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Abstract

Eye and head movements are used to scan the environment when driving. In particular, when 

approaching an intersection, large gaze scans to the left and right, comprising of head and multiple 

eye movements, are made. We detail an algorithm called the gaze scan algorithm that 

automatically quantifies the magnitude, duration, and composition of such large lateral gaze scans. 

The algorithm works by first detecting lateral saccades, then merging these lateral saccades into 

gaze scans, with the start and end point of each gaze scan marked in time and eccentricity. We 

evaluated the algorithm by comparing gaze scans generated by the algorithm to manually-marked 

‘consensus ground truth’ gaze scans taken from gaze data collected in a high-fidelity driving 

simulator. We found that the gaze scan algorithm successfully marked 96% of gaze scans, 

produced magnitudes and durations close to ground truth, and the differences between the 

algorithm and ground truth were similar to the differences found between expert coders. 

Therefore, the algorithm may be used in lieu of manual marking of gaze data, significantly 

accelerating the time consuming marking of gaze movement data in driving simulator studies. The 

algorithm also complements existing eye tracking and mobility research by quantifying the 

number, direction, magnitude and timing of gaze scans and can be used to better understand how 

individuals scan their environment.
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1. Introduction

When driving we use head and eye movements to scan the environment to search for 

potential hazards and to navigate. Scanning is especially important when approaching 

intersections, where a large field of view (e.g., 180° at a T-intersection) needs to be checked 

for vehicles, pedestrians, and other road users. Typically, drivers make left and right scans 

that start near and return to the straight ahead position. The scans become increasingly larger 

in magnitude as the driver approaches an intersection with larger scans requiring different 

numbers and sizes of eye and head movements (Figure 1). Insufficient scanning has been 

suggested as one mechanism for increased crash risk at intersections (Hakamies-Blomqvist, 

1993). Previous studies have reported that older adults scan insufficiently at intersections 

compared to younger adults in on-road driving (Bao & Boyle, 2009a) and in a driving 

simulator (Romoser & Fisher, 2009; Romoser, Pollatsek, Fisher, & Williams, 2013; Savage 

et al., 2017; Bowers et al., 2019; Savage et al., Revise and Resubmit). Individuals with 

vision loss have also been found to demonstrate scanning deficits at intersections in a driving 

simulator (Bowers, Ananyev, Mandel, Goldstein, & Peli, 2014). These studies and analyses 

of police crash reports (McKnight & McKnight, 2003; Braitman, Kirley, McCartt, & 

Chaundhry, 2008) suggest that scanning plays an important role in driving and that 

quantifying scanning may provide insights into why some individuals fail to detect hazards 

at intersections. Here, we are interested in quantifying visual scanning as lateral gaze scans, 

which encompass all of the gaze movements (the combination of eye and head movements) 

that extend horizontally from the starting point near the straight ahead positon to the 

maximally eccentric gaze position. This research extends our previous quantification of head 

scans (Bowers et al., 2014) by taking account of eye position as well as head position to 

characterize gaze scanning while driving.

Studies have used different techniques to combine eye and head tracking when driving to 

better understand how drivers scan while approaching an intersection. One approach is to 

quantify the standard deviation of the horizontal displacements in gaze to capture effects 

such as visual tunneling, or the lack of looking into the periphery (Sodhi, Reimer, & 

Llamazares, 2002; Reimer 2009). One limitation of this approach is that it does not quantify 

how many times someone scanned to the left or right nor does it provide information about 

the gaze movements that compose the scan. Some studies have quantified scanning by 

manually counting discrete head turns while participants were driving (Keskinen, Ota, & 

Katila, 1998; Romoser & Fisher, 2009; Bao & Boyle, 2009b; Romoser, Fisher, Mourant, 

Wachtel, & Sizov, 2005). However, categorizing scans as only ‘left’ or ‘right’ fails to capture 

the magnitude of those scans and how those scans were made (i.e. the composition of head 

and eye movements). Other studies have quantified scanning by overlaying eye position onto 

video of the driving scene to manually determine the location of lateral gaze movements 

(Romoser, Pollatsek, Fisher, & Williams, 2013) or by manually marking the start and end of 

lateral gaze movements (Alberti, Goldstein, Peli, & Bowers, 2017). While manual marking 

of gaze movements is common in the literature, it is extremely time consuming, especially 

when the individual doing the marking must look through video frame by frame, and could 

be prone to potential inconsistencies when there are multiple individuals marking gaze 

movements. An alternative to manual marking is automatic detection of gaze movements 
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using an algorithm, which could mark eye and head movements in lieu of manual marking 

altogether. The algorithm could also be used to parse data into simpler chunks for expert 

coders (Munn, Stefano, & Pelz, 2008).

Bowers and colleagues (2014) created an algorithm that automatically quantified the 

magnitude, direction, and numbers of lateral head scans on approach to intersections. That 

algorithm detected large discrete rotations that took head eccentricity at least 4° away from 

the straight ahead position for at least 0.2 s. While that algorithm successfully marked large 

lateral head movements, it did not account for eye position. To fully understand scanning 

behaviors when driving, we need to be able to quantify gaze movements, which are the 

combination of head-in-world and eye-in-head movements. Gaze movements differ from 

head movements in driving: they tend to have faster velocities, extend further laterally, and 

are often composed of multiple discrete saccades and fixations that resemble staircases (e.g., 

scan C in Figure 1). Given the differences between gaze and head movements when 

scanning, the head movement detection algorithm (Bowers et al., 2014) is not suitable for 

marking lateral gaze movements.

Alternatively, one could utilize eye tracking event detection algorithms (e.g. Salvucci & 

Goldberg, 2000; Nyström & Holmqvist, 2010) that detect fixations and saccadic eye 

movements. However, these algorithms are not appropriate by themselves for detecting gaze 

events for two reasons. Firstly, gaze movements that exceed the typical oculomotor range 

(±50°) are slower than smaller gaze movements given that at least part of the gaze movement 

must be composed of head rotation (Barnes, 1979; Guitton & Volle, 1987). Therefore, the 

parameters for detecting saccades from gaze will likely differ from the parameters typically 

used for detecting eye-only saccades. Secondly, event detection may capture the eye 

movements that compose a gaze scan, but additional steps would be required for these 

markings to be interpretable for large gaze scans. For example, to know how far an 

individual looked, which may be a gaze scan composed of multiple saccades, one would 

need to determine from the series of saccades which was the most eccentric, requiring 

additional computation beyond simply marking each saccade. Therefore, we define and 

measure gaze scans as the entire horizontal movement of the eyes plus head that can be 

composed of one or more saccades. Here we present an algorithm called the gaze scan 

algorithm that automatically marks gaze scans by merging neighboring saccades into a 

single gaze scan that ends at the most eccentric gaze location.

