD4+ T cells. Thus, temporary pDC depletion results in favorable outcomes, suggesting a 

pathogenic role of pDCs, at least at the onset of SLE. In Tcf4+/−Tlr7.tg mice, which develop 

a SLE-like disease, absence of pDCs leads to reduced splenomegaly, serum anti-RNA IgG 

levels, normalization of the density of peripheral CD11c+ MHC-IIneg cells, and increased 

survival. Therefore, lack of pDCs ameliorates the immune activation observed in the Tlr7.Tg 

SLE-like mice (Sisirak et al. 2014). Moreover, pDCs from mice with late SLE are unable to 

produce IFN-α upon TLR stimulation (Liao et al. 2015). Together, these results indicate that 
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pDCs lose the ability to produce IFN-α in the course of SLE, and therefore, may not be 

necessary for disease progression.

In humans, circulating pDCs are increased in individuals with SLE as compared to healthy 

individuals (Jin et al. 2008), and have an increased ability to stimulate and expand T cells. 

Conversely, pDCs from healthy individuals are not capable of stimulating T cells, but are 

instead capable of inducing Tregs (Jin et al. 2010). Furthermore, pDCs during steady state 

can induce both Bregs (CD24+ CD38hi) that co-express IL-10 and plasmablasts through 

secretion of IFN-α and CD40 signaling. In healthy conditions, Bregs provide a negative 

feedback and reduce IFN-α production by pDCs via secretion of IL-10. However, during 

SLE, pDCs fail to induce the differentiation of Bregs and instead solely promote antibody-

producing plasmablasts(Menon et al. 2016). Targeting the pDC specific receptor BDCA-2 

with a humanized monoclonal antibody (24F4A) results in blocking pDC-mediated IFN-α 
expression in the serum of SLE patients (Gardet et al. 2019). Furthermore, injections of 

24F4A in monkeys inhibit pDC activation by SLE-associated immune complexes (Pellerin et 
al. 2015). Application of BIIB059, another humanized monoclonal antibody against 

BDCA-2, which is currently under investigation in a phase II clinical study (NCT02847598), 

reduces skin damage and increases internalization of BDCA-2 in pDCs, which correlates 

with reduced levels of circulating IFN-α (Furie et al. 2019). Since IFN-α has been shown to 

be one of the pathogenic mediators during SLE, current clinical trials with anti-IFN-α 
antibodies are ongoing and are in phase III clinical trials (NCT01438489) (Furie et al. 2017).

In summary, although secretion of type I IFNs is necessary for immune response to 

pathogens, secretion of high levels of IFN-α by murine pDCs at the disease onset activates 

and sustains B cells to produce autoantibodies; however, the role of pDCs in disease 

progression is to be elucidated.

4.3.3. Rheumatoid Arthritis—Although pDCs seem to serve as culprit in SLE, this 

may not be the case in the majority of other autoimmune disease in which the role of pDCs 

has been investigated. Therefore, in order to provide a more balanced view of potential 

protective and destructive roles of pDCs in autoimmune conditions, we briefly review our 

current understanding of the role of pDCs in rheumatoid arthritis, a condition in which pDCs 

may play a protective role. Rheumatoid arthritis is a chronic disease that primarily affects 

joints, but can include vasculitis or other systemic comorbidities. It has been established that 

between 50% and 70% of individuals with rheumatoid arthritis share autoantibodies against 

citrullinated peptide and against IgG (rheumatoid factor) (Nell-Duxneuner et al. 2010, Barra 

et al. 2011). In the synovial milieu, a Th1/Th2 imbalance towards Th1 cells has been 

described in RA patients, and this imbalance is driven by pDCs, cDCs and B cells (McInnes 

et al. 2007). Despite the fact that pDCs can exert a Th1 response by producing IFN-α, the 

involvement of IFN-α production by pDCs during rheumatoid arthritis remains controversial 

(Nehmar et al. 2017). A recent study employed different strategies to deplete pDCs to 

explore the contribution of type I IFNs and pDCs in a mouse model of rheumatoid arthritis. 

To induce rheumatoid arthritis in this study, sera of K/BxN mice, which contain pathogenic 

antibodies against the ubiquitous protein glucose-6-phosphate isomerase, necessary to 

develop the majority of rheumatoid arthritis features (Monach et al. 2007), were injected 

into mice. Following induction of rheumatoid arthritis, Ikaros−/− mice, which lack peripheral 
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pDCs (Allman et al. 2006), displayed lasting bone erosion and paw swelling, accompanied 

by an increased influx of immune cells, mainly neutrophils in the peri-articular tissues 

(Nehmar et al. 2017). Similarly, depletion of pDCs via different methods leads to increased 

paw swelling and serum levels of IL-6, but does not significantly alter histological findings 

(Nehmar et al. 2017). In another model of rheumatoid arthritis, depletion of pDCs 

exacerbates collagen-specific proliferation of T cells, autoreactive B cells, and disease 

pathology, evident by extensive synovial hyperplasia, cartilage degradation, and pannus 

invasion (Jongbloed et al. 2009).

In individuals with rheumatoid arthritis, the density of blood pDCs is decreased and pDCs 

possess an immature phenotype, defined by decreased expression of CD40L, CD80, CD83, 

CD86, and adhesion molecule, L-selectin (CD62L) (Jongbloed et al. 2006, Cooles et al. 
2018, Nehmar et al. 2018). Further, in individuals with rheumatoid arthritis, pDCs are able 

to favor generation of IL-10-secreting Treg cells from allogeneic naïve CD4+ CD25neg T 

cells cell (Kavousanaki et al. 2010). Peripheral pDCs show increased CCR7 (a key 

chemokine receptor for migration of DCs to lymph nodes), which is inversely correlated 

with pDC frequency (Cravens et al. 2007, Seth et al. 2011). In addition, the CCR7 ligand, 

CCL19/CCL21, is increased in synovial joints in rheumatoid arthritis, supporting migration 

of pDCs to the joints in the early course of the disease (Pickens et al. 2011). Taken together, 

the presence of pDCs seems to limit the immune response and reduce inflammation-induced 

tissue damage in rheumatoid arthritis, suggesting a beneficial role for pDCs in this condition 

(Jongbloed et al. 2009, Kavousanaki et al. 2010, Nehmar et al. 2017).

In summary, the role of pDCs in pathogenesis of autoimmune diseases depends on the nature 

of the disease. During early SLE, when IFN-α signature is prominent, pDCs may participate 

in the pathogenesis and progression of the disease. However, in rheumatoid arthritis, pDCs 

tend to promote tolerance, re-establish homeostasis, and thus, favor clinical outcome of the 

disease. In ocular diseases, it would be interesting to assess if pDCs contribute to 

pathogenesis of autoimmune conditions, such as uveitis. Of note, considering the important 

role of IL-23/IL-17 signaling pathway in induction of autoimmune uveitis (Zhong et al. 
2020) and counter-regulatory role of Tregs in this process (Grégoire et al. 2016, Zhuang et 
al. 2017), it may be postulated that pDCs may contribute to the pathogenesis of autoimmune 

uveitis by mediating T cell priming and preferably inducing particular T cell responses. 

Findings of such studies may pave the way for novel therapies targeting immune responses 

and thus ameliorating clinical severity and sequela of the disease.

4.3.4 Sterile Inflammation—Homeostatic properties of pDCs are not confined to 

induction of tolerance to antigens as described in the following section. In fact, pDCs drive 

anti-inflammatory responses in various conditions. For example, in an acute immune-

mediated liver injury model, pDC depletion is accompanied by severe liver injury, judged by 

increased serum aminotransferase levels, increased serum IFN-γ and IL-6 levels, as well as 

to decreased infiltration of Tregs to the liver (Koda et al. 2019). Along the same lines, 

adoptive transfer of pDCs results in decreased serum aminotransferase, IL-6, and MCP-1 

levels, reduced generation of IFN-γ+ Th1 and Th17 effector T cells, enhanced generation of 

generation of Tregs through IL-35 and favors mice survival (Koda et al. 2019).

Jamali et al. Page 29

Prog Retin Eye Res. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the ocular tissues, sterile inflammation occurs in response to contact lens wear, allergens, 

self-antigens, and mechanical, thermal and chemical traumas and burns. Among ocular 

tissues, the cornea is unique to study immune responses due to its accessibility and 

simplicity of clinical examination, as well as its immune and angiogenic privilege. To study 

immune responses in the cornea, sterile models of inflammation, including thermal cautery, 

alkali burn, and corneal suture placement have been widely used (Pfister et al. 1978, 

Williamson et al. 1987, Ormerod et al. 1989, Sano et al. 1995, Streilein et al. 1996, Hamrah 

et al. 2002, Cursiefen et al. 2004, Giacomini et al. 2014). Recently, it has been shown that 

depletion of corneal pDCs in BDCA-2-DTR mice prior to suture placement is accompanied 

by enhanced clinical opacity of the cornea as compared to controls, as well as augmented 

influx of inflammatory immune (CD45+) cells in general, including neutrophils and 

macrophages (Sendra et al. 2014, Sendra et al. 2017). pDCs may also regulate adaptive 

immune response in the dLNs, as their depletion prior to corneal suture placement results in 

increased the density of CD8+ T cells and B cells (Sendra et al. 2014). This model also 

demonstrates that the role of pDCs in mediating innate and adaptive immune response is not 

dependent on IFN-α, but rather might be mediated through other pathways, as neutralization 

of IFN-α using subconjunctival administration of anti-IFN-α antibody does not alter clinical 

severity of inflammation, density of recruited immune cells, or density of subpopulations of 

CD4+ T cells in the dLN (Sendra et al. 2017) (manuscript under preparation).

