
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11481-021-09986-3

LETTER TO THE EDITOR

Repurposing of Tetracyclines for COVID‑19 Neurological 
and Neuropsychiatric Manifestations: A Valid Option to Control 
SARS‑CoV‑2‑Associated Neuroinflammation?

Adriano José Maia Chaves Filho1,2,4 · Franciane Gonçalves4 · Melina Mottin2 · Carolina Horta Andrade2 · 
Silvia Nunes Szente Fonseca4,5 · Danielle S. Macedo1,3 

Received: 9 September 2020 / Accepted: 24 January 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) has gained considerable attention worldwide due to its 
increased potential to spread and infect the general population. COVID-19 primarily targets the human respiratory epi-
thelium but also has neuro-invasive potential. Indeed, neuropsychiatric manifestations, such as fatigue, febrile seizures, 
psychiatric symptoms, and delirium, are consistently observed in COVID-19. The neurobiological basis of neuropsychiatric 
COVID-19 symptoms is not fully understood. However, previous evidence about systemic viral infections pointed to an 
ongoing neuroinflammatory response to viral antigens and proinflammatory mediators/immune cells from the periphery. 
Microglia cells mediate the overproduction of inflammatory cytokines, free radicals, and damage signals, culminating with 
neurotoxic consequences. Semi-synthetic second-generation tetracyclines, including minocycline (MINO) and doxycycline 
(DOXY), are safe bacteriostatic agents that have remarkable neuroprotective and anti-inflammatory properties. Promising 
results have been obtained in clinical trials using tetracyclines for major psychiatric disorders, such as schizophrenia and 
major depression. Tetracyclines can inhibit microglial reactivity and neuroinflammation by inhibiting nuclear factor kappa 
B (NF-kB) signaling, cyclooxygenase 2, and matrix metalloproteinases (MMPs). This drug class also has a broad profile of 
activity against bacteria associated with community-based pneumonia, including atypical agents. COVID-19 patients are 
susceptible to secondary bacterial infections, especially those on invasive ventilation. Therefore, we suggest tetracyclines’ 
repurposing as a potential treatment for COVID-19 neuropsychiatric manifestations. These drugs can represent a valuable 
multi-modal treatment for COVID-19-associated neuroinflammatory alterations based on their broad antimicrobial profile 
and neuroinflammation control.
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Dear Editor,

Evidence points to the emergence of neurological and 
neuropsychiatric symptoms in the course of coronavirus 
disease 2019 (COVID-19) (Ellul et  al. 2020). Most 
patients experience mild symptoms, such as ageusia and 
anosmia, early in the infection, while severely ill patients 
can suffer from more dramatic symptoms, such as altered 
consciousness, psychotic symptoms, and mood disturbances 
(Rogers et al. 2020; Kong et al. 2020; Helms et al. 2020). 
Some putative routes for neuroinvasion by coronavirus 
are olfactory–hematogenous route, trans-neuronal route 
(by using the trans-neuronal retrograde machinery), and 
lymphatic pathway (Iroegbu et al. 2020, for a review on this 
topic). Despite the evidence for the presence of the virus in 
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the brain, some neurological and neuropsychiatric symptoms 
are associated with the virus-induced dysregulated immune 
response and “cytokine storm,” which refers to an increase 
of cytokine levels in a short-term period, leading to an 
exaggerated harmful immune response, is a hallmark of this 
disease (van Vuren et al. 2021).

Based on the emergency of COVID-19, there are no 
drug therapies developed exclusively for this infection. 
The antiviral remdesivir was approved for the treatment 
of COVID-19 in hospitalized adult and pediatric patients 
since it reduced patients’ recovery time (Beigel et al. 2020). 
Additionally, dexamethasone use resulted in lower mortality 
among patients hospitalized with COVID-19, receiving 
either invasive mechanical ventilation or oxygen alone at 
randomization (2020).

One crucial strategy to compensate for the absence 
of an effective treatment for a disease reducing cost and 
development time is repurposing an existing and approved 
drug (Ekins et al. 2020). In the context of drug repurposing, 
the second-generation tetracyclines, minocycline (MINO), 
and doxycycline (DOXY), despite being prescribed for their 
broad-spectrum bacteriostatic action, also present anti-
inflammatory, neuroprotective, and even anti-viral effects, 
mainly against central nervous system (CNS) disorders 
(Lemaître et al. 1990; Lu et al. 2017; Balducci et al. 2019). 
Furthermore, these tetracyclines are semi-synthetic products 
with a good oral absorption profile, higher lipophilicity, a 
longer half-life of elimination, and suitability for intravenous 
administration when compared to other tetracyclines (Bastos 
et al. 2012). This work intends to provide a rationale for the 
design of clinical trials and experimental studies to explore 
the effects of tetracyclines for the prevention and treatment 
of neurological and neuropsychiatric outcomes of this 
potentially fatal infection that also leaves persistent sequelae.

The severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has a considerable potential to cause 
neuropsychiatric manifestations (Li et al. 2020). In this 
regard, Mao et al. 2020 reported that about 36% of SARS-
CoV-2 infected patients experienced neuropsychiatric 
symptoms in the course of acute illness. Patients with 
moderate symptoms of COVID-19 commonly present 
headaches and less commonly may also experience dysphoria 
and disturbed attention associated with delirium presentation 
(Mao et al. 2020). On the other hand, seriously ill patients 
may present more severe neurologic manifestations, such 
as loss of consciousness, member paralysis, paresthesia/
hypoesthesia, and coma (Chaudhry and Duggal 2014). 
These patients usually suffer from severe hypoxemia and 
invasive mechanical ventilation, which are associated with 
worse neurocognitive outcomes after recovery (Mizuguchi 
et al. 2007; Sasannejad et al. 2019). Regarding psychiatric 
symptoms, in acute illness, confusion and disturbed attention 
were the most prevalent symptoms, indicating delirium as 

the major neuropsychiatric syndrome in this stage (Ellul 
et al. 2020; Helms et al. 2020; Mao et al. 2020). Depression, 
anxiety, insomnia, emotional lability, and irritability were 
also found (Cheng et al. 2004; Ellul et al. 2020; Kong et al. 
2020; Mao et al. 2020).

The neuro-invasive potential seems to be a common 
feature of coronaviruses (CoVs) (Arbour et  al. 2000), 
leading us to infer that SARS-CoV-2 has, theoretically, a 
similar neuropathogenic potential. Indeed, both SARS-
CoV-2 and SARS-CoV bind to the angiotensin-converting 
enzyme (ACE) 2 receptor to enter human cells (Bergmann 
et al. 2006). This receptor is expressed on neuronal and 
non-neuronal cells of the olfactory nerve and epithelium 
and likely facilitate SARS-CoV-2 brain infection through 
the anterograde axonal transport (Xu and Lazartigues 2020). 
SARS-CoV-2 can reach the brain if the virus first invades 
high ACE2 expressing cells in the olfactory epithelium and 
then passes to low ACE2 expressing mature neuronal cells 
to be transported along olfactory axons to the brain (Yachou 
et al. 2020).

Viruses can also infect endothelial cells of the blood–brain 
barrier (BBB), disrupting their junctions to access brain 
parenchyma (Spindler and Hsu 2012; Al-Obaidi et al. 2018). 
Once the virus invades the CNS, it is promptly recognized, 
through pattern recognition receptors, mainly the toll-like 
receptors (TLRs), by resident microglial cells, therefore 
inducing inflammatory mechanisms (Olson et al. 2001). 
This microglia activation leads to the expression of a variety 
of proinflammatory cytokines, chemokines, free radicals, 
and activated proteases, such as matrix metalloproteinases 
(MMPs), which together orchestrate the inflammatory 
response in the CNS, the so-called neuroinflammation (Woo 
et al. 2008; Bordt and Polster 2014; Hu et al. 2014).

Importantly, CoV neurovirulence can induce 
proinflammatory cytokines expression, for instance, 
interleukin (IL)-12, tumor necrosis factor (TNF)-α, 
IL-6, IL-15, and IL-1β (Li et al. 2004). This exaggerated 
immune response can also culminate (and even predict) 
with meningitis, encephalitis, meningoencephalitis, or 
death (Vázquez et  al. 2012; Grandgirard et  al. 2013). 
Similarly, SARS-CoV-2 infection is associated with an 
increased level of inflammatory mediators including 
cytokines and chemokines such as IL-2, IL-7, IL-10, TNF, 
granulocyte colony-stimulating factor (G-CSF), monocyte 
chemoattractant protein-1 (MCP1; also known as CCL2), 
macrophage inflammatory protein 1 alpha (MIP1α; also 
known as CCL3), CXC-chemokine ligand 10 (CXCL10), 
C-reactive protein, ferritin, and D-dimers (Tay et  al. 
2020, for a review on this topic). These proinflammatory 
alterations were detected in high levels in patients with 
severe COVID-19 (Qin et  al. 2020; Yang et  al. 2020). 
Vis-a-vis, systemic inflammation also compromises BBB 
function by increasing its permeability and contributing to 
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the penetration of peripheral immune cells and cytokines 
into the brain (Varatharaj and Galea 2017). Contrary 
to the view that the brain is an immune-privileged site, 
brain parenchyma displays an intrinsic antiviral network. 
The microglia secreted antiviral cytokines, such as type 
I interferons (IFNs), play a central role (Drokhlyansky 
et  al. 2017). However, not only microglia, but several 
neuroectodermal-derived cells, including neurons, 
astrocytes, and oligodendrocytes, express TLRs and reacts 
with IFNs to mediate the protective response against 
neurotrophic viruses (Farina et al. 2005; Ménager et al. 
2009) (Fig. 1).

Notably, inflammation and oxidative stress are underlying 
mechanisms of several neuropsychiatric and neurological 
disorders (Morris et al. 2019). Proinflammatory cytokines 
and some neuroactive byproducts of inflammation, such as 
nitric oxide (NO) and tryptophan catabolites, can mediate 
an increase in potent free radicals and therefore promote 
an apoptotic stimulus (Rath and Aggarwal 1999; Braidy 
et al. 2009). Thus, through inhibition of inflammation and 
its mediators, tetracyclines can attenuate apoptosis and 
oxidative stress in CNS (Scholz et al. 2015).