The goal of this algorithm is to mark the start and end of each gaze scan in time and 

eccentricity in order to quantify the direction, timing, magnitude, and composition of the 

gaze scan. Our approach to marking gaze scans is reductionist: first, we take a subset 

(bracketing a known event or section of road) of gaze data, isolate saccades, and then merge 

those saccades into gaze scans. This approach has several advantages: 1) it is based on gaze 

movements and not head movements which is important because not all gaze movements 

have a head component (see Figure 1; Savage et al., Revise and Resubmit), 2) the merging of 

saccades is independent of sampling rate and can be paired with any event-detection 

algorithm, 3) provides information about the saccades that compose the gaze scans, and 4) 

can be used to quantify the number of gaze scans, regardless of the magnitude or duration of 

the gaze scan. In order to develop and evaluate this algorithm, the algorithm’s marking of 
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gaze scans was compared to manually marked gaze scans from data collected while 

participants drove in a high-fidelity driving simulator. A successful outcome would enable 

much more efficient processing of gaze data in future driving simulator studies.

2. Materials and Methods

2.1 Participants

The gaze scan algorithm was evaluated using data from a previous study (Savage et al., 

Revise and Resubmit), approved by the institutional review board at the Schepens Eye 

Research Institute. Given the large number of scans in the original data set and the time 

consuming nature of manual marking, a subset of the data were used in the evaluation of the 

algorithm. Data were pseudo-randomly selected from the original dataset to ensure a mix of 

gender and age in the sample. In total 19 drives from 13 unique participants out of the 

original 29 participants were selected. These 13 participants had been recruited from local 

advertisements (IRB-approved) and from a database of participants who had participated in 

previous studies or were interested in participation. They were current drivers with at least 

two years of driving experience, average binocular visual acuity of 20/20, and no self-

reported adverse ocular history. Six of the 19 drives were from female drivers and six of the 

drives were from older drivers (+65 years old) compared to those from younger drivers 

(20-40 years old), which are similar to the proportion of demographics in Savage et al. The 

data from these 19 drives were split into data sets that are described further in section 3.2.

2.2 Apparatus

The driving simulator (LE-1500, FAAC Corp, Ann Arbor, MI) presented a virtual world at 

30 Hz onto five, 42-inch liquid-crystal display (LCD) monitors (LG M4212C-BA, native 

resolution of 1366 x 768 pixels per monitor; LG Electronics, Seoul, South Korea) that 

offered approximately 225° horizontal field of view of the virtual world (Figure 2). The 

simulator was fully controlled by the participant in a cab, which included a steering wheel, 

gear shifter, air conditioning, turn signal, rear and side mirrors (inset on the monitors), 

speedometer (inset on the central monitor), and a motion seat. The virtual environment was 

created with Scenario Toolbox software (version 3.9.4. 25873, FAAC Incorporated) and was 

set in a light industrial virtual world consisting of an urban environment with roads set out 

on a grid system with many four-way (+) and three-way (T) intersections. The world 

contained a variety of buildings, other traffic on the road, and signage (e.g. stop signs, traffic 

lights). All participants drove the same route through 42 intersections and approximately 

half of these intersections included crosstraffic that appeared on the left, right, or straight 

ahead (see Savage et al. for details).

While driving in the virtual world, head and eye movements were tracked across 180° (90° 

to the left and right of the straight ahead position), which is sufficient for capturing large 

lateral eye and head scans on approach to intersections. Eye and head positions were 

recorded at 60 Hz with a remote, digital 6-camera tracking system (Smart Eye Pro Version 

6.1, Goteborg, Sweden, 2015) located around the participant (see Figure 2, red circles). Gaze 

tracking was achieved using the pupil corneal reflection and estimating the combined 

position and direction of a 3D profile of both eyes. Head tracking was achieved 
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automatically by creating a 3D profile of the participant’s face using salient features (e.g. 

eye corners, nostrils, mouth corners, and ears) to capture the position and direction of the 

head. Following data collection, the eye and heading tracking data and the driving simulator 

data were synchronized via time stamps.

2.3 Procedure

Participants drove through an acclimatization drive and practice drive (approximately 8 to 10 

minutes each) to become familiar with driving the simulator. Participants were instructed to 

drive (speed capped at 35 mph) as they would in the real world, obey traffic rules, and press 

the horn whenever they saw a motorcycle (included motorcycle hazards approaching from a 

cross road at 16 intersections). Participants were not given any instructions regarding how or 

when to scan. Prior to the experimental drives, each camera’s position was adjusted 

sequentially to capture as much of the face as possible in the camera’s field of view, 

followed by any necessary adjustments to the aperture and focus. The cameras were 

calibrated with a checkerboard pattern that was presented to each camera from the location 

of the driver’s head. The head position was tracked automatically after camera calibration by 

detecting features of the participant’s face. The eyes were calibrated with 5 points on the 

center screen in the driving simulator. Verification of the calibrations resulted in a median 

accuracy of 2.6° and precision of 1.6° for the 5 calibration points. In each of the two 

experimental drives, participants drove through 42 pre-determined intersections in the same 

virtual city. For the purposes of this paper, we only considered data that corresponded to 100 

m before and up to the white line at T and + intersections (total of 32 intersections per drive, 

half of which contained hazards). For a full description of the procedure, see Savage et al. 

(Revise and Resubmit).

2.4 Post processing

Following data collection, data were processed in MATLAB (Mathworks, R2015a). Eye 

movement data are typically contaminated with data loss (i.e., loss of tracking, or sections 

where the eyes could not be tracked) and noise. To remove these irregularities, we 

implemented an aggressive outlier removal process using two sequential all-zero (finite 

impulse response: FIR) filters (we used the Matlab function filtfilt.m with window sizes of 

33 and 66 ms respectively). Median filtering was chosen because it does not alter any data 

and preserves high frequency events. We first removed large outliers and then smaller ones 

by removing data points that differed by 16° between raw and filtered. Sometimes 

neighboring points were influenced by large outliers, so we repeated this step using a 

threshold of 8°. We then removed any remaining data points with velocities that exceeded 

the physical limits of eye movements. Unphysical velocities were defined as velocities that 

exceeded thresholds from the main sequence as described in Bahill et al. (1975), given an 

assumed fixed relationship between saccade magnitude and peak velocity. These processing 

steps were applied to all data and data points that were missing due to loss of tracking or 

removed because of noise and were replaced using a linear interpolation. The 60 Hz data 

were then smoothed with a Savitzky-Golay filter (sgolayfilt.m, with filter order = 3, filter 

length = 0.117 ms [7 samples]) to preserve high-frequency peaks (Savitzky & Golay, 1964; 

Nyström & Holmqvist, 2010). Post-processed data were used during manual marking and 

for processing gaze scans using the gaze scan algorithm.
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3. Gaze scan algorithm

3.1. Defining a gaze scan

When approaching an intersection, gaze movements typically start from and return to close 

to the straight ahead position (Figure 1). We therefore define a gaze scan as any lateral gaze 

movement that takes the eyes away from the straight ahead position (i.e. 0°) into the 

periphery. Gaze scans could be composed of a single or multiple saccadic gaze movements 

(e.g. see Figure 1) and were always defined as the whole movement from the starting point 

near straight ahead to the maximum eccentricity towards the left (defined as gaze scans 

between 0° and −90° eccentricity) or right (gaze scans between 0° and 90° eccentricity). 