Experimental DED is another instance in which the role of pDCs in sterile ocular surface 

inflammation is studied. In this regard, Stern et al. evaluated IFN-α production in the tears 

of feeble mice, which carry a mutation in Slc15a4, abrogating IFN-α and cytokine 

production relatively specially in pDCs (Blasius et al. 2010, Stern et al. 2013). They 

demonstrated that compared with wild-type mice, feeble mice show significantly lower 

amount of IFN-α in their tears, suggesting that pDCs are the major source of IFN-α during 

desiccating stress-induced experimental DED (Stern et al. 2013). Fig. 6 summarizes our 

current understating on significance of pDCs in sterile corneal inflammation.

In summary, pDCs may contribute to amelioration of inflammation in sterile inflammations. 

Thus, it is worthwhile to assess the role of pDCs in other sterile inflammatory conditions 

such as chemical and mechanical traumas and evaluate if they may be involved in 

homeostasis and supporting stems cells and regeneration of corneal epithelium following 

traumas. Further, although capacity of pDCs in secreting type I IFNs is well known, it is 

interesting to study if contribution of pDCs to inflammatory processes such as DED goes 

beyond secretion of type I IFNs and if so, how such functions of pDCs are regulated.

4.4. Role of Plasmacytoid Dendritic Cells in Tolerance

In addition to directing immune responses to pathogens and their involvement in 

pathogenesis of autoimmune diseases, pDCs are pivotal in inducing tolerance and 

suppressing inflammatory responses. In fact, pDCs provide a tolerogenic microenvironment, 

maintaining homeostasis, through various mechanisms, ranging from secretion of 

tolerogenic cytokines and growth factor, the development of Tregs in the thymus and 

peripheral tissues, to mediating T cell activities (de Heer et al. 2004, Martin-Gayo et al. 
2010).
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In general, freshly isolated pDCs from human blood, unlike cDCs, express ICOS-L upon in 
vitro stimulation, through which they may prevent expansion of naïve CD4+ T cells and 

augment generation of IL-10 producing Tregs (Ito et al. 2007). Further, upon stimulation 

with TLR-9 agonists, human peripheral blood pDCs shift cytokine production pattern of 

naïve CD4+ T cells towards enhanced production of TGF-β and IL-10, and decrease 

secretion of IL-2. They also favor generation of Tregs, which can suppress autologous and 

allogeneic T cell proliferation in an Ag-nonspecific manner in vitro (Moseman et al. 2004). 

Dissimilar to cDCs, when stimulated pDCs are cultured with naïve CD8+ T cells, they prime 

CD8+ Tregs with poor secondary proliferative capacity and cytotoxic activity against 

allogeneic cells. These Tregs prevent allospecific proliferation of naïve CD8+ T cells 

through secretion of IL-10 (Gilliet et al. 2002). Compared with cDCs, even stimulated pDCs 

exhibit lower capacity in promoting proliferation of allogeneic T cell. Further, pDCs also 

induce remarkable apoptosis in allogeneic CD4+ T cells via Tregs (Tokita et al. 2008). 

Notably, it is shown that pDCs isolated from different tissues, for instance liver or spleen 

may display different tolerogenic capacities (Tokita et al. 2008). In the sections below, we 

briefly review the roles of pDCs in inducing tolerance to organ transplants, tumors, and oral 

antigens, as three main areas in which immune responses are currently under comprehensive 

investigations and where they may apply to respective ocular diseases.

4.4.1. Transplantation

4.4.1.1. Transplantation in Non-ocular Tissues: Recent studies have unraveled 

tolerogenic effects of pDCs in multiple organ transplants, such as heart, kidney, and 

hematopoietic stem cells, by highlighting their role in the generation or promotion of the 

functions of Tregs, as well as mediating T cell anergy (Abe et al. 2005, Ochando et al. 2006, 

Li et al. 2010, Rajasekar et al. 2010, Oh et al. 2019). For instance, in a rat model of heart 

transplantation, it has been shown that accumulation of pDCs in the graft is necessary for 

induction of tolerance and graft survival (Li et al. 2010). Dissecting the cellular players in 

mediating immune responses to grafts, Ochando et al. demonstrated that, in a murine model 

of cardiac transplant, pDCs capture alloantigens in the graft and egress to the dLN via blood 

circulation, where they induce generation of CD4+ CD25+ Foxp3+ Tregs. Furthermore, 

depletion of pDCs accelerates graft rejection in tolerized mice, while intravenous adoptive 

transfer of pDCs isolated from tolerized mice enhances Treg generation and favors graft 

survival (Ochando et al. 2006). Similarly, it has been shown that pDCs preferentially 

promote tolerogenic a function of CD8+ Tregs on suppressing CD4+ T cell proliferation, via 

a contact-dependent effect on CD8+ Tregs (Li et al. 2010). In addition to favoring the 

generation of Tregs, pDCs may promote T cell anergy. In this regard, it has been shown that 

ex vivo CpG-ODN stimulated pDCs isolated from the bone marrow, are less efficient in 

inducing allogeneic naïve T cell proliferation compared to cDCs, which can be in part 

attributed to their expression of the co-inhibitory molecule PD-L1 (B7-H1) (Abe et al. 
2005). Furthermore, intravenous adoptive transfer of pDCs induces non-specific hypo-

responsiveness to challenge with donor or third-party irradiated splenocytes ex vivo, 

including reduced T cell proliferative, as well as IL-2 and IFN-γ secretory capacities (Abe et 
al. 2005). Interestingly, the addition of IL-2 to T cells, isolated from mice receiving pDCs, 

could not retrieve T cell proliferative capacity, indicating that pDC-induced hypo-

responsiveness is not reversible (Abe et al. 2005). Moreover, pre-operative adoptive transfer 
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of in vitro-propagated donor or third party pDCs significantly improves survival of fully 

MHC-mismatched heart transplants (Abe et al. 2005). Confirming these findings, it has been 

shown that adoptive transfer of mobilized donor pDCs prior to surgery can substantially 

promote heart allograft survival compared with subtypes of cDCs (Bjorck et al. 2005).

In kidney transplants, naïve pDCs isolated form syngeneic or accepted allogeneic transplants 

can generate Tregs from CD4+ CD25neg T cells in vitro. Further, adoptive transfer of Tregs, 

generated ex vivo by co-culturing pDCs and CD4+ CD25neg T cells, enhances graft survival 

(Oh et al. 2019). In contrast, pDCs are also implicated in immune responses to viral 

pathogens occurring following kidney transplantation. It has been shown that pDCs treated 

with conditioned media isolated from CMV-infected human kidney proximal tubular 

epithelial cells exhibit phagocytic activity and can increase CD4+ and CD8+ T cell 

proliferation and cytokine production and thus, may contribute to kidney transplant rejection 

(Ruben et al. 2018). Tolerogenic effects of pDCs in transplantation are not confined to solid 

tissues. In fact, it has been shown that in patients undergoing HLA-matched hematopoietic 

stem cell transplant due to hematologic malignancies, higher graft pDC count is associated 

with increased risk of relapse and poor overall survival, persumably due to attenuation of 

graft-versus-leukemia effect (Rajasekar et al. 2010).

In summary, pDCs mediate the induction of tolerance to grafts and promote reestablishment 

of homesotasis in the transplanted tissue via generation of Tregs, induction of anergy, and 

production of anti-inflammatory cytokines, as well as by controling opportunistic infections. 

Consideirng that corneal trasnplntation is the most common solid tissue transplant with a 

high rate of rejection in high-risk individuals, it is thus necessesary to study the impact of 

pDCs in corneal transplntation and to assess if tolerogenic properties of pDCs can be 

utilized to improve transplantation outcomes. In the follwing section, we summarize our 

current knowledge on the significance of pDCs in corneal transplantation.

4.4.1.2. Corneal Transplantation: The role of resident professional APCs, such as cDCs 

in eliciting immune responses to corneal allografts is well documented (Hori et al. 2019). 

Immature APCs take up corneal alloantigens following transplantation and undergo 

maturation via upregulation of MHC-II and co-stimulatory molecules. They process the 

antigens and transfer them to the dLNs, where they prime naïve T cells to effector CD4+ 

IFN-γ+ Th1 cells. The effector Th1 cells then infiltrate the cornea, inducing immune 

rejection of the graft (Qazi et al. 2013, Amouzegar et al. 2016, Hori et al. 2019).

The role of pDCs in corneal transplantation is less studied compared to other solid organ 

transplants. In a recent study, Tahvildari et al. have shown that depletion of pDCs in 

recipient mice enhances graft opacity and infiltration of both innate and adaptive immune 

cells, in particular, CD68+ macrophages and CD3+ CD4+ T cells (Tahvildari et al. 2017) 

(manuscript under preparation). Moreover, using ELISPOT assay, it has been reported that in 

pDC-depleted recipients, IFN-γ+ T cells are increased in both direct and indirect 

allosensitization compared to controls. They further showed that pDC depletion prior to 

corneal transplantation is accompanied by increased frequencies of CD4+ IFN-γ+ Th1 cells 

and CD4+ IL-17+ Th17 cells, as well as decreased expression of CD25 among Tregs in the 

dLNs, leading to acceleration of immune rejection in pDC-depleted mice (Tahvildari et al. 
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2017) (manuscript under preparation). Fig. 7 illustrates the role of pDCs in corneal 

transplantation.