Accordingly, tetracyclines present marked anti-
inflammatory and microglia suppressant effects that 
can prevent or reverse “cytokine storm” associated with 
SARS-CoV-2 infection. These anti-inflammatory and 
immunomodulatory effects seem to be independent of 
their antimicrobial activities (Domercq and Matute 2004) 
but dependent on the dose (Di Caprio et al. 2015). More 
specifically, MINO and DOXY are highly potent MMPs 
inhibitors through their strong interaction with Zn in these 
enzymes’ catalytic site (Tilakaratne and Soory 2014). 
In this context, a previous study showed that murine 
CoVs depend on host MMPs for cell fusion and viral 
spread, including neuro-invasion (Phillips et al. 2017). 
Furthermore, MMPs, mainly MMP-9, are essential effectors 
for lung remodeling and destruction of the extracellular 
matrix, leading to damage of the endothelial basal lamina 
involved in adult respiratory distress syndrome (ARDS) 
(Chakrabarti and Patel 2005; Ong et al. 2015).

In the context of tetracyclines’ anti-inflammatory effects, 
elevated serum levels of IL-6 are detected in patients with 
severe COVID-19, implying abnormal inflammation and 
cytokine storm as an effective mechanism for COVID-19 
lethality (Baig et al. 2020; Effenberger et al. 2020). Besides 
the already mentioned effects of tetracyclines on the CNS, 
these drugs, mainly DOXY, can reduce systemic pro-
inflammatory cytokines levels in patients suffering from 
viral infections. In this regard, a randomized clinical trial 
reported a marked reduction in the mortality rate of Dengue 
patients treated with DOXY compared with standard 
therapy. Decreased IL-6 and TNFα levels were underlying 
mechanisms of this protective effect (Fredeking et al. 2015).

Also, tetracyclines are useful in the treatment of virus-
associated encephalitis and encephalopathy. For example, 
MINO presents therapeutic benefits against neuro-adapted 
Sind-bis virus infection of mice (Darman et al. 2004), reovirus 
infection of mice (Richardson-Burns and Tyler 2005), simian 
immunodeficiency virus (SIV) infection of pigtailed macaques 
(Zink et al. 2005) and rhesus macaques (Ratai et al. 2010). 
Experimental studies showed that DOXY and MINO could 
induce zinc-finger antiviral protein (ZAP) expression in several 
mammalian cells lines and inhibit the replication of several 
RNA virus, such as Dengue, Ebola, HIV, Zika, and Influenza 
A viruses (Zhu et al. 2011; Rothan et al. 2014; Malek et al. 
2020). Moreover, DOXY can directly interact with Dengue 
and Chikungunya (CHIKV) viral proteases, reducing virus 
replication and antigen detection (Yang et al. 2007; Rothan 
et al. 2015). Finally, a recent study based on virtual screening 
identified DOXY as a potential inhibitory ligand to SARS-
CoV-2 PLpro. The papain-like protease (PLpro, also known 
as NSP3) protein of CoV plays an essential function in viral 
replication and host immune response modulation (Báez-
Santos et al. 2015). The antiviral effects of these drugs expand 
their benefits against COVID-19 (Wu et al. 2020).

To date, there are ten ongoing randomized clinical trials 
(RCTs) registered in ClinicalTrials.gov to evaluate DOXY 
safety for COVID-19 treatment or prevention (mainly 
focused on pulmonary complications and prevention of 
cytokine storm). At least two of these trials were designed to 
evaluate the effects of DOXY oral administration in patients 
with confirmed COVID-19, aiming to reduce the cytokine 
storm and, therefore, the evolution towards a severe form of 
the disease (ClinicalTrials.gov Identifier: NCT04371952 and 
NCT04433078). Some others study the effects of DOXY in 
combination, for example, with ivermectin and the dietary 
supplements zinc, vitamins D3, and C (ClinicalTrials.
gov Identifier: NCT04482686). One RCT assessed MINO 
(100 mg/day) efficacy for mild COVID-19 (Iranian Registry 
of Clinical trials—IRCT20081019001369N4).

In conclusion, based on the current knowledge about 
COVID-19, drugs that combine antiviral and anti-
inflammatory effects and have a favorable side effects profile 
should be the most promising strategies (Wu et al. 2020). In 
this context, second-generation tetracyclines such as MINO 
and DOXY are not only inexpensive and widely available 
drugs with a safe tolerability profile but significantly fit in 
this profile of effects (Malek et al. 2020). Hence, second-
generation tetracyclines may represent an attractive 
therapeutic option for COVID-19 since these drugs: i) have a 
potential direct anti-viral effect and inhibit viral replication; 
ii) alleviate the severe viral-induced systemic inflammatory 
response and sepsis, therefore protecting CNS cells against 
the harmful viral effects.
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