Gaze movements that returned to 0°, which we define as return gaze scans were not 

analyzed here because it is only the scans headed away from the straight ahead position that 

capture the extent of lateral scans. In some instances, the return gaze scan did not stop at the 

straight ahead position, but continued to the opposite side. Any such gaze scans that crossed 

the straight ahead position (0°) were split into one return and one away gaze scan (see 

section 3.3.2). Thus, gaze scans contain side (i.e. on the left or right side of 0°) and direction 

(i.e. towards the left or right side of 0°) information. Each gaze scan has a start and end time 

and eccentricity. The duration of a gaze scan was calculated as the difference in time 

between the start and end of the gaze scan. The magnitude of a gaze scan was calculated as 

the difference in eccentricity between the start and end of the gaze scan. Given this 

information, other variables could be defined with respect to the timing of a gaze scan, such 

as the size of the head movement component of the gaze scan, or the speed and distance of 

the car to the intersection at the time of the start of the gaze scan.

3.2 Manually marked gaze scans

Three authors (G.S., S.W S., and L.Z.) manually marked gaze data from the 19 selected 

drives which were randomly split between two sets of data (see Table 1). The first set 

(ground-truth data set) was used to optimize and evaluate the gaze scan algorithm and 

contained manually marked gaze scans that the three expert coders agreed upon (i.e., 

consensus marking with all three coders in the same room viewing the same monitor). This 

set was further split pseudo-randomly by drive (i.e., total driving route) into a training set for 

the optimization of the gaze scan algorithm, and a testing set for the evaluation of the gaze 

scan algorithm. The second set (coders’ data set) was used to quantify the variance in 

marking between the three expert manual coders and contained manually marked gaze scans 

that the three expert coders marked individually. A total of 4246 gaze scans were marked, 

which corresponded to 6873 seconds of driving data (see Table 1 for details).

Methods for manual marking: Using the post-processed data, the three expert coders 

manually marked gaze scans headed away from the straight ahead position using a custom 

MATLAB GUI that presented lateral gaze and head eccentricity and the time the driver 

entered an intersection. Manual coders marked gaze scans from subsets of the data that 

corresponded to when the driver was approximately 100 m before and up to the time the 

driver entered the intersection (crossed the white line of each intersection), which resulted in 

approximately 13.5 seconds (st.d. = 3 seconds) of data being presented at a time on the x-

axis. The y-axis range was the same on all plots, set from −90° to 90° to capture all possible 
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horizontal gaze movements. This format was exactly the same as the presentations in Figure 

1. The three expert coders marked gaze scans sequentially by selecting the eccentricity and 

time a gaze scan started and then ended according to our definition of a gaze scan (section 

3.1). This was achieved by clicking on the graph twice (first for the start and second for the 

end of a gaze scan), and then clicking a third button that connected the two points to create a 

gaze scan. Only gaze scans heading away from the straight ahead position were marked. 

Large gaze scans returning towards the straight ahead position and long fixations or smooth 

pursuits between large gaze scans were used to sepa- rate one gaze scan from another. After 

marking all of the gaze scans, the GUI generated an output file with the start time, end time, 

start eccentricity, and end eccentricity from which gaze scan magnitude, gaze scan duration, 

and other variables could be calculated and compared to the gaze scan algorithm.

Gaze scan matching: We developed a procedure to match gaze scans. This procedure 

was used to match the algorithm to the ground truth and to match gaze scans between two 

different coders. The below description thus matches gaze scans from set B (e.g., algorithm) 

to set A (e.g., ground truth). Matching was done based on the scan start time, end time, and 

the midpoint between the start and end times.

For a given scan in set A, we searched all of set B’s scans for those with a midpoint between 

the start and end time of the given scan in set A. We also searched all of set B’s scans for 

those with a start and end time that contained the midpoint for the given scan in set A.

If the initial searches returned a single scan from set B, we next checked if the start and end 

time of that scan in set B contained the midpoint of multiple scans from set A. If so, then 

those scans were paired with the single scan in a many-to-one match (section 3.4). 

Otherwise it was designated as a one-to-one match. If the initial searches returned multiple 

scans from set B, then those scans were paired with the given scan in set A as a one-to-many 

match (section 3.4).

When matching scans from set B to set A, the procedure only included those scans from set 

A that had no prior matching scans to set B. That is, for a scan in set A already paired in a 

many-to-one match, that scan did not go the matching procedure again. The matching 

procedure may return some scans in set A and set B with no matches.

Ground-truth data set: For each manually-marked gaze scan, consensus between the 

three expert coders was required before accepting the gaze scan to be part of the ground-

truth data set. Consensus was achieved by having all three expert coders view the same 

image simultaneously and having at least two out of three coders agree on the start and end 

of each gaze scan. The scans from the algorithm that could not be matched with any ground 

truth scan, and vice versa, were omitted from analyses. Only a small percentage of the 

ground truth scans were omitted from analyses (testing set = 2.0%) with the majority of 

these being cases where the algorithm did not mark the gaze data as being a saccade (testing 

set = 75.9%) or cases where the algorithm and manual marking were offset in time and 

thereby not properly paired (testing set = 24.1%).
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Coders’ data set: These gaze data were independently marked by the three expert coders 

and then used to quantify the level of agreement amongst them in their manual markings. 

This provided a comparison for the level of agreement between the gaze scan algorithm and 

the ground-truth testing set. In the coders’ data set, approximately 16% of the gaze scans 

were omitted from our analyses because there was no matching gaze scan from either of the 

other manual coders.

3.3 Gaze scan algorithm implementation

The gaze scan algorithm was implemented in MATLAB (Mathworks, R2015a). The gaze 

scan algorithm automatically marked gaze scans in two stages. First, gaze data were reduced 

to saccades (defined in next section, 3.3.1). The second stage of the gaze scan algorithm was 

to merge the sequences of saccades into gaze scans based on a set of rules. A detailed 

diagram for how the algorithm processes data is provided in the Appendix (section A.1). 

Furthermore, code for the gaze scan algorithm and manual marking can be downloaded from 

https://osf.io/p6jqn/.