Although current evidence suggests a critical role for pDCs in induction of tolerance to 

allogeneic transplants via suppressing the generation of effector T cells in the dLNs, several 

questions remain unanswered. For instance, it is not clear if pDCs mediate Treg induction in 

corneal transplantation or if they may affect several aspects of Treg biology, such as their 

survival, T suppressor activity, or fate. Furthermore, the molecular mechanism and signaling 

pathways through which pDCs exert their allosuppressive effects on subpopulations of T 

cells is not yet clear. Further studies may also unravel if tolerogenic properties of pDCs can 

be employed to induce specific tolerance of anergy in high-risk corneal transplantations and 

thus promote graft survival.

4.4.2. Allergic Diseases

4.4.2.1. Non-ocular Allergic Diseases: In this section, we will review our current 

understanding on the role of pDCs in the induction of tolerance to allergens, mainly to oral 

and airway allergens, and subsequently discuss potential contribution of pDCs to ocular 

allergies. Oral tolerance is the phenomenon by which tolerance is induced through the oral 

administration of antigens. This phenomenon has important implications for conditions such 

as allergy and asthma, and may, perhaps, be utilized in the future to promote tolerance in the 

context of autoimmunity (Weiner et al. 2011). While the role of Tregs in this context has 

received much attention, there are several studies that underscore the importance of pDCs in 

oral tolerance. Studies on mucosal-associated DCs revealed that CD8α+ DCs are promoters 

of Treg suppressive abilities. Further phenotypic characterization of these CD8α+ DCs 

indicated that both pDCs and cDCs are present in this population (Bilsborough et al. 2003, 

Fleeton et al. 2004). A series of in vitro proliferation assays indicated that CD8α+ pDCs are 

less capable of supporting T cell proliferation, and in fact, favor T cell suppression, even 

after maturation by exposure to CpG oligonucleotides (Bilsborough et al. 2003).

Additional reports have demonstrated that pDCs have an indispensable role in the induction 

of oral tolerance, as depletion of pDCs prevented tolerance. These reports investigated the 

contribution of liver-derived DCs to oral tolerance, and noted that the majority (60–80%) of 

liver-derived CD11c+ CD11bneg NK1.1neg cells are pDCs (Goubier et al. 2008). As 

indicated by adoptive transfer and pDC depletion experiments, pDCs are able to limit the 

response of CD4+ and CD8+ T cells in response to oral challenge with 2,4-dinitro-1-

fluorobenzene or ovalbumin. This effect is mediated by the ability of pDCs to induce anergy 

or deletion of CD4+ and CD8+ T cells in an antigen-specific manner (Goubier et al. 2008). 

The role of pDCs in tolerance induction is further confirmed by investigating the 

contribution of oral mucosa associated DCs. It is found that oral DC subsets, both cDCs and 

pDCs, are capable of promoting tolerance and are prone to polarizing naïve T cells towards 

Th1 or Treg phenotypes, in contrast to their splenic counterparts (Mascarell et al. 2008). 

Additional studies have led to the proposal of a two-step model for the induction of oral 

tolerance. In this first step, antigen-specific T cells are deleted or rendered anergic by pDCs, 

while simultaneously, pDCs promote the suppressive functions of Tregs. In the second stage, 

Jamali et al. Page 33

Prog Retin Eye Res. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



residual antigen-specific T cells are suppressed by Tregs upon antigen re-exposure, resulting 

in tolerance (Dubois et al. 2009).

Oral administration of probiotic Lactobacillus gasseri OLL2809, which induces oral 

tolerance, is accompanied by enhancing the ratio of pDCs as compared with cDCs in the 

lamina propria in the small intestine (Aoki-Yoshida et al. 2016). Moreover, it has been 

demonstrated that mesenteric LN-derived pDCs are potent inducers of CD4+ Foxp3+ Tregs, 

and neither inhibition of indoleamine 2,3-dioxygenase (IDO) nor blockade of B7 family 

members of co-stimulatory molecules can prevent generation of antigen-specific Tregs by 

pDCs in vitro (Uto et al. 2018). Rather, autocrine secretion of TGF-β mediates generation of 

such antigen-specific Tregs (Uto et al. 2018). In line with these in vitro findings, pDC-

depleted mice fail to generate sufficient Tregs in the mesenteric LNs and fail to demonstrate 

protective tolerance to the antigen following feeding with OVA (Uto et al. 2018).

Findings from pre-clinical models have begun to be confirmed in humans (Hoffmann et al. 
2006, Palomares et al. 2012). One such study investigated a variety of clinical parameters 

and white blood cell counts in a group of patients allergic to wheat. After the initial 

challenge with flour, there was reduced clinical response to the allergen upon subsequent 

challenge. This was associated with reduced numbers of circulating pDCs and Tregs, as well 

as reduced expression of MHC on DCs. This suggests that pDCs and Tregs are recruited to 

the site of challenge and promote a tolerogenic response (Hoffmann et al. 2006). Another 

report utilized the tonsils as a source of pDCs and tonsillar Tregs and peripheral blood as a 

source of naïve T cells from atopic and non-atopic individuals. Co-culture experiments 

revealed that pDCs are capable of inducing Foxp3+ Tregs. Additionally, it was found that 

pDCs are decreased in atopic individuals compared to non-atopic individuals (Palomares et 
al. 2012).

Thus, in the context of oral tolerance, pDCs clearly have a central role. The studies 

described above also highlight that in each of the studied areas, pDCs have similar roles for 

the elimination of antigen-specific T cells and promoting the suppressive abilities of Tregs. 

These effects have proven to be relevant in animal models of allergy and atopy, and there are 

correlations between pDCs and Tregs in non-atopic humans, which is lost in atopic 

individuals. Altogether these findings suggest that pDCs represent a promising therapeutic 

target or, perhaps, cell-based therapy for the treatment of allergy and atopy. There is 

additional potential for utilizing pDC-driven oral tolerance to treat autoimmune diseases, 

however, this area requires further investigation.

Similar to oral tolerance, it is shown that pDCs promote tolerance to common allergens. In 

this regard, it has been shown that compared with control mice subjected to repeated 

exposure to ovalbumin aerosols, initial intratracheal administration of ovalbumin suppresses 

the airway inflammation, suggesting induction classic immunologic tolerance. However, 

only in mice undergoing depletion of resident pDCs in the lung, challenging mice with 

ovalbumin aerosols following initial intratracheal immunization, leads to eosinophilic 

infiltration around vessels and bronchi, goblet cell hyperplasia, and detection of ovalbumin-

specific IgE in the serum, characteristic of asthma (de Heer et al. 2004). pDCs capture 

intratracheally administrated ovalbumin and migrate to dLNs, where among ovalbumin+ 
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cells, pDCs tend to be more frequently ovalbumin+. In stark contrast with cDCs, pDCs are 

not capable to induce ovalbumin-specific T cell proliferation and fail to secret higher 

amounts of pro-inflammatory cytokines following co-culture with T cells. In fact, pDCs 

induce differentiation of Tregs with suppressing effects on antigen-specific T cell 

proliferation. Adoptive transfer of pDCs pulsed with ovalbumin prior to sensitizing mice 

with intraperitoneal injection of alum- ovalbumin and subsequent challenge with ovalbumin 

aerosols significantly inhibits inflammation in the airways and T cell cytokine production. 

Thus, pDCs are vital for inducing tolerance to allergens and preserving tolerance to inert 

antigens (de Heer et al. 2004).

4.4.2.2. Ocular Allergic Diseases: In ocular allergies, in an early study summarized 

above, it was shown that pDCs, which were rarely observed in the conjunctiva during steady 

state, tended to significantly increase in this tissue following allergen challenge, reaching 

higher numbers than cDCs (Ohbayashi et al. 2007). However, the significance of these cells 

in the pathogenesis of allergic conjunctivitis warrants further investigation. In light of the 

essential role of pDCs in maintaining and inducing tolerance to oral antigens, as well as the 

pivotal role of pDCs in preventing allergic reactions in the respiratory system, as reviewed 

above, it might be postulated that pDCs promote tolerance to allergens on the ocular surface 

and thus diminish disease severity in individuals with allergic conjunctivitis.

Further studies on humans and murine models of allergic conjunctivitis may evaluate if the 

phenotype of pDCs and their tolerogenic properties are altered in allergic conjunctivitis and 

if so how such alterations can be reverted to promote tolerance and decrease severity of the 

disease. Further, it is intriguing to study if pDCs can be employed to induce tolerance to 

allergens after induction of immune response due to prior exposure to allergens and thus can 

be used to desensitize individuals to specific allergens and thus treat allergic conjunctivitis.

4.4.3. Tumors—Within the tumor microenvironment, pDCs have been found to infiltrate 

primary and metastatic tumors, as well as peri-tumoral tissues in multiple malignancies, 

including breast, ovarian, head and neck, gastric, liver, lung cancers, malignant melanomas, 

and lymphomas (Facchetti et al. 1989, Hartmann et al. 2003, Vermi et al. 2003, Kutzner et 
al. 2009, Conrad et al. 2012, Faget et al. 2012, Sawant et al. 2012, Aspord et al. 2013, Huang 

et al. 2014, Pedroza-Gonzalez et al. 2015, Sorrentino et al. 2015). Considering the well-

known anti-tumor effects of IFN-α, studies aimed to evaluate if pDCs promote anti-tumoral 

immune responses through their secretion of IFN-α. However, tumor-associated pDCs fail to 

effectively produce type I IFNs (Zou et al. 2001, Hartmann et al. 2003, Labidi-Galy et al. 
2011, Sisirak et al. 2012, Le Mercier et al. 2013, Dey et al. 2015, Terra et al. 2018), at least 

in part, due to secretion of immunomodulatory molecules by tumor cells, such as IL-10 and 

TGF-β (Bekeredjian-Ding et al. 2009, Sisirak et al. 2013, Bruchhage et al. 2018).

Although tumor-associated pDCs have a limited IFN-a production capacity, they do promote 

tolerance by suppressing T cell proliferation, cytotoxic activity, and IFN-γ secretion in vitro 
(Wei et al. 2005). Further, based on depletion studies, pDCs promote IL-10 secretion by 

CD4+ T cells (Dey et al. 2015) and favor the accumulation of myeloid-derived suppressor 

cells in tumors (Sawant et al. 2012). In addition, pDC depletion leads to decreased density of 

Tregs in the tumor and metastases, as well as attenuated suppressive capacity of existing 
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Tregs, suggesting a central role of pDCs in promoting Tregs (Sawant et al. 2012, Dey et al. 
2015). Furthermore, pDCs isolated from tumor-draining LNs are shown to express IDO, and 

can activate suppressor activity of resting Tregs on CD4+ and CD8+ T cells in an IDO-

dependent manner (Sharma et al. 2007). In addition to promoting Tregs, pDCs express PD-

L1, which via interacting with PD-1 on T cells, limits proliferation and cytotoxic activity of 

both CD4+ and CD8+ T cells, as well as the cytolytic activity of NK cells (Ray et al. 2015). 

Expression of Granzyme B by pDCs can also regulate T cells, as secreted Granzyme B can 

inhibit CD4+ T cell expansion (Jahrsdorfer et al. 2010). Similarly, tumor-associated pDCs 

express ICOS ligand (ICOS-L), which is necessary for survival and proliferation of ICOS+ 

Tregs (Conrad et al. 2012, Faget et al. 2012). Further, via ICOS/ICOS-L signaling, 

stimulation of pDCs with tumor lysate induces CD4+ Foxp3neg IL-10+ Tregs from naïve 

CD4+ T cells, which exhibit potent suppressive effects on T cell expansion (Pedroza-

Gonzalez et al. 2015).

Although pDCs generally provide a tolerogenic microenvironment for tumors, upon 

stimulation, they are able alter these tolerogenic properties. For instance, stimulation of 

naïve pDCs through TLR-7 or TLR-9 enhances immune responses to tumors by multiple 

mechanisms: (1) enhancing direct cytotoxic activity of pDCs via enhancing their expression 

of Granzyme B and TRAIL (Drobits et al. 2012, Kalb et al. 2012, Wu et al. 2017); (2) 

stimulating expression of TRAIL, CD69, and IFN-γ by NK cells (Lelaidier et al. 2015), (3) 

cross priming and activating CD8+ T cells and Th17 T cells (Lou et al. 2007, Liu et al. 2008, 

Guery et al. 2014), and (4) augmenting infiltration of NK cells and CD8+ T cells in tumors 

(Liu et al. 2008, Le Mercier et al. 2013, Guery et al. 2014, Wu et al. 2017). Thus, stimulation 

of pDCs may alter intrinsic pDC functions and deserve further studies as a therapeutic 

strategy.

In summary, pDCs generally favor immune irresponsiveness to tumors via directly inhibiting 

T cells and NK cells or through promotion of Tregs. Nevertheless, pDCs may also affect 

other aspects of tumor biology, including direct effects on tumor cell proliferation, secretary 

functions, migration, invasion, metastasis as well as metabolism and angiogenesis in tumors, 

all of which warrant further studies. In ocular tissues, it is important to assess if pDCs play a 

similar tolerogenic role through directing suppressive immune responses for ocular 

neoplasia, such as in choroidal or conjunctival melanomas.

4.5. Plasmacytoid Dendritic Cell Function in Graft-Versus-Host Disease

Whereas transplant rejection occurs due to a host-mediated immune response, graft-versus-

host disease (GVHD) reflects the opposite scenario, in which donor T cells primed by either 

donor or host APCs induce an immune response against the host. GVHD affects many 

organs. In particular, it may involve ocular tissues. Among ocular manifestations, DED is the 

most common presentation of ocular GVHD following HSCT (Munir et al. 2017). Our 

knowledge on the significance of pDCs in pathogenesis of ocular involvement of GVHD is 

limited and therefore, warrants detailed studies. However, we herein discuss our 

understanding on the role of pDCs in this disease.

In one of the early studies addressing the role of pDCs in GVHD, peripheral blood samples 

from individuals that had undergone hematopoietic stem cell transplantation (HSCT) were 
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acquired and their immune cell subsets were profiled (Clark et al. 2003). This study found 

that pDC density in the peripheral blood of individuals with chronic GVHD are higher 

compared to control individuals who had undergone HSCT but did not develop GVHD 

(Clark et al. 2003). However, this difference is not due to an increase in pDCs in the GVHD 

group, rather it is due to decreased pDCs in control HSCT group without GVHD, since in 

the GVHD group, density of pDC in peripheral blood were comparable to healthy volunteers 

(Clark et al. 2003). In a murine model of GVHD, investigators irradiated MHC-II-deficient 

mice and reconstituted the APC populations (either pDCs, cDCs, or B cells), followed by T 

cells, showing that pDCs are capable of priming alloreactive T cells to induce GVHD 

(Koyama et al. 2009). A caveat to this study however, is that this is an artificial model, and it 

is unclear if pDCs would have the same effect following reconstitution with all APC 

populations. An additional study revealed that depletion of host-derived cDCs, pDCs, or B 

cells was insufficient to prevent the onset of GVHD (Li et al. 2012).

While it may be tempting to speculate that pDCs may thus be pathogenic, the possibility that 

pDC may promote tolerance cannot be excluded. In fact, there is a growing body of direct 

evidence that pDCs are protective in GVHD. One such study utilized a murine model of 

GVHD, where irradiated mice were reconstituted with STAT1−/− bone marrow, resulting in 

expanded pDC and Treg populations and GVHD resistance. Additionally, depletion of pDCs 

after reconstitution with STAT1−/− bone marrow reversed this effect (Capitini et al. 2014). 

Further, CCR9+ pDCs, which constitute the majority of pDCs in the dLNs, have potent 

tolerogenic capabilities, as they can effectively induce Tregs, which in turn inhibit CD4+ T 

cell proliferation considerably (Hadeiba et al. 2008). In addition, adoptive transfer of 

allogeneic CCR9+ pDCs is protective in GVHD, as it leads to decreased priming of naïve 

donor T cells towards IFN-γ+ Th1 and Th17 effector T cells in the dLNs and spleen, as well 

as to an enhanced density of CD25+ Foxp3+ Tregs in the dLN, with beneficial effects on 

animal survival (Hadeiba et al. 2008). In a large clinical study, multivariable analysis 

indicated that after adjustment for several factors, recipients of higher number of bone 

marrow pDCs showed improved 3-year survival, fewer deaths due to GVHD as well as 

rejection (Waller et al. 2014). Interestingly, the study did not observe a similar protective 

role for higher number of pDCs in grafts in individuals receiving granulocyte colony 

stimulating factor-mobilized peripheral blood HSCT. In follow-up studies, in a murine 

model of lethal GVHD, it was then confirmed that transplantation of bone marrow pDCs 

considerably improved survival, potentially due to secretion of IL-12, a capacity which was 

limited in pDCs isolated from the spleen following treatment with granulocyte colony 

stimulating factor (Hassan et al. 2017). In addition to potential differences in the IL-12 

secretion capacity, other differences between bone marrow and mobilized peripheral blood 

pDCs may underlie this observation. For instance, bone marrow pDCs may contain higher 

numbers of less mature precursor pDCs with distinct antigen presentation capacity or 

chemokine receptor repertoire. In this regard, it has been shown that mobilized peripheral 

blood pDCs expressed higher levels of CCR7, lymph node homing receptor for pDCs, but 

lower levels of L-selectin (CD62L), CXCR3, and CCR9, which may facilitate homing of 

pDCs to inflamed tissues (Hosoba et al. 2014). Further studies have shown that an increase 

in pDC density in donor bone marrow has a protective effect by limiting GVHD (Hassan et 
al. 2019). In this regard, it has been shown that expansion of the pDCs in vivo by treating 
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donor mice with FLT3-L, prior to reconstitution of irradiated recipient mice, leads to 

improved engraftment and protection from GVHD (Hassan et al. 2019). As such, increasing 

pDC numbers prior to bone marrow reconstitution may improve patient outcomes through 

their tolerogenic nature and capacity to induce Tregs. As expansion of pDCs in the prior 

study was done in vivo, it is interesting to study if ex vivo treatment of donor bone marrow 

cells with FLT3-L may yield a similar effect, or alternatively, supplementing the treatment 

regimen in recipients of HSCT with FLT3-L may promote engraftment.