3.3.1 First stage of Gaze scan algorithm – Saccade detection—Saccades 

(Figure A.3 in Appendix A.3) were found by calculating the velocity between each gaze 

sample using the smoothed eccentricity and time. If two points had a velocity greater than 30 

°/s, then both samples were marked as belonging to a saccade. To capture onset and offset 

velocities of saccades, we opted for a velocity threshold below what is typically used for 

detecting eye saccades (e.g. 75 °/s; Smeets & Hooge, 2003), given that large saccades that 

have a head movement component may have slower velocities than eye saccades without any 

head movement component (Barnes, 1979; Guitton & Volle, 1987). A similar 30 °/s velocity 

threshold for detection of saccades has also been used in other studies involving driving 

simulation and gaze tracking (e.g. Hamel et al., 2013; Bahnemann, et al., 2015). Only 

neighboring data points that exceeded the velocity threshold and were headed in the same 

direction were combined to form a saccade. The onset and offset of a saccade was defined 

by the first and last data point. Saccades that had a lateral magnitude smaller than 1° or were 

shorter than 2 samples (0.033 s) were removed in order to minimize the likelihood of 

marking noise as a saccade (see Beintema, Van Loon, & Van Den Berg, 2005 for a similar 

approach).

3.3.2 Crossing zero line—While the majority of the gaze scans start and end near the 

straight ahead position (0°), some saccades from gaze scans cross 0°. Saccades that crossed 

the straight ahead position were split into two saccades (Figure 3). By splitting saccades 

with respect to the straight ahead position, we can directly compare left and right gaze 

behavior with objects that appear on the left and right in the environment. Furthermore, in a 

post-hoc analysis, over 70% of the gaze scans started within 7° of the straight ahead 

position. When splitting saccades that cross 0°, the new first saccade now contained a 

linearly interpolated gaze and time value immediately before the cross over, while the new 

second saccade now contained the value immediately after the cross over. Because the 

saccade was split into two new saccades, it necessitated that the two new saccades still 

satisfied the thresholds for saccade detection (section 3.3.1). Any new saccade created after 
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splitting two saccades that no longer satisfied the rules was no longer categorized as a 

saccade.

3.3.3 Second stage of gaze scan algorithm – merging saccades into scans—
The sequence of saccades was next merged into gaze scans (Figure 4). Any two saccades 

could be merged to form a gaze scan headed away from 0°. Merging occurred by comparing 

two saccades and merging those saccades if they satisfied the following rules:

Rule 1:  Both saccades must be on the same side of the straight ahead position, such that no 

saccades on the left side were merged with saccades on the right side, or vice versa. This 

rule prevented merging when two saccades were on opposite sides but satisfy the remaining 

rules.

Rule 2:  Both saccades must be headed in the same direction (i.e. to the left, or to the right). 

This rule helped ensure that the end points of gaze scans were at the maximum eccentricity 

from the straight ahead position. Note that if two saccades qualified for merging but were 

separated by an intermediate saccade that did not satisfy this rule, the saccades may still be 

merged assuming they satisfied Rule 1 and Rule 4 (see appendix section A.2 for example of 

how this is achieved).

Rule 3:  The magnitude of the starting eccentricity of the later saccade must be greater than 

the magnitude of the starting eccentricity for the earlier saccade. The same must be true of 

the ending eccentricity as well. This rule helped ensure that each gaze scan included the 

maximum deviation from the straight ahead position and prevented unnecessary merging 

between likely distinct gaze scans.

Rule 4:  The two saccades must be close in time to each other. The time that was selected, 

0.4 s, is discussed in greater detail in section 3.4. If the difference in time between the end of 

the first saccade and the start of the second saccade exceeded this 0.4 s criterion, then the 

saccades were not merged. Given that gaze scans can occur sequentially on the same side 

(e.g. the multiple leftward scans on the top right in Figure 4), this rule prevents neighboring, 

yet separate, gaze scans from being merged together.

Merging was achieved by chronologically merging saccades until there were no more 

saccades that could be merged. This was achieved by repeating the merging procedure until 

there were two consecutive iterations with the same number of saccades. The remaining 

saccades (both those that were merged and not merged) were then treated as the final gaze 

scans. See appendix for a flowchart (section A.1) and written description (section A.2) of 

how the gaze scan algorithm steps through gaze data.

3.4 Optimizing the merging parameter

Rule 4 of the gaze scan algorithm determines how close in time two saccades need to be in 

order to be merged. We used the training set (Table 1) to optimize this parameter. The 

current parameter (i.e. 0.4 s) was selected by maximizing the product of the proportion of 

one-to-one gaze scan matches between the ground truth and the gaze scan algorithm and 

Cohen’s Kappa (see section 3.6 for calculation) for each parameter value between 0.016 s to 
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0.750 in steps of 0.016 s (i.e., 1 sample at 60hz). A one-to-one match was defined as 

situations in which a single gaze scan from the ground truth was matched to a single gaze 

scan from the algorithm. Only for one-to-one matches could we evaluate the start and end 

markings of the gaze scan algorithm. Cases where more than one gaze scan was matched to 

a single gaze scan were labeled as one-to-many and many-to-one. One-to-many refers to 

situations where there were multiple algorithm gaze scans for a single ground truth gaze 

scan and many-to-one refers to situations where there were multiple ground truth gaze scans 

for a single algorithm gaze scan. As expected, increasing the time between saccades 

decreases the number of one-to-many errors and increases the number of many-to-one errors 

(Figure 5)

3.5 Characterizing saccades and gaze scans generated by the gaze scan algorithm

Saccades and gaze scans generated by the gaze scan algorithm were characterized in terms 

of duration and magnitude. In addition, for gaze scans, the number of saccades per gaze scan 

was computed. The relationship between the duration and magnitude of saccades and gaze 

scans was quantified with Pearson correlations. Differences between the distributions of the 

durations and magnitudes of saccades and gaze scans were analyzed using two-sample 

Kolmogorov-Smirnov tests (given the non-normal distributions for gaze scan duration and 

magnitude). The relationship between the number of saccades per gaze scan and magnitude 

and duration was quantified with a series of Pearson correlations.

3.6 Quantifying performance of the gaze scan algorithm compared to the ground truth

To measure how well the gaze scan algorithm marked gaze scans, gaze scans from the 

algorithm were compared to the ground truth gaze scans from the testing set. We used a 

sample-by-sample Cohen’s Kappa (K; Cohen, 1960; Andersson, et al., 2017) to measure the 

reliability of the algorithm by comparing the relative observed agreement (Po) and the 

hypothetical probability of chance agreement (Pe) of gaze data being marked as part of a 

gaze scan or not using the following formula:

K =
Po − Pe
1 − Pe

Where K = 1 corresponds to perfect agreement and K = 0 corresponds to chance agreement. 

Pearson correlations were used to estimate the relationship between the algorithm and 

ground truth gaze scan durations and magnitudes. However, strong correlations do not 

necessarily imply good agreement between two methods (in this case, gaze scan algorithm 

and ground truth), especially if there is an offset in one method. Therefore, we used Bland-

Altman methods (Bland & Altman, 1986), which provide a way to investigate systematic 

differences between two methods using the bias and variance (i.e., limits of agreement). 

These methods are more sensitive than other methods (e.g., correlation, Cohen’s Kappa) 

because the direction of the bias can be ascertained and we can individually evaluate how 

well the algorithm is marking the start and end time and eccentricity. We calculated both the 

bias and limits of agreement (LoA) of the differences in duration and magnitude between the 

gaze scan algorithm and ground truth. The significance of the bias was calculated using a 

sign-test, given that the differences in duration and magnitude were not normally distributed 
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in one-sample Kolmogorov-Smirnov tests. LoAs were calculated by adding the median of 

the differences to the 2.5th and 97.5th percentile. Effect sizes (r) for the sign-test were 

calculated by dividing the sign-test statistic (z) by the square root of the sample size 

(Rosenthal, 1994). Bland-Altman methods were also used for quantifying the differences 

between the start time, end time, start eccentricity, and end eccentricity, in the same manner 

as for duration and magnitude.

When comparing the gaze scan algorithm to the ground truth, only those gaze scans marked 

by the algorithm that could be paired with exactly one ground truth gaze scan (i.e., one-to-

one matches) were analyzed, which corresponded to 92.5% of the marked gaze scans. Gaze 

scans categorized as one-to-many (2.4%), many-to-one (2.6%), or had no corresponding 

algorithm markings (2.5%) were not analyzed for the quality of their marking. However, it is 

worth noting that the few one-to-many and many-to-one errors suggest that the gaze scan 

algorithm successfully matched saccades according to the ground truth.

To evaluate the gaze scan algorithm, we compared the LoA between the gaze scan algorithm 

and ground truth to the LoA between the three manual coders’ manual markings of the 

‘coders set’ of data. The same methods to generate LoAs between the gaze scan algorithm 

and ground truth were calculated for each coder compared to the other. Next, we averaged 

the LoAs between the manual coders. This average is thus the difference we may expect 

between manual coders, which provides a benchmark to determine whether the algorithm is 

performing as well, worse, or the same as what we may expect for manual coders. See 

appendix (Appendix A.4) for differences between manual coders.

To calculate the 95% confidence intervals around the LoAs, we utilized bootstrapped 

resampling given the non-normality of the data. In 1000 iterations, we randomly selected, 

with resampling, from the distribution until we had selected the same number of resamples 

as the original distribution. Then, we calculated the LoAs for each iteration, thereby creating 

a resampled distribution. The 95% confidence interval of the LoAs was defined by taking 

the 2.5% and 97.5% percentile of the resampled distribution.

4. Results

4.1 Saccades and gaze scans generated by the gaze scan algorithm

The magnitude and duration of saccades [r2 = 0.63, p < 0.001] and gaze scans [r2 = 0.43, p < 

0.001] were found to be significantly correlated (Figure 6), similar to main sequence 

relationships reported for eye saccades (Bahill, Clark, & Stark, 1975). As expected, the 

distributions of the durations [D = 0.63, p < 0.001] and magnitudes [D = 0.37, p < 0.001] 

were significantly different between saccades and gaze scans. Saccades had smaller 

durations with less dispersion [median = 0.07, IQR = 0.04 s to 0.083] than gaze scans 

(median = 0.24, IQR = 0.09 s to 0.45 s). The same was also true of magnitudes [saccades: 

median = 4.3, IQR = 2.1° to 10.0°; gaze scans: median = 12.7, IQR = 6.2° to 36.2°]. Longer 

duration and larger magnitude gaze scans compared to saccades was expected given that 

gaze scans could be composed of multiple saccades.
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Approximately 55.2% of gaze scans were composed of more than one saccade (Figure 7 

left). The duration [r2 = 0.84, p < 0.001] and magnitude [r2 = 0.44, p < 0.001] of gaze scans 

were significantly positively correlated with the number of saccades per gaze scan (Figure 7 

center and right, respectively). This was expected given that individuals typically don’t make 

many eye saccades greater than 15° (Bahill, Adler, & Stark, 1975) and larger gaze scans 

would, therefore, require more saccades. Finding a majority of the gaze scans are composed 

of multiple saccades and that the number of saccades affects both the magnitude and 

duration of gaze scans supports the usefulness of the gaze scan algorithm when merging 

gaze scans together.

4.2 Comparing gaze scans between the gaze scan algorithm and ground truth

Gaze scan duration [r2 = 0.61, p < 0.001] and gaze scan magnitude [r2 = 0.995, p < 0.001] 

were significantly positively correlated (Figure 8 left) between the gaze scan algorithm and 

ground truth, with the relationship being stronger for magnitude than duration [z = 50.7, p < 

0.001]. The sample-to-sample Cohen’s kappa for all gaze scans between the algorithm and 

ground truth was 0.62, which suggests good agreement (Cohen, 1960) and is similar to the 

sample-to-sample kappa between expert coders in this study (see Table A.1) and found for 

other saccade detection algorithms (Andersson, et al., 2017; 60hz data in Zemblys, et al., 

2018)

The differences in duration [p < 0.001] and magnitude [p < 0.001] were found to be 

significantly different from a normal distribution, which was likely due to the distributions 

being highly leptokurtic [kurtosis for durations = 24.6, magnitudes = 56.4, standard error of 

kurtosis = 0.16]. When evaluating agreement between the gaze scan algorithm and ground 

truth with the Bland-Altman methods (Figure 8 right), the duration [median = −0.01 s, z = 

6.0, p < 0.001] was significantly biased towards the ground truth, albeit with a small effect 

size [r = 0.19] and a bias that is smaller than what can be measured with our system (i.e., our 

sampling rate was 60 hz). The magnitude was not significantly biased [median = 0.02°, z = 

0.5, p = 0.63] towards either the gaze scan algorithm or ground truth.

The comparisons of the limits of agreement (LoA) between the algorithm and ground truth 

are summarized in Table 2 and described further below.

The LoA for magnitude between the gaze scan algorithm and ground truth were within the 

average confidence interval of the LoA between manual coders (Table 2), which suggests 

that the level of agreement between the algorithm and ground truth was similar to that found 

between expert coders. However, this was not the case for the LoAs for duration, given that 

confidence intervals between the algorithm and ground truth and manual coders did not 

overlap (Table 2). Despite the lack of an overlap in LoAs for duration, approximately 90.5% 

of differences between the gaze scan algorithm and ground truth were within the lower and 

upper confidence bounds between the manual coders, suggesting that the wider LoA 

between the algorithm and ground truth was driven by a few outliers in durations.