In summary, pDCs are considered multifaceted cells of the innate immune system with 

diverse immune functions (Swiecki et al. 2015). While they were originally appreciated for 

their potent capacity in producing type I IFNs, our current knowledge suggests they are 

crucial implementer of tolerance and ameliorate inflammation.

4.6. Role of Plasmacytoid Dendritic Cells in Neuroprotection

The cornea is the most densely innervated tissue in the body, with approximately 300–600 

times higher nerve density compared to the skin (Rozsa et al. 1982). Corneal nerves are in 

majority sensory, and arise from the ophthalmic branch of trigeminal nerves. Anatomically, 

they can be can be observed as the subbasal nerve plexus, the most densely innervated 

region of the cornea, which runs parallel to the superficial corneal surface between the 

Bowman’s layer and the basal epithelium and the stromal plexus, which consists of thicker 

nerve fiber bundles in the corneal stroma (Millodot 1984, Marfurt et al. 1993, Muller et al. 
1996, Muller et al. 1997, Al-Aqaba et al. 2010, Marfurt et al. 2010, Belmonte et al. 2017, 

Cruzat et al. 2017). In addition to their vital role in initialing the corneal blink reflex and 

stimulating tear production, recent studies suggest that they play a crucial role in the 

development of multiple ocular surface diseases, including DED and neurotrophic 

keratopathy (Bonini et al. 2003, Dastjerdi et al. 2009, Hamrah et al. 2010, Hamrah et al. 
2013, Hamrah et al. 2016, Mo et al. 2017, Neelam et al. 2018, Al-Aqaba et al. 2019, McKay 

et al. 2019). Constant exposure of the cornea to the external environment in the form of 

chemical irritants and pathogens, poses hazards to this intricate innervation. Further, similar 

to other peripheral nerves, corneal nerves need constant trophic support, such as members of 

neurotrophins family including NGF, BDNF, NT-3, NT-4/5 as well non-neurotrophin growth 

factors such as GDNF, neurturin, artemin, persephin, PEDF, NPFF and neuropoetic 

cytokines for their maintenance, proper function, or regeneration following injury (Daniele 

et al. 1992, Lambiase et al. 1998, Bonini et al. 2000, Kerschensteiner et al. 2003, Reichard et 
al. 2014, Dai et al. 2015, He et al. 2015, Razavi et al. 2015, Zhou et al. 2015). However, it is 

known that inflammatory conditions, as well as common surgical interventions such as 

cataract surgery, keratorefractive surgeries or keratoplasties, can result in at least partial 

corneal denervation (Wilson et al. 2001, Savini et al. 2004, Hamrah et al. 2010, Cruzat et al. 
2011, Kurbanyan et al. 2012, Hamrah et al. 2013). Despite these insults, corneal nerves have 

a marked capacity for regeneration (Muller et al. 2015). Peripheral nerves are dependent on 

cues and survival signals from the tissues, which they innervate. Within the cornea, it 

remains to be determined which cell type(s) are responsible for this signaling. However, 

considering the well-studied roles for immune cells in wound healing and tissue repair/

remodeling, exploring a potential contribution of immune cells in providing trophic support 

for corneal nerve is warranted. Early evidence on the potential communication of corneal 
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nerves and pDCs stems from confocal microscopy of whole-mounted cornea labeled for 

βIII-tubulin (pan-neuronal marker), CD45, and PDCA-1 for visualizing corneal nerves (βIII-

tubulin+) and pDCs (CD45+ PDCA-1+ cells). As demonstrated in Supplementary Video 2, 

confocal micrographs reveal that corneal pDCs are present within the anterior stroma, in 

close association with the corneal nerves, suggesting that pDCs may contribute to neuro-

immune crosstalk (Zheng et al. 2010) (manuscript under review).

Recently, the significance of resident corneal pDCs in homeostasis of corneal nerves has 

been investigated. It has been reported that depletion of corneal pDCs in naïve BDCA-2-

DTR mice leads to an abrupt and robust degeneration of the corneal nerves, evident as early 

as one day following pDC depletion, and continues to progress while pDCs remain depleted, 

as determined by confocal microscopy on corneal whole-mounts stained with βIII-tubulin. 

Further, depletion of corneal pDCs is accompanied by reduced corneal sensitivity. These 

observations suggest that pDCs are indeed crucial for the maintenance and health of corneal 

nerves in vivo (Jamali et al. 2015). Analysis of TG neurons following corneal pDC 

depletion, has indicated an upregulation of several neurodegenerative markers, including tau 

and calpain-1, suggesting that depletion of pDCs and the ensuing nerve loss is at least in part 

mediated by tau oligomer neurotoxicity and subsequent calpain activation (Kenyon et al. 
2019). More interestingly, pDCs can induce nerve regeneration as their repopulation, 

following initial depletion, is accompanied by nerve regeneration (Jamali et al. 2015). Direct 

neurotrophic properties of pDCs are shown in co-culture of TG neurons with freshly isolated 

splenic pDCs, which exhibited longer neurite outgrowth and expression of higher levels of 

neuroregenerative markers compared with TG neuron monocultures (Jamali et al. 2015). 

Further, pDCs exert their in vitro neurotrophic molecules through secretion of nerve growth 

factor (NGF; manuscript under preparation). Fig. 8 demonstrates the neuroprotective role of 

corneal pDCs.

Interestingly, the role of corneal cDCs in diabetes, as a neurotrophic corneal condition, has 

recently been investigated. It is shown that in diabetic mice, cornea encompasses less nerves 

and also hosts fewer cDCs. Further, it was reported that depletion of cDCs in CD11c-DTR-

GFP mice, delays corneal nerve regeneration following nerve injury, which can be rescued 

by exogenous administration of CNTF, suggesting that cDCs may facilitate corneal nerve 

regeneration after wounding through secretion of neurotrophic molecule CNTF (Gao et al. 
2016). Nevertheless, in contrast to pDCs, depletion of cDCs has not been reported to lead to 

corneal nerve degeneration during steady state.

Despite the reported neurotrophic properties of corneal pDCs, as a novel function of pDCs, 

our understating is limited as to whether resident pDCs in other ocular tissues or other body 

sites may also display neurotrophic properties. Further, it would be important to assess how 

pDCs are attracted towards the subbasal nerves in the cornea and how production of NGF in 

pDCs is regulated in this tissue. Also, considering the widely acknowledged trophic effects 

of the corneal nerves for epithelium, studies on role of pDCs on epithelial integrity may be 

important, as persistent epithelial defects, which may in turn facilitate access of pathogens, 

predisposes the cornea to infectious keratitis.
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4.7. Role of Plasmacytoid Dendritic Cells in Vasculature Integrity and Angiogenic 
Privilege

Significant role of infiltrating innate immune cells, in particular macrophages and cDCs, in 

promoting neovascularization has been appreciated for decades (Ribatti et al. 2009, Bruno et 
al. 2014). As mentioned above and illustrated in Fig. 4B, in our initial observations on the 

presence of pDCs in the conjunctiva and limbus, we reported that pDCs in a transgenic 

DPE-GFP×RAG1−/− mice with GFP-tagged pDCs (Iparraguirre et al. 2008) accompany 

limbal blood vessels at a high density compared to their densities in the conjunctiva and 

cornea (Jamali et al. 2020). Intravital multiphoton microscopy of GFP-tagged pDCs in the 

limbal region of the cornea demonstrates that during steady state (Supplementary Video 1) 

(Jamali et al. 2020) and in suture-induced neovascularized corneas, pDCs engulf limbal 

vessels (Supplementary Video 3). More detailed assessment of the pDCs shows that these 

cells are not statically residing by limbal vessels, rather they actively interact with the 

vasculature, for instance by extending their stellates around the newly-formed vessels 

(Supplementary Video 3; magnified region of interest in Supplementary Video 4). In 

addition to pDCs accompanying vessels, a fraction of pDCs also dynamically patrol 

intravascular spaces (Supplementary Video 5). Thus, collectively, our observations further 

suggest that pDCs may play a role regulating vasculature, in particular during dynamic 

process of inflammatory neovascularization, leading us to explore the hypothesis that pDCs, 

as another innate immune cell population, may also play a role angiogenesis.

In order to explore the potential role of pDCs in regulating neovascularization, we depleted 

pDCs locally in the cornea in transgenic BDCA-2-DTR mice. We reported that depletion of 

pDCs during steady state is accompanied by breakdown of angiogenic privilege (Jamali et 
al. 2016). Similarly, local depletion of pDCs, enhanced corneal neovascularization following 

suture placement (Jamali et al. 2016). Upon dissecting the molecular mechanisms through 

which pDCs may contribute to corneal angiogenic privilege and prevent corneal 

neovascularization induced by suture placement, it has been reported that pDCs secret a 

wide range of anti-angiogenic (angiostatic) molecules, including endostatin, 

thrombospondin (TSP)-1, platelet factor (PF)-4/CXCL4, and tissue inhibitor of 

metalloproteinase (TIMP)-3, and can thus inhibit endothelial cell proliferation in vitro 
(Jamali et al. 2016, Harris et al. 2018, Harris et al. 2019). Fig. 9 illustrates the significant 

role of pDCs in corneal angiogenic privilege.