As was the case with duration and magnitude, the error distributions for start time [p < 

0.001], end time [p < 0.001], start eccentricity [p < 0.001], and end eccentricity [p < 0.001] 

between gaze scans from the algorithm and ground truth were found to be significantly 
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different from a normal distribution. The non-normality was likely related to the 

distributions being highly leptokurtic (kurtosis: start time = 27.1, end time = 53.4, start 

eccentricity = 22.2, end eccentricity = 96.0, standard error of kurtosis = 0.16). Bland-Altman 

plots for the differences of start time, end time, start eccentricity and end eccentricity 

between the algorithm and ground truth are displayed in Figure 9. The difference in end time 

was significantly biased towards the ground truth [median = −0.01 s, z = 6.6, p < 0.001], 

albeit with a small effect size [r = 0.21]. However, the difference in start time [median = 0.0 

s, z = 0.6, p = 0.54], start eccentricity [median = 0.0°, z = 1.5, p = 0.13], and end eccentricity 

[median = 0.3°, z = 1.4, p = 0.15] were not significantly biased.

The LoAs between the gaze scan algorithm and ground truth for end eccentricity overlap 

with the average confidence intervals of the LoAs between the manual coders for end 

eccentricity (Table 2), suggesting agreement between algorithm and manual coders 

regarding where the gaze scan ends in eccentricity. There was some overlap for start 

eccentricity and end time, but no overlap for start time (Table 2). As was the case with 

duration, 92.4% of the differences between the algorithm start times were within the lower 

and upper confidence bounds between the manual coders, suggesting a few outliers may 

have been driving the worse agreement between gaze scan algorithm and ground truth.

4.3 Addressing gaze scans poorly marked by the algorithm

As is the case in any event detection algorithm, the goal is to accelerate processing of gaze 

data without sacrificing accuracy. As identified here, the gaze scan algorithm produced one-

to-many errors (2.4%) and many-to-one errors (2.6%) when compared to the ground truth. 

These gaze scans, and gaze scans with a duration or magnitude that were outside the ground 

truth LoA (approximately 7.8%, Figure 10), could then be manually inspected and corrected 

where necessary. However, without manual marking, it would be difficult to know in 

advance which gaze scans are poorly marked. We utilized precision-recall curves to evaluate 

whether gaze scan duration, magnitude, or velocity may be predictors of poor fitting. 

Precision-recall curves are similar to receiver operator characteristic (ROC) curves, except 

that precision-recall curves are more appropriate for imbalanced datasets (Saito & 

Rehmsmeier, 2015). Unlike ROC curves, better classification corresponds to recall and 

precision closest to 1 (i.e., towards the upper right). Area under the curve (AUC), which 

summarizes classification performance, was estimated using the trapezoidal rule. AUCs for 

classifying poorly fit gaze scans were 0.53, 0.21, and 0.08 for gaze scan duration, 

magnitude, and velocity, respectively. For gaze scan duration, the threshold that best 

separated true and false positive rates was 0.6 s, which suggests that that threshold may be 

useful in indicating whether a gaze scan may be poorly marked. Specifically, this threshold 

may be most useful in capturing one-to-many and many-to-one errors (i.e., 92% and 82% 

were above 0.6 s, respectively) and less useful for gaze scans outside of the LoA (48.7%).

5. Discussion

We developed an algorithm to automatically detect gaze (head combined with eye 

eccentricity) scans by marking the start and end of each scan called the gaze scan algorithm. 

We compared performance of the algorithm to a ground-truth dataset of manually-marked 
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scans. In addition, we compared the differences between the gaze scan algorithm and 

manually marked scans to differences found between expert coders to better understand 

what may be considered adequate markings by the algorithm.

The algorithm’s primary function is to merge saccades into gaze scans. To determine if this 

was necessary, we calculated the number of saccades per gaze scan to determine how 

frequently gaze scans were composed of multiple saccades. Approximately 55.2% of the 

matched gaze scans in the testing set were composed of multiple saccades, suggesting that 

the algorithm was necessary in marking the full extent of the gaze scans. For the testing set, 

less than 2.4% of the ground truth gaze scans were one-to-many by the gaze scan algorithm 

compared to 49.4% in a version of the algorithm without any merging. These results suggest 

that the algorithm successfully merged multiple saccades into gaze scans.

Overall, the gaze scan algorithm and ground truth produced qualitatively and quantitatively 

similar gaze scans. In the testing set, 95% of the gaze scans produced by the algorithm were 

matched to a gaze scan from the ground truth data set, suggesting the algorithm successfully 

marked gaze scans. When considering the magnitude and duration of the gaze scans, there 

was good agreement according to Cohen’s Kappa and significant correlations between the 

algorithm and ground truth gaze scans for both the magnitude and duration, albeit with a 

stronger correlation for magnitude than duration. In addition, we assessed the agreement 

between the gaze scan durations and magnitudes between the algorithm and ground truth 

using limits of agreement (LoA) from Bland-Altman methods. The agreement between the 

gaze scan algorithm and ground truth for gaze scan magnitude was similar to the agreement 

between the expert coders, suggesting that the algorithm is sufficiently marking the 

magnitude of the gaze scan. Furthermore, similar results were found for both the start and 

end eccentricity and end timing. However, there was less agreement for gaze scan duration 

between the gaze scan algorithm and ground truth compared to the expert coders. When 

examining the agreement between the gaze scan algorithm and ground truth for start and end 

times, there was less agreement for start times than end times, which may explain the 

variability for durations produced by the gaze scan algorithm. However, even though there 

was less agreement between the gaze scan algorithm and ground truth for the timing of gaze 

scans, more than 90% of the gaze scans were still within the agreement range of the manual 

coders. Thus, the gaze scan algorithm and ground truth tended to agree about as well as 

expert manual coders tend to agree. Gaze scan duration is one metric (section 4.3) that may 

be useful in identifying gaze scans that may be poorly marked by the gaze scan algorithm 

and need to be corrected with manual marking. In our dataset, gaze duration exceeding 0.6 s 

seemed to be a reasonable threshold, though this value may change based on the driving 

scenario.

The current implementation of the gaze scan algorithm focused on quantifying gaze 

scanning on approach to intersections, but could also be applied to scanning in other driving 

scenarios. It is applicable to different driving environments that may have different types of 

scanning, such as driving on the highway versus driving in the city. The algorithm 

complements existing research measuring for how long or how frequently individuals look at 

different sections of the road (Yamani, Samuel, Gerardino, & Fisher, 2016), hazards 

(Crundall et al., 2012) or at in-vehicle displays (Donmez, Boyle, & Lee, 2009) by providing 
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a way to quantify how individuals moved their eyes to reach that area of interest. In addition, 

the algorithm could be used to determine the magnitude of gaze scans when walking; for 

example, determining when it is safe to cross a street requires large gaze scans to the left and 

right (e.g. Whitebread & Neilson, 2000; Hassan, Geruschat, & Turano, 2005). In applied 

settings, the algorithm could be used to quantify an individual’s scanning behaviors (how far 

and how frequently they scanned) to monitor progress during scanning training as part of a 

rehabilitation program for drivers who exhibited scanning deficits, such as individuals with 

visual field loss (Bowers et al., 2014) or older persons with normal vision (Romoser & 

Fisher, 2009).

One potential limitation of the gaze scan algorithm is that detecting saccadic gaze 

movements using velocity thresholds at low sampling rates (i.e. less than 250 Hz) results in 

imprecise markings (Mack, Belfanti, & Schwarz, 2017). Therefore, the accuracy and 

optimization of the algorithm may have been impacted by imprecise markings of saccades 

because the gaze data used was collected at 60 Hz. While the 60 Hz sampling rate might 

have influenced the accuracies described here, the algorithm is not dependent upon the 

sampling rate and can be considered modular. That is, the merging portion of the algorithm 

(i.e. Stage 2 described in section 3.3.3) could be applied to saccades detected from a 

different algorithm using a different sampling rate from the methodology used in Stage 1 

described in this paper.

While the current configuration of the gaze scan algorithm sufficiently marked gaze scans 

compared to the ground truth scans, it is possible that there may be subgroups of participants 

wherein a different configuration of the algorithm would provide a better fit of data. For 

example, age impacts how an individual scans when driving on-road (Bao & Boyle, 2009b) 

and in the driving simulator (Romoser, Pollatsek, Fisher, & Williams, 2013; Savage et al., 

Revise and Resubmit) and this could mean that age may impact the parameter value that 

determines how close in time two saccades need to be to be merged. With the current data 

set, there is not enough data to determine whether this should be the case or the case for 

other potential subgroups (e.g. gender, driving experience).

6. Conclusion

We describe an algorithm that automatically marks the beginning and end of lateral gaze 

scans, which allows for the quantification of the duration, magnitude, and composition of 

those scans, called the gaze scan algorithm. The algorithm produces gaze scans that are 

quantitatively similar in duration and magnitude to manually marked ground truth gaze 

scans with differences from the ground truth within the level of agreement that may be 

expected between expert manual coders. Therefore, the algorithm may be used in lieu of 

manual marking of gaze data, significantly accelerating the time consuming marking of gaze 

movement data in driving simulator studies. The algorithm complements existing driving 

simulator research investigating the relationships between gaze movements and driving 

behavior and could be implemented in other situations outside of the driving simulator (e.g. 

walking) that involve multiple gaze movements headed in the same direction.
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Appendix

A.1. Flow chart for processing gaze data using gaze scan algorithm

Figure A.1. 
Flow chart for converting gaze data into gaze scans using the gaze scan algorithm. Here, 

V(X,Y) refers to gaze velocity in the horizontal and vertical directions. Saccade is simplified 

to S, saccades after correcting for saccades that cross zero is simplified to Sc, and gaze scans 

are simplified to G.
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A.2. Verbal description of the gaze scan algorithm

The procedure for merging saccades is described in a simplified format below. Figure A.2 

shows gaze data from Figures 3 and 5 (lower right plot) from the manuscript, to illustrate 

how the gaze scan algorithm merges saccades (Figure A.2, left) into gaze scans (Figure A.2, 

right). For the sake of simplicity, saccade is represented by S and the number next to S 

represents which saccade.

Figure A.2. 
Zoomed in data from Figures 3 and 5 (lower right plot) illustrating how saccades (on the 

left) are merged into gaze scans (on the right). On the left, S (N) represents the Nth saccade 

(S). On the right, G (N) represents the saccades that compose a gaze scan (G). Note that for 

simplicity, only large saccades are being shown.

Merging begins with S (2). Given that S (1) is headed in a different direction (i.e. towards 

the right) than S (2), S (2) is not merged with S (1) based on Rule 2. Next, we examine S (3). 

Given that S (1) and S (2) are on the opposite side (i.e. on the right) to S (3) (i.e. on the left), 

S (3) is not merged with either S (1) or S (2) based on Rule 1. Next, we examine S (4). Like 

S (3), S (4) cannot be merged with S (1) and S (2) because they are on opposite sides. 

However, the relationship between S (3) and S (4) satisfies all of the rules. Therefore, S (3) 

and S (4) are merged into a single S (3-4), which has the start of S (3) and the end of S (4). 

Next, we examine S (5). Given that S (1) and S (2) are on the opposite side to S (5) and that 

S (3-4) is headed in a different direction than S (5), S (5) is not merged. Next, we examine S 

(6). Given that S (1) and S (2) are separated from S (6) by more than 0.4 s (i.e. Rule 4) and 

that S (3-4) and S (5) are on the opposite side to S (6), S (6) is not merged. Next, we 

examine S (7). Given that S (1) and S (2) are too far back in time, S (3-4) and S (5) are the 

opposite side to S (7), and S (6) is headed in a different direction, S (7) is not merged. Next, 

we examine S (8). Given that S (1) and S (2) are too far back in time and S (3-4) and S (5) 

are on the opposite side, S (8) cannot be merged with those saccades. However, S (6) is 

within the merging time set by Rule 4 and can be merged with S (8). Furthermore, S (7), 

while headed in a different direction than S (8), is merged with S (6) and S (8) because it is 

on the same side (i.e. Rule 1) and is sandwiched between S (6) and S (8), thereby resulting 

in S (6-8) with the start of S (6) and end of S (8). Next, we examine S (9). Given that S (1) 

and S (2) are too far back in time, S (3-4) and S (5) are on the opposite side, and S (6-8) is 

headed in a different direction, S (9) is not merged. Now that all of the saccades have been 

merged, the remaining saccades are treated as the final gaze scans. When only considering 
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the gaze scans headed away from 0°, S (1) becomes the first gaze scan G (1), S (3-4) 

becomes G (3-4), and S (6-8) becomes G (6-8); the numbers in parentheses still refer to the 

original numbering of the saccades.

A.3. Saccades markings

In Figure A.3, the saccade markings are displayed on the same data as displayed in Figure 1 

and Figure 4 in the main paper.

Figure A.3. 
Saccades (pink) overlaid on the gaze data from Figure 1 in the paper. While the saccades 

successfully capture the large gaze movements made during saccades, they do not, by 

themselves, capture the full gaze scan. For example, see the large leftward gaze scan starting 

at 577s in the bottom right plot, which is broken into two leftward saccades (indicated by the 

two black arrows) superimposed on one continuous leftward head movement.

A.4. Agreement between manual coders

Three authors (G.S., S.W S., and L.Z.) independently manually marked data from the 

‘coders set’. Sample-by-sample Cohen’s Kappa between the algorithm and the coders is 

displayed in Table A.1. Bland-Altman plots for the comparisons of gaze scan duration and 

magnitude are displayed in Figure A.4 and gaze scan start time, end time, start eccentricity, 

and end eccentricity are displayed in Figure A.5. As in the main manuscript, the limits of 

agreement (LoA) were calculated based on adding the median difference to the 2.5th and 

97.5th percentile, which resulted in an average LoA of 0.30 s (95% CI: 0.24 s to 0.36 s) and 

3.6° (95% CI: 3.1° to 4.5°) for duration and magnitude, respectively. In addition, here are the 

average LoAs for start time (0.18 s, 95% CI: 0.14 s to 0.22 s), end time (0.21 s, 95% CI: 

0.18 s to 0.27 s), start eccentricity (1.72°, 95% CI: 1.43° to 2.1°), and end eccentricity (3.0°, 
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95% CI: 2.5° to 3.6°). Note, that there is significant overlap in the markings between coders 

for each of these measures.