4.8. Therapeutic Potential of Plasmacytoid Dendritic Cells

Considering the tolerogenic, anti-inflammatory, anti-angiogenic, and neuroprotective 

properties of pDCs, it is worthwhile to assess their potential in treating various ocular 

conditions in which inflammation, neovascularization, or nerve degeneration play key roles 

in their pathogenesis. These conditions may range from neovascular ocular diseases, 

including age-related macular degeneration, retinopathy of prematurity, diabetic retinopathy, 

corneal traumas, to inflammatory diseases such as microbial keratitis, uveitis, and 

endophthalmitis, and neurodegenerative conditions such as neurotrophic keratopathy. 

Potential therapeutic use of pDCs can be examined via different approaches, including 

systemic or local adoptive transfer of syngeneic naïve or ex vivo-stimulated pDCs, or 

administration of their rich culture supernatant. In this regard, the potential efficacy of local 
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adoptive transfer of naïve pDCs isolated from murine spleen in enhancing corneal nerve 

regeneration following nerve damage has been assessed, as has been their efficacy in 

preventing corneal neovascularization, and treating acute HSV-1 keratitis (Jamali et al. 2017, 

Sendra et al. 2017, Jamali et al. 2019).

In this regard, a technique for transferring small number of pDCs locally to the cornea has 

been recently proposed (manuscript under review). In this method, following isolating pDCs 

from spleen or bone marrow of mice, the central cornea epithelium is mechanically removed 

via an Algerbrush and pDCs are locally transferred to the cornea using a fibrin sealant. As 

depicted in Fig. 10, transferred pDCs can be detected in the cornea following the procedure, 

indicating feasibility of the procedure in transferring pDCs. To assess the significance of 

local adoptive transfer of pDCs in enhancing nerve regeneration, paracentral/central corneal 

nerves were severed by using a trephine and following debridement of central cornea, pDCs 

were adoptively transferred locally to the cornea using fibrin sealant. Local adoptive transfer 

of pDCs enhances NGF levels and corneal nerve regeneration compared with application of 

fibrin sealant without cells or adoptive transfer of CD11b+ myeloid cells (mainly containing 

cDCs and macrophages) control groups (Jamali et al. 2017). Similarly, adoptive transfer of 

splenic pDCs diminishes corneal neovascularization induced by suture placement compared 

with application of fibrin sealant without cells or adoptive transfer of CD11b+ myeloid cells 

(Jamali et al. 2019). Moreover, pre-loading the cornea with pDCs locally 24 h prior to 

inoculation of HSV-1, is accompanied by less corneal opacity and viral load by enhancing 

the levels of anti-viral IFN-α and anti-inflammatory TGF-β (Sendra et al. 2017). 

Collectively, these observations suggest that local adoptive transfer of pDCs can suppress 

sterile and infectious corneal diseases.

Although trials in therapeutic application of pDCs to prevent corneal neovascularization and 

enhance corneal nerve regeneration in mice are promising, several concerns need to be 

considered in future studies. First, in these studies, the corneal epithelium was mechanically 

removed to facilitate migration of pDCs into the corneal stroma. Considering that mice do 

not have a Bowman’s layer, feasibility of locally transferring pDCs to the cornea might be 

more challenging for humans with thicker corneal epithelium and the presence of a 

protective Bowman’s layer as barriers. Similarly, feasibility of systemic or local adoptive 

transfer of pDCs to choroid and retina needs to be elucidated. More importantly, potential 

long-term side effects of systemic and local adoptive transfer of pDCs need to be carefully 

examined. While pDCs may show initial protective effects, considering their marked 

plasticity, it is not yet clear if adoptively transferred pDCs may alter their properties in the 

inflammatory microenvironment they are introduced to. This concern warrants further 

attention in the light of studies which show bone marrow pDCs may give rise to cDCs with 

pro-inflammatory properties during inflammation (Zuniga et al. 2004, Liou et al. 2008). 

Nevertheless, using blood or splenic pDCs that are shown to have less plastic capacity 

(Zuniga et al. 2004) may dampen this shortcoming. On the flip side, considering the 

tolerogenic property of pDCs, adoptively transferred pDCs may interfere with immune 

surveillance against tumors, facilitating development of primary tumors in ocular tissues or 

elsewhere, progression of cancers in remission, or development of secondary tumors.
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5. Future Directions

5.1. Life Cycle of Plasmacytoid Dendritic Cells

Life cycle and longevity of pDCs is an aspect of their biology, which deserves detailed 

exploration, in particular in peripheral tissues during steady state. While our current 

knowledge suggests that pDCs leave the bone marrow following terminal development, they 

may alter their phenotype and may convert to cDCs under certain conditions in vitro and in 
vivo (Grouard et al. 1997, O’Keeffe et al. 2003, Zuniga et al. 2004, Liou et al. 2008). It is 

worthwhile to dissect the molecular signaling that derives such conversion and also it is 

interesting to evaluate if other immune cells, such as their closet counterparts, cDCs, may 

convert to pDCs during the steady state or following inflammatory stimuli such as viral 

challenges. Based on our current understandings, pDCs in secondary lymphoid tissues, such 

as in the spleen, have been shown to be long-lived, with low proliferative capacity judged by 

lower expression of proliferative marker, Ki-67 as well as BrdU incorporation, compared 

with cDCs (O’Keeffe et al. 2002, Liu et al. 2007). Further, it has been shown that upon 

irradiating one of the parabiont pairs, pDCs in the secondary lymphoid tissues are 

replenished from the other parabiont partner, suggesting contribution of blood-derived pDCs 

or pDC precursors in repopulating the pool of pDCs in the secondary lymphoid organs (Liu 

et al. 2007). Nevertheless, it needs to be elucidated if pDCs in peripheral tissues such as 

lung, kidney, and ocular tissues also follow a similar pattern. Further, our knowledge is 

limited about the longevity of the resident pDCs in the ocular tissues and if they repopulate 

these tissues from blood pool, in situ proliferation, or potential precursors residing in these 

tissues.

5.2. Molecular Regulation of Plasmacytoid Dendritic Cell Function

Considering that production of type I IFNs has been the major focus of the studies on pDCs 

for several decades, it is not surprising that our knowledge on regulation of pDC functions 

has been predisposed to unravel how pDCs receive danger signal to produce type I IFNs in 

various viral and bacterial infections, how their IFN production machinery is assembled, and 

how IFN secretion is mediated. Considering the clinical importance of various viral, 

bacterial, and parasitic infections of the conjunctiva, cornea, and retina and feasibility of 

clinical and pathological examinations on these tissues, future studies can use these ocular 

tissues to assess the molecular mechanisms through which pDCs are activated upon 

exposure to pathogens. Nevertheless, considering the recently explored versatile immune 

and non-immune functions of pDCs such as promoting Tregs, neuroprotection, and anti-

angiogenic properties, it is of particular interest to evaluate how these functions are regulated 

and if such regulation is dependent or independent of pathways that mediate IFN production 

in pDCs.

One approach to explore potential molecules that may regulate pDCs relies on identifying 

cell surface and intracellular receptors that are expressed by pDCs. In this regard, one set of 

candidates are currently known pDC markers which are coupled with intracellular signaling 

molecules, such as Ly6C and Siglec-H in mice and BDCA-2 and ILT-7 in humans. Another 

set of candidates include receptors, which are expressed by other immune cells, in particular 

by innate immune cells more close to pDCs, such as their classical counterpart, cDCs and 
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macrophages. In this regard, purinergic receptors might be of particular interest. To date, 

four receptors have been reported which bind to ATP and its derivatives with varying 

specificities and affinities and all have been widely studied on other immune cells. ATP is 

typically found at negligible concentrations within the extracellular space, however, upon 

cellular injury, ATP or its related catabolites leaks out into the extracellular milieu (Van 

Belle et al. 1987, Pedata et al. 2001). This serves as a potent danger signal that attracts and 

activates immune cells. Similar to immune cells, purinergic signaling within the central 

nervous system leads to activation and migration of microglia and promotes the release of 

neurotrophic factors from microglia and astrocytes. Interestingly, it is shown that freshly 

isolated peripheral blood pDCs express adenosine receptor A1 and upon ex vivo stimulation, 

these cells downregulate adenosine receptor A1 and instead express adenosine receptor A2a 

(Schnurr et al. 2004). Further, it has been shown that adenosine receptor A1 and A2a may 

differentially regulate pDCs, since stimulation of adenosine receptor A1 in freshly 

stimulated pDCs serves as a potent pDC chemoattractant, while signaling through adenosine 

receptor A2a in stimulated pDCs is coupled with reduced production of pro-inflammatory 

molecules IFN-α, IL-6, and IL-12 (Schnurr et al. 2004). Additionally, it has recently been 

shown that pDCs express members of ATP-gated P2X receptor cation channel family, 

namely, P2rx4 and P2rx7 and extracellular ATP signaling through P2rx7 may induce 

apoptosis in pDCs, another instance which suggests purinergic reporters may regulate pDC 

behavior (Furuta et al. 2017).

Another interesting set of receptors that may play a role in regulating pDC functions are 

receptors for neurotrophic molecules. Currently, it has been shown that pDCs express 

p75NTR, which can regulate functions of pDCs in asthma (Bandola et al. 2017). 

Interestingly, it has been shown that NGF can mediate several functions of pDCs through 

signaling through p75NTR. For instance, it was shown that NGF can increase allergen-

specific T cell proliferation and cytokine secretion in patients with asthma, delay the onset 

of autoimmune diabetes and intensified graft-versus-host disease murine models (Bandola et 
al. 2017). In this regard, it is interesting to evaluate if other functions of pDCs in mediating 

immune responses to infectious diseases, promoting of Tregs and induction of tolerance to 

oral antigens and alloantigens, neurotrophic and anti-angiogenic properties of pDCs can be 

regulated by NGF or other neurotrophic molecules via signaling through p75NTR or other 

neurotrophic factor receptors.

5.3. Cellular Regulation of Plasmacytoid Dendritic Cell Function

Considering the complexity of in vivo interactions of cells in tissues, understanding the 

cellular players that regulate diverse and sometimes opposing functions of pDCs is as crucial 

as dissecting the signaling pathways that can regulate pDCs. Potentially cells that may alter 

pDC properties might be tissue-specific and vary among different tissues. For instance, 

while in the cornea subbasal nerves, epithelium, stromal keratocytes, and corneal immune 

cells may serve as potential cellular candidates that affect pDC behavior, in the limbus, 

choroid, and retina, vascular endothelial cells may mainly regulate pDCs since pDCs reside 

in close proximity to vasculature in these tissues.
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Another important avenue is the exploration of potential crosstalk between pDCs and 

cellular members of the vascular system, such as vascular endothelial cells, pericytes, and 

vascular smooth muscle cells. As demonstrated above, pDCs in the limbus stably engulf 

vasculature and patrol intravascular spaces; it might be postulated that expression of certain 

chemokines by vasculature potently attracts pDCs and leads to special pDC-vessel 

arrangement observed in the limbus, choroid, and retina. It would be interesting to assess if 

such interactions are involved in particular pDC functions, for instance for entering blood/

lymphatic system to deliver antigen to dLNs.

In summary, pDCs are the most recently identified immune cells in ocular tissues, which in 

addition to mediating immune response to pathogens, may contribute to several aspects of 

ocular tissue homeostasis including preserving ocular immune privilege, nerve maintenance 

and function, as well as regulating the ocular vasculature. Future studies are paramount to 

evaluate their biology and their role in various ocular conditions ranging from infectious or 

non-infectious ocular diseases such as conjunctivitis, keratitis, and uveitis to vascular 

diseases such as corneal neovascularization, diabetic retinopathy, retinopathy of prematurity, 

and age-related macular degeneration.
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Highlights

• The cornea, limbus, conjunctiva, choroid, retina, and lacrimal glands are 

endowed with resident plasmacytoid dendritic cells.

• Corneal plasmacytoid dendritic cells secret type I interferons during herpes 

simplex virus-1 keratitis and limit viral propagation, dissemination to the 

corneal stroma, draining lymph nodes, and trigeminal ganglion. They also 

prevent re-programing of Tregs to effector ex-Tregs.

• Corneal plasmacytoid dendritic cells promote graft survival by inhibiting 

effector Th1 cells in the draining lymph nodes after corneal transplantation.

• Corneal plasmacytoid dendritic cells are pivotal for corneal nerve 

maintenance and function through secretion of neurotrophic molecules.

• Resident plasmacytoid dendritic cells, which accompany limbal vessels, 

produce anti-angiogenic molecules and contribute to corneal angiogenic 

privilege.
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Figure 1. Illustration of plasmacytoid dendritic cells.
(A, B) Scanning electron micrograph (A) and transmission electron micrograph (B) of 

human pDCs isolated from peripheral blood. Magnification: ×3,500 in (A) and ×8,000 in 

(B); ©1997 Grouard et al. Originally published in J Exp Med. https://doi.org/10.1084/

jem.185.6.1101. (C) Representative image of splenic pDCs in a DPE-GFP×RAG1−/− mouse 

with GFP-tagged pDCs. Scale bar: 20 μm. (D) Schematic representation of pDC markers in 

mice and humans. In humans, pDCs express the specific markers BDCA-2 and ILT-7, and 

share expression of BDCA-4, IL-3Rα, and ILT-3 with other immune cells. In mice, pDCs 

express PDCA-1, Siglec-H, CD11c, CD45R/B220, Ly6C, and Ly49Q. Both human and 

murine pDCs express intracellular receptors TLR-7 and TLR-9.
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Figure 2. Schematic diagram on development of plasmacytoid dendritic cells.
As bone marrow-derived cells, pDCs can origin from both myeloid and lymphoid 

precursors, in mice. The cellular precursors of pDCs and transaction factors involved in 

development of pDCs are shown.
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Figure 3. Schematic illustration of distribution of various resident immune cells in the ocular 
tissues.
(A) Resident immune cells are located in different parts of the ocular system. In the 

conjunctiva, cDCs, macrophages, B cell, and T cells are detected; in cornea, cDCs and 

macrophages comprise the main resident immune cells; in choroid, cDCs and macrophages 

and in retina microglia, perivascular macrophages, and cDCs are considered the main 

resident immune cells; in the lacrimal gland, cDCs, macrophages, and B cells are 

predominant resident immune cells. (B) To date, resident pDCs are reported in the central 

and peripheral cornea, limbus, bulbar conjunctiva, choroid, retina, and lacrimal gland
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Figure 4. Presence of resident plasmacytoid dendritic cells in ocular tissues.
(A) Representative confocal micrographs of the limbus of a wild-type C57BL/6 mouse 

indicting CD45+ PDCA-1neg CD11chigh cDCs (arrow heads) as well as CD45+ PDCA-1+ 

CD11clow pDCs (arrows) during steady state. Scale bar: 20 μm. (B) Representative 

reconstructed multiphoton micrograph of cornea of a transgenic DPE-GFP×RAG1−/− mouse 

with specifically GFP-tagged plasmacytoid dendritic cells (green), highlighting typical 

morphology of resident corneal plasmacytoid dendritic cells with knob-like extensions 

(arrows) as well as less common morphology of corneal plasmacytoid dendritic cells with a 

round cell body without long stellates (arrow head). Second harmonic generation (SHG; 

blue) delineates corneal stroma. Scale bar: 50 μm. (C) Representative fluorescent 

microscopy image of the limbus in a transgenic DPE-GFP×RAG1−/− mouse receiving 

intravenous injection of quantum dots (red), reveals strategic localization of plasmacytoid 

dendritic cells (green) in close proximity to vessels in the limbus. Scale bar: 200 μm. (D) 
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Representative flow cytometric dot plot on pooled conjunctiva of DPE-GFP×RAG1−/− mice 

during steady state indicating presence of CD45+ GFP+ cells among conjunctival single cells 

following gating out debris, dead cells, and debris (not shown). (E) Representative flow 

cytometric dot plots gated on live single CD45+ GFP+ cells of pooled conjunctiva of DPE-

GFP×RAG1−/− mice during steady state depicting the identity of the CD45+ GFP+ cells as 

mainly plasmacytoid dendritic cells based on expression of PDCA-1 and lack of expression 

of CD3 and CD19. (F) Representative reconstructed multiphoton micrograph of the lacrimal 

gland of a transgenic DPE-GFP×RAG1−/− mouse, illustrating presence of resident lacrimal 

gland plasmacytoid dendritic cells. Second harmonic generation (SHG; blue) delineates 

lacrimal gland stroma. Scale bar: 50 μm. (G) Representative flow cytometric dot plot on 

lacrimal gland of a DPE-GFP×RAG1−/− mouse during steady state validating the presence 

of CD45+ GFP+ cells among lacrimal gland single cells following gating out debris, dead 

cells, and debris (not shown). (H) Representative flow cytometric dot plots gated on live 

single CD45+ GFP+ cells of lacrimal gland of a DPE-GFP×RAG1−/− mouse during steady 

state. Flow plots demonstrate that the majority of the CD45+ GFP+ cells are plasmacytoid 

dendritic cells based on expression of PDCA-1, moderate to low levels of CD11c, Gr-1 as 

well as lack of expression of CD3, CD19, CD11b, and F4/80; nevertheless, a minor 

population lack expression of PDCA-1 or express F4/80, CD11b, and/or high levels of 

CD11c.
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Figure 5. Schematic illustration on the role of plasmacytoid dendritic cells during herpes simplex 
virus-1 keratitis.
During HSV-1 keratitis, local depletion of pDCs in the cornea is accompanied by increased 

infiltration of cellular members of innate and adaptive immunity, including cDCs, 

macrophages, and ex-Tregs, enhanced viral load, and reduced IFN-α level. In the draining 

lymph nodes, corneal pDC depletion leads to re-programming of Tregs to effector ex-Tregs, 

enhanced density of Th1 cells and decreased Tregs.
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Figure 6. Schematic illustration on the role of plasmacytoid dendritic cells during sterile corneal 
inflammation.
During sterile corneal inflammation induced by suture placement, local depletion of pDCs 

leads to increased accumulation of immune cells in particular cDCs and macrophages.
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Figure 7. Schematic illustration on the role of plasmacytoid dendritic cells in corneal allograft.
During allogeneic corneal transplantation, local depletion of pDCs prior to the procedure, 

enhances recruitment of innate immune cells including cDCs, macrophages, and CD4+ Th 

cells to the cornea and leads to enhanced generation of effector Th1 and Th17 and reduced 

density of Tregs in the draining lymph nodes.
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Figure 8. Schematic illustration on the role of plasmacytoid dendritic cells in homeostasis of 
corneal nerves.
Local depletion of pDCs in the cornea during steady state is accompanied by decreased 

levels of neurotrophic molecule NGF in the cornea, leading to corneal nerve degeneration, 

and compromise of epithelial integrity.
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Figure 9. Schematic illustration on the role of plasmacytoid dendritic cells in corneal angiogenic 
privilege.
While during steady state cornea enjoys angiogenic privilege, local depletion of pDCs in the 

cornea is accompanied by decreased levels of anti-angiogenic molecules, leading to break 

down of corneal angiogenic privilege.
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Figure 10. Representative confocal micrograph of whole-mounted cornea showing successful 
local adoptive transfer of plasmacytoid dendritic cells.
The figure illustrates a representative image of the paracentral cornea, 48 h following 

adoptive transfer of 10,000 GFP+ pDCs isolated from the spleen of DPE-GFP×RAG1−/− 

mouse. Scale bar: 50 μm.
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Table 1.