Table A.1.

Sample-by-sample Cohen’s kappa calculated between the different coders (G.,L.,S.) and 

between the coders and the algorithm.

G. L. S.

G. 1

L. 0.64 1

S. 0.51 0.68 1

Algorithm 0.71 0.68 0.69

Figure A.4. 
Bland-Altman plots for the comparisons between coders for gaze scan duration (left) and 

magnitude (right). Here, color represents the different comparisons. Box plots are provided 

in lieu of histograms to demonstrate the differences between coders, which was minimal. 

The dotted horizontal lines represent the average limits of agreement (LoA) and the numbers 

correspond to the average limits with the median between the two LoAs.
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Figure A.5. 
Bland-Altman plots for the comparisons between coders for gaze scan start time (top left), 

end time (bottom left), start eccentricity (top right), and end eccentricity (bottom right). 

Here, color represents the different comparisons. Box plots are provided in lieu of 

histograms to demonstrate the differences between coders, which was minimal. The dotted 

horizontal lines represent the average limits of agreement (LoA) and the numbers 

correspond to the average limits with the median between the two LoAs.
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Figure 1. 
Examples of the diversity of individuals’ scanning patterns on approach to an intersection 

(gaze = blue, head = red). Sections of these plots will be used in subsequent figures to 

illustrate different aspects of the gaze scan algorithm. Each plot shows data from 100 to 0 m 

before the intersection. The black arrow in front of the car in the top left plot indicates the 

travel direction (i.e. left to right means forward in time). Participants decelerated at different 

rates, hence the different spacings between tick marks on the top (distance-to-intersection) 

axis. The dotted blue arrows in the top left plot indicate the direction of the gaze and head 

scans. Any scan below 0° eccentricity is a scan to the left and any scan above 0° eccentricity 

is a scan to the right. Some gaze scans were made with large head movements (e.g. A), while 

others were made without any head movements (e.g. B). Some large (60°) scans were slow 

and comprised of multiple saccades (e.g., C) while others were quick and comprised of only 

one saccade (e.g., D).
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Figure 2. 
Image of the driving simulator equipped with 6 cameras (red circles) located around the 

driver’s seat (two on the left, two on the right, and two in the center), which enabled 

recording of lateral eye and head position up to 90° to the left and right of the driver.
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Figure 3. 
Zoomed in data from Figure 1 (upper left plot), illustrating where a saccade is split when 

crossing 0°.
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Figure 4. 
Illustration of lateral head and eye movement with gaze scans (green) produced from the 

gaze scan algorithm overlaid onto the gaze movements. Despite the diversity of gaze 

movements that compose the gaze scans, the gaze scan algorithm is able to successfully 

mark the start and end of the different gaze scans.
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Figure 5. 
The effect that the value determining the maximum time between saccades (i.e. Rule 4) has 

on the proportion of one-to-many errors (left), on the proportion of many-to-one errors 

(middle), and on Cohen’s Kappa (right; note: the graph is truncated at 0.5). The solid black 

line is the average for the 8 participants and the gray shading around the average represents 

the standard error. The vertical dotted line represents the value (0.4 s) that maximizes the 

product of 1 minus the proportion of one-to-many and many-to-one errors (i.e., proportion of 

one-to-one matches) and Cohen’s Kappa.
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Figure 6. 
Scatter plots and histograms for the duration and magnitude of saccades (left) and gaze 

scans (right).
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Figure 7. 
Proportion of gaze scans with specific numbers of saccades (left) with blue representing 

gaze scans composed of a single saccade and orange representing those composed of more 

than one. The magnitude of gaze scans as a function of the number of saccades within each 

gaze scan (middle). The duration of gaze scans as a function of the number of saccades 

(right)
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Figure 8. 
Scatterplots and histograms showing the relationship between the gaze scan algorithm and 

ground truth magnitudes (top left) and durations (bottom left). Bland-Altman plots showing 

the difference between the algorithm and ground truth magnitudes (top right) and duration 

(bottom right). The dotted horizontal lines represent the limits of agreement (LoA) and the 

numbers correspond to those limits with the median between the two LoAs.
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Figure 9. 
Differences between the gaze scan algorithm and ground truth for each matched gaze scan’s 

start time (top left), end time (bottom left), starting eccentricity (top right), and ending 

eccentricity (bottom right). The dotted horizontal lines represent the limits of agreement 

(LoA) and the numbers correspond to those limits with the median between the two LoAs.
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Figure 10. 
Scatter plot (left) showing the gaze scan duration and magnitude for gaze scans from the 

gaze scan algorithm within the LoA bounds (blue circles), outside of the LoA (purple 

triangles), and one-to-many (green circles) and manually marked scans that were many-to-

one (red diamonds). Precision-recall curves for classifying whether a gaze scan would be 

poorly marked (i.e., outside of the LoA, one-to-many, or many-to-one) given gaze scan 

duration (blue line), magnitude (red line), and velocity (yellow line). Classification closest to 

the upper right (in this case, duration) provided better classification. Chance classification is 

represented with the horizontal dashed line.
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Table 1.

Details of Ground-truth and Coders’ data sets

Type of
manual
marking

Number
of

drives

Number
of gaze
scans

Duration of
driving data

(seconds)

Purpose

Ground Truth data
  Training set

Consensus 8 2322 3461 Optimize gaze scan
algorithm merging

parameter

Ground Truth data
  Testing set

Consensus 4 1094 1861 Evaluation of gaze
scan algorithm
performance

Coders’ data Individual 7 830 1551 Estimate expected
variance between

coders when
manual marking
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Table 2.

Average limits of agreement (LoA) between the gaze scan algorithm and ground truth and between the coders. 

95% confidence intervals are displayed inside the parentheses.

Algorithm vs. Ground Truth Inter-coder

Magnitude (°) 3.82 (3.36 to 4.45) 3.42 (2.95 to 4.05)

Duration (s) 0.41 (0.37 to 0.46) 0.29 (0.24 to 0.34)

Start gaze scan
eccentricity (°)

2.27 (1.88 to 2.63) 1.65 (1.37 to 1.95)

End gaze scan
eccentricity (°)

2.42 (2.15 to 3.33) 2.74 (2.3 to 3.35)

Start gaze scan time (s) 0.28 (0.24 to 0.32) 0.17 (0.12 to 0.21)

End gaze scan time (s) 0.28 (0.25 to 0.33) 0.22 (0.19 to 0.26)
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