pDCs Markers in Humans and Mice

Marker Human Mouse

CD1a (Langerhans cell marker)

−
(Facchetti et al. 1988)
(Grouard et al. 1997)
(Olweus et al. 1997)

N/A

CD3 (T cell marker; T cell co-receptor)

−
(Muller-Hermelink et al. 1983)

(Harris et al. 1987)
(Horny et al. 1987)

(Facchetti et al. 1988)
(Grouard et al. 1997)
(Olweus et al. 1997)

(Bendriss-Vermare et al. 2001)

−
(Asselin-Paturel et al. 2003)

CD4 (T cell co-receptor)

+
(Muller-Hermelink et al. 1983)

(Harris et al. 1987)
(Horny et al. 1987)

(Facchetti et al. 1988)
(Grouard et al. 1997)
(Olweus et al. 1997)

(Bendriss-Vermare et al. 2001)

+
(Nakano et al. 2001)
(Martin et al. 2002)
(Omatsu et al. 2005)

CD8 (T cell co-receptor)

−
(Muller-Hermelink et al. 1983)

(Harris et al. 1987)
(Horny et al. 1987)

(Facchetti et al. 1988)
(Grouard et al. 1997)

(Bendriss-Vermare et al. 2001)

+/−
(Asselin-Paturel et al. 2001)

(Nakano et al. 2001)
(Martin et al. 2002)

(Asselin-Paturel et al. 2003)
low

(Castellaneta et al. 2004)
(Omatsu et al. 2005)

CD11b (αM integrin; usually non-covalently 
associates with β2 integrin [CD18])

−
(Harris et al. 1987)

(Facchetti et al. 1988)
(Grouard et al. 1997)
(Olweus et al. 1997)

(Bendriss-Vermare et al. 2001)

−
(Nakano et al. 2001)
(Martin et al. 2002)

(Asselin-Paturel et al. 2003)
(Castellaneta et al. 2004)

CD11c (αx integrin; usually forms a 
heterodimer with β2 integrin [CD18])

−
(Facchetti et al. 1988)
(Grouard et al. 1997)
(Olweus et al. 1997)

+/++
(Nakano et al. 2001)

(Asselin-Paturel et al. 2003)
(Castellaneta et al. 2004)

(Omatsu et al. 2005)
(Contractor et al. 2007)

and
NK cells: (Blasius et al. 2007)

CD14 (LPS receptor; mainly expressed by 
monocytes and macrophages)

−
(Facchetti et al. 1988)
(Grouard et al. 1997)
(Olweus et al. 1997)

(Bendriss-Vermare et al. 2001)

CD16 (low affinity IgG receptor, mainly 
expressed by NK cells, activated monocytes, 
and macrophages)

−
(Grouard et al. 1997)
(Olweus et al. 1997)

CD19 (member of the Ig superfamily, 
expressed on all stages of B cell development 
from pro-B cells to mature B cells)

−
(Grouard et al. 1997)
(Olweus et al. 1997)

−
(Nakano et al. 2001)
(Martin et al. 2002)

(Asselin-Paturel et al. 2003)
(Contractor et al. 2007)

CD45R/B220 (an isoform of CD45, expressed 
at all developmental stages of B cells, from 
pro-B cells through mature B cells)

+
(Nakano et al. 2001)

(Asselin-Paturel et al. 2003)
(Castellaneta et al. 2004)

(Omatsu et al. 2005)
(Contractor et al. 2007)
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Marker Human Mouse

And
NK cells: (Blasius et al. 2007)

NK cell progenitors: (Rolink et al. 1996)

CD123 (IL3Ra)

++
(Olweus et al. 1997)

(Bendriss-Vermare et al. 2001)
also present on blood monocytes:

(Buelens et al. 2002)
cDCs: (Masten et al. 2006)

cDC precursors: (Breton et al. 2016), (See et al. 
2017)

− (As IL-3Ra)
(Martin et al. 2002)

−
(Asselin-Paturel et al. 2001)

Low
(Bjorck 2001)

Low:
(O’Keeffe et al. 2002)

CD56 (A single transmembrane glycoprotein 
member of the Ig superfamily, mainly 
expressed by NK and NKT cells)

−
(Grouard et al. 1997)
(Olweus et al. 1997)

(Bendriss-Vermare et al. 2001)

CD303 (BDCA-2; a type II transmembrane 
glycoprotein member of the C-type lectin 
superfamily)

+*
(Dzionek et al. 2000)

N/A

CD304 (BDCA-4; a type I transmembrane 
protein implicated in a variety of biologic 
functions; VEGF165/semaphorin-3A receptor)

(Dzionek et al. 2000) N/A

ILT3 (a type I membrane protein expressed by 
DCs and monocytes)

+
And monocytes, macrophages, and cDCs:

(Cella et al. 1997)
(Cao et al. 2006)

ILT7 (a member of leukocyte 
immunoglobulin-like receptor family)

+*
(Cao et al. 2006)

Gr-1 (Ly6C/Ly6G)

+
(Nakano et al. 2001)

low
(Asselin-Paturel et al. 2003)

low
(Castellaneta et al. 2004)
(Contractor et al. 2007)

Ly6C (a member of the Ly6 family of GPI 
linked protein, expressed by various murine 
immune cells)

N/A
+

(Asselin-Paturel et al. 2003)
(Omatsu et al. 2005)

Ly6G (a member of the Ly6 family of GPI 
linked protein, expressed on the majority of 
myeloid cells and granulocytes)

−
(Asselin-Paturel et al. 2003)

Ly49Q (a type II C-type lectin membrane-
associated polypeptide)

+
(Omatsu et al. 2005)

PDCA-1 (Bst-2; a type II transmembrane 
glycoprotein, an IFN-induced response factor)

+
Also tumor cells:

(Walter-Yohrling et al. 2003)

+
(Asselin-Paturel et al. 2003)

(Blasius et al. 2006)
(Contractor et al. 2007)

Also other cells: (Blasius et al. 2006)

Siglec-H (a member of CD33-related Siglec 
family) N/A +

CD45 (a single chain type I membrane 
glycoprotein; expressed by all immune cells)

+
(Facchetti et al. 1988) +

−: negative; +: present; ++:high levels

*:
considered pDC specific

N/A: Not applicable

ILT: immunoglobulin-like transcript

BDCA: blood dendritic cell antigen
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PDCA-1: plasmacytoid dendritic cell antigen-1

Bst-2: Bone marrow stromal antigen-2
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Table 2.

Distribution of pDCs in Tissues During Steady State

Tissue Human Mice

Secondary lymphoid organs

Thymus

+
(Olweus et al. 1997

Bendriss-Vermare et al. 2001)
(Martin-Gayo et al. 2010)

+
(Martin et al. 2002)

(Asselin-Paturel et al. 2003)
(Blasius et al. 2004)
(Omatsu et al. 2005)

Spleen
+

(Velasquez-Lopera et al. 2008)
(Boor et al. 2019)

+
(Asselin-Paturel et al. 2001)

(Nakano et al. 2001)
(Martin et al. 2002)

(Asselin-Paturel et al. 2003)
(Blasius et al. 2004)
(Omatsu et al. 2005)

Liver
+

(Pedroza-Gonzalez et al. 2015)*
(Boor et al. 2019)

+
(Blasius et al. 2004)
(Omatsu et al. 2005)

Lymph nodes

+
(Olweus et al. 1997)
(Tanis et al. 2004)
(Boor et al. 2019)

+
(Nakano et al. 2001)
(Martin et al. 2002)

(Asselin-Paturel et al. 2003)
(Blasius et al. 2004)

Tonsils
+

(Grouard et al. 1997)
(Olweus et al. 1997)

N/A

Peyer’s patches +
(Jameson et al. 2002)

+
(Castellaneta et al. 2004)
(Contractor et al. 2007)

Peripheral Tissues

Lung
+

(Demedts et al. 2005)
(Baharom et al. 2017)

+
(de Heer et al. 2004)
(Omatsu et al. 2005)
(Venet et al. 2010)

Kidney +
(Woltman et al. 2007)

+
(Coates et al. 2004)

Vagina N/E +
(Lund et al. 2006)

Cervix +
(Agrawal et al. 2009) N/E

N/A: Not applicable

N/E: Not evaluated

*
In patients with hepatic tumors, in sample distant from tumor (at least 1 cm)